

Livestock manure improved antibiotic resistance gene removal during co-treatment of domestic wastewater in an anaerobic membrane bioreactor

Journal:	Environmental Science: Water Research & Technology
Manuscript ID	EW-ART-04-2020-000387.R1
Article Type:	Paper

Water impact statement

Reducing the dissemination of ARGs and MGEs is critical for limiting human exposure to emerging health threats, particularly in water reuse. This study investigates ARG and MGE removal during co-treatment of domestic wastewater and livestock manure in an anaerobic membrane bioreactor (AnMBR). Results show an AnMBR can effectively treat complex wastes and limit the spread of ARGs in the environment.

Livestock manure improved antibiotic resistance gene removal during co-treatment of domestic wastewater in an anaerobic membrane bioreactor[†]

Esther Ge Lou^a, Moustapha Harb^b, Adam L. Smith^c, and Lauren B. Stadler^{a,*}

[†] Electronic supplementary information (ESI) available.

^a Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005

^b Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon 2038-1401

^c Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA

^{*}Corresponding author: Lauren B. Stadler (<u>lauren.stadler@rice.edu</u>), Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005

Abstract

Anaerobic membrane bioreactors (AnMBRs) can manage complex combined waste streams, recover energy, and produce nutrient-rich effluents for irrigation. To advance AnMBRs for water reuse, the removal of antibiotic resistance genes (ARGs) during cotreatment of waste streams requires further attention. Here, an AnMBR was fed domestic wastewater with increasing amounts of cattle manure. The removal of target genes including nine ARGs and two mobile genetic elements (MGEs) was assessed. Manure addition was found to significantly improve the removal of target genes, with a removal efficiency of 99.95% during the stage with the greatest addition of manure. Further, the effluent contained more cell-free ARGs (cfARGs) than cell-associated ARGs (caARGs) when manure loading was greatest. This study is the first to evaluate ARG and MGE removal during co-treatment of domestic wastewater and livestock manure using AnMBRs, and also the first to differentially characterize the cfARGs/caARGs in an AnMBR effluent treating complex waste streams.

Keywords: Anaerobic membrane bioreactor, antibiotic resistance genes, wastewater, manure, cell-associated ARGs, cell-free ARGs

1 **1. Introduction**

2 Seventy percent of the world's freshwater supply is currently used for agricultural 3 irrigation.¹ which is driving the adoption of nontraditional water sources to ensure the 4 long-term supply of water for crop production. Treated wastewater represents a reliable 5 source of water that can offset the rate of freshwater depletion while concurrently reducing 6 nutrient discharges into freshwater systems and redirecting those nutrients to offset 7 fertilizer requirements. This is especially relevant considering that traditional approaches to crop fertilizer delivery (i.e., application of manure) are coming under increasing 8 9 scrutiny because of their greenhouse gas emissions, lack of energy valorization, and nutrient runoff issues.² Given that approximately 335 million tons of manure are produced 10 each year in the United States.³ the co-management of manure and wastewater is an 11 attractive approach for advancing the use of alternative water sources for irrigation. 12 13 Anaerobic membrane bioreactors (AnMBRs) are an emerging biotechnology that are ideally suited to co-manage manure and wastewater because they produce a high-quality, 14 nutrient-rich effluent for reclaimed water irrigation while also recovering energy in the 15 form of biogas. 16

One of the primary obstacles to reuse of treated wastewater for agricultural irrigation is the presence of emerging contaminants such as antibiotics, pathogens, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Antibiotic resistance has been deemed one of the most significant human health challenges of the 21st century. Wastewater treatment plants represent a hotspot for the dissemination of ARGs in the environment.⁴ Even after treatment, the elevated concentrations of nutrients, salts, and

23	lytic phages in wastewater effluents can contribute to cell competency and transformation,
24	which can further promote the uptake of ARGs by microbial communities in receiving
25	environments. ⁵ Thus, irrigation using reclaimed wastewater may lead to the dissemination
26	of antibiotic resistance elements. ^{6,7}
27	ARGs have also been widely detected in livestock waste. ^{8–10} Considering that
28	manure management frequently involves land application of biosolids, the dissemination
29	of ARGs in soil is also a major source of antibiotic resistance loading on the
30	environment. ¹¹ ARGs have been found in significantly higher abundances in soil that has
31	received manure application as compared to un-manured soil. ^{12,13} ARG removal by
32	conventional livestock waste management technologies (e.g., anaerobic digestion and
33	composting) has been observed as variable and limited. ^{9,14,15} However, the impact of co-
34	managing wastewater and manure on effluent ARG abundances in water for reuse for
35	irrigation has not been investigated.
36	AnMBRs have been successfully applied for both low-strength domestic
37	wastewaters and high-strength organic waste streams (e.g., food waste and manure),
38	illustrating their versatility in managing organic waste streams. ^{16,17} Furthermore, AnMBR
39	systems in or proximal to agricultural areas could be used in decentralized applications to
40	increase energy recovery while also managing livestock waste by co-treating wastewater
41	with animal manure. Co-management of domestic wastewater with higher strength waste
42	streams, such as animal manure, increases the potential for net energy positive treatment
43	using AnMBR. ¹⁸ In addition, AnMBRs may be uniquely suited to reduce antibiotic
44	resistance proliferation during the co-treatment of wastewater and manure because

Page 6 of 37

membrane systems, in general, have been shown to achieve better ARG removal than
conventional activated sludge systems.¹⁹ A lingering question related to ARG removal by
AnMBRs, however, is the extent to which cell-free ARGs (cfARGs; i.e. extracellular
ARGs that are present due to lysis of dead cells or the secretion of DNA from live cells)
are capable of passing through the membranes of these systems.²⁰

To advance the application of AnMBRs for the co-management of wastewater and 50 manure for water reuse applications, we need a better understanding of their ability to 51 remove ARGs and mobile genetic elements (MGEs) during treatment. The goal of this 52 study was to (1) determine if there is an association between the amount of cattle manure 53 54 added to domestic wastewater and the corresponding removal efficiencies of target genes in AnMBR, and (2) investigate how manure addition impacted the profile of ARGs and MGEs 55 and their dominant form (i.e., cell-associated vs. cell-free) in AnMBR effluent. This is the 56 57 first study to characterize ARG removal during AnMBR co-treatment of real wastewater and manure, and the first study to differentially characterize effluent cell-associated and 58 cell-free ARGs and MGEs from an AnMBR treating real waste streams. 59

60

61 **2. Methods**

62 2.1 AnMBR set-up and monitoring

A bench-scale AnMBR with a liquid volume of 4.5 L (Chemglass Life Science,
Vineland, NJ) was operated at ambient temperature (average 17.7 ± 0.39 °C). The pH of
reactor mixed liquor was spot checked routinely and the observed values ranged from 7.2 to

66	7.6). The reactor was equipped with three submerged membrane housings that each
67	contained a flat-sheet silicon carbide ultrafiltration membrane (Cembrane, Denmark) with
68	$0.1\ \mu m$ pore size and $0.015\ m^2$ effective surface area. Headspace biogas was recirculated
69	via transversally mounted sparging tubes to limit membrane fouling, while operating at a
70	sub-critical flux of 5.27 L/m ² /h (LMH) which yielded a hydraulic retention time (HRT) of
71	approximately 19 hrs. The AnMBR was inoculated with anaerobic digester sludge from the
72	Joint Water Pollution Control Plant (Carson, CA). The detailed configuration of the
73	AnMBR and operational parameters are shown in ESI ⁺ Section 1.1.1.
74	The operation of the AnMBR consisted of 5 stages: Baseline operation, Stage 1,
75	Stage 2, Stage 3, and Stage 4. Domestic wastewater used in this study was collected from
76	the City of West University Place WWTP (Houston, TX), a full-scale activated sludge
77	WWTP that treats an average of 2 million gallons per day. The wastewater samples were
78	collected periodically under dry weather conditions and at the same time of day to avoid
79	diurnal variations. The wastewater was immediately transported to the lab and stored at 4
80	°C before feed preparation. In Stages 1 through 4, manure slurry was added to the domestic
81	wastewater in increasing amounts. Manure from beef cattle was collected from McGregor
82	Research Center (McGregor, TX) and then diluted with water to form a manure slurry with
83	a target solids content of 3%. Table 1 provides detailed influent composition along with the
84	corresponding organic loading rate (OLR) for each stage. Across the different stages of
85	treatment, the OLR increased from 0.6 kg COD/m ³ /d in Baseline operation to 2.5 kg
86	COD/m ³ /d in Stage 4 operation.

Performance indicators including chemical oxygen demand (COD), soluble COD 87 88 (sCOD), mixed liquor total and volatile suspended solids (MLSS/MLVSS), pH, volatile 89 fatty acids (VFAs; including acetic acid, formic acid, propionic acid, butyric acid, and 90 valeric acid) and headspace biogas were monitored and described in ESI[†] Section 1.1.2. In 91 addition, chemical cleaning using 0.5% sodium hypochlorite was performed at the end of 92 each operational stage to avoid the potential impact of membrane fouling on the 93 experimental results, and to maintain a consistent flux across all operational stages. In 94 addition, effluent tubing was cleaned periodically to remove downstream tube wall biofilms 95 that may have formed.

96 2.2 DNA extraction with internal standards

Cell-associated DNA (caDNA) and cell-free DNA (cfDNA) were separated in order 97 98 to quantify cell-associated ARGs (caARGs) and cell-free ARGs (cfARGs), respectively. 99 Internal standards were spiked into all samples prior to DNA extraction. caDNA internal 100 standards were *E. coli* cells containing a modified engineered plasmid (ESI[†] Section 1.2). 101 The plasmid, pReporter 8 (RRID: Addgene 60568),²¹ is a low-copy plasmid that was 102 previously modified by knocking out the gene encoding green fluorescence reporter (GFP) 103 and inserted with the methyl-halide transferase (MHT) gene found in *Batis maritima*.²² A 112 bp region on MHT gene (primers in ESI⁺ Table S3) was selected as the target for 104 qPCR to quantify the initial concentration of standard spiked into the samples (C_0 in 105 106 Equation 1) and the amount recovered in each corresponding sample (C_s in Equation 1). E. 107 coli cells were harvested from overnight culture supplemented with 34 µg/mL 108 chloramphenicol, mixed well and aliquoted into equal volumes for: (1) spiking in the

109	influent and effluent samples, and (2) conducting plasmid extraction on three of the aliquots
110	to get the reference copy number through qPCR (C_0 in Equation 1).
111	cfDNA internal standards were pUC19 plasmids containing a target insertion for
112	qPCR quantification (ESI [†] Section 1.2). The insertion was a 183 bp fragment of the
113	ARHGAP11B gene, a human-associated gene that is specific to the brain neocortex (Florio
114	et al., 2015). Approximately 10 ⁸ copies of the plasmid were spiked into each effluent
115	sample prior to filtration. The initial concentration of spiked cfDNA internal standard was
116	calculated using the concentration of the plasmid stock used measured by Qubit and the
117	volume spiked. The initial concentration of spiked cfDNA (C _o in Equation 1) was
118	quantified by performing qPCR on the plasmid stock. The concentration of recovered
119	internal standard was quantified using qPCR to determine C_s . caDNA and cfDNA standards
120	did not amplify in non-spiked influent, manure, or effluent samples in 40-cycles of qPCR
121	(data not shown).
122	Influent and effluent samples were passed through membrane filters (mixed
123	cellulose ester, 0.22 μm pore size, Millipore Sigma, MA) and caDNA was defined as DNA
124	extracted from biomass retained on the filters, whereas cfDNA was defined as DNA in the
125	filtrate. Five influent (30 mL each) and five effluent (350 mL each) samples were collected
126	during each operational stage. caDNA was quantified in influent and effluent samples, and
127	cfDNA was quantified in effluent samples only because the influent contained significantly
128	higher cell counts than the effluent indicated by the concentration of $rpoB$ (50 to 10 ⁴ -fold
129	higher concentrations in the influent versus effluent). Right before the sample filtration

step, both caDNA and cfDNA internal standards were spiked into samples and mixed well.

131	Membrane filters with caDNA were stored in 50% ethanol at -20 °C until DNA
132	extraction. DNA extraction was performed using FastDNA SPIN Kits for Soil (MP
133	Biomedicals, CA). cfDNA was analyzed in effluent samples by successively collecting the
134	filtrate from the 0.22 μm filtration step and concentrating the DNA in the filtrate using an
135	adsorption-elution method as described by Wang et al. ²³ cfDNA samples were stored at -20
136	°C until DNA extraction using FastDNA SPIN Kits for Soil (MP Biomedicals, CA). Total
137	DNA was quantified in caDNA and cfDNA extracts using Qubit 3.0 with the dsDNA HS
138	Assay Kit (Invitrogen, CA).

139 **2.3 Quantification of ARGs and MGEs**

140 Target genes for qPCR quantification included 9 ARGs (sul1, sul2, tet(O), tet(W), ermB, ermF, ampC, blaOXA-1 and blaNDM1), 2 MGEs (int11 and tp614) and rpoB (coding 141 142 for β-subunit of RNA polymerase) used for normalizing ARGs and MGEs to calculate 143 relative abundance. These ARGs were selected because they are frequently detected in wastewater. In addition, we specifically included erm genes because the manure used in 144 145 this study was collected from beef cattle that were fed Tylosin, a macrolide-class antibiotic 146 that may have resulted in selective pressure for *ermB* and *ermF*.^{24,25} A class 1 integron gene 147 (*int11*) and a transposon gene (*tp614*) were also included because they have been found to be associated with the transfer of ARGs and to play an important role in the evolution and 148 proliferation of multi-drug resistant bacteria.²⁶⁻²⁸ The qPCR reaction was carried out in 149 150 triplicate with each reaction containing 10.5 µL that included Forget-Me-Not EvaGreen 151 qPCR mastermix (Biotium, CA), 50 nM ROX (Biotium, CA), 500 nM of forward and reverse primers, PCR grade H₂O, and DNA template. Primers and qPCR reaction 152

conditions are provided in ESI⁺ Table S3 and S4. Ten-fold serial dilutions of cloned

154	plasmids with each target gene were amplified in triplicate for each qPCR assay. The
155	efficiencies of the real-time qPCR assays for the target ARGs and MGEs ranged from
156	89.1% to 103%. R ² values were greater than 0.99 for all qPCR assays. The limit of
157	quantification (LOQ) for the target genes ranged from 6 to 920 copies/reaction, which was
158	equivalent to 19 to 3070 copies/mL for 30 mL influent samples and 2 to 263 copies/mL for
159	350 mL effluent samples. Quality control steps for qPCR are detailed in ESI ⁺ Section 1.3.
160	The concentration of target genes in each sample (gene copy number/mL) was
161	calculated using the following equation (1):
162	Gene concentration $\left(\frac{\text{copies}}{\text{mL}}\right) = \frac{C_s C_i}{V_s C_o}$ (1)
164	Where C_s is the copy number of the target gene in the sample's DNA extract (copies)
165	determined by qPCR, V_s is the volume of sample used (mL) to generate the DNA extract,
166	C_i is the copy number of the internal standard (copies) determined by qPCR, and C_o is the
167	copy number of the internal standard (copies) spiked into the sample prior to DNA
168	extraction. Further information on internal standards of cell-associated genes and cell-free
169	genes along with the calibration methods can be found in ESI ⁺ Section 1.2. The recoveries

171 **2.4 Statistical methods**

170

SciPy (https://www.scipy.org) was used for t-test and correlation analysis. The twotailed unpaired t-test was used to identify significant differences between effluent target
gene concentrations between stages (n=5 for cell-associated genes; n=5 for cell-free genes).

of caDNA and cfDNA are provided in ESI[†] Table S6.

175	The log removal values (LRVs) reported in this study for each gene for each operational
176	stage were calculated using the following equation: $LRV = log10$ (influent gene
177	concentration/ effluent gene concentration). The influent and effluent gene concentrations
178	were calculated by taking the average of n=5 samples. The effluent gene concentrations
179	were the sum of cell-associated and cell-free fractions. A t-test was performed to assess
180	whether a given LRV was significantly different between operational stages. Before
181	performing a t-test, the Kolmogorov-Smirnov and Shapiro-Wilk tests were used to ensure
182	that the dataset followed a normal distribution (α =0.01). P values less than 0.01 were
183	regarded as statistically significant. Pearson's correlation analysis was used for identifying
184	correlations between any pair of two target genes in effluent samples over a 95%
185	confidence interval. Pearson coefficient (r) was used to identify strength of correlations.

187 **3. Results & Discussion**

188 **3.1 Percent COD removal was consistent across all operational stages**

Percent COD removal was measured across all operational phases to assess the impact of manure addition on AnMBR performance and effluent water quality. During Baseline operation where the influent consisted of only domestic wastewater (influent COD $= 431 \pm 42$ mg/L), the effluent COD was 54 ± 12 mg/L and the average COD removal was $87.6 \pm 2.27\%$, which is consistent with the range of COD removals reported in similar systems at psychrophilic temperature.²⁹ Upon increasing the influent COD in subsequent operational stages from under 500 mg/L to above 1600 mg/L COD through the addition of

196	livestock manure, the COD removal rate remained relatively constant, ranging between
197	87.0% to 89.7% (ESI [†] Fig. 1). This suggests that AnMBRs have the capacity to provide
198	consistent COD removal during the co-management of domestic wastewater and livestock
199	manure. The results are also consistent with COD removal efficiencies reported in previous
200	studies investigating anaerobic treatments with other high-strength organic substrates at
201	similar temperatures under mono-digestion conditions. ^{30,31} As the addition of manure
202	resulted in an increase in effluent COD across the Stages 1 through 4 (ESI [†] Fig. S1), the
203	OLR and ratio of influent manure to wastewater would have to be taken into consideration
204	depending on the final application of the effluent. Other performance data including
205	methane production are provided in ESI [†] Fig. S1, solids concentrations in ESI [†] Table S1,
206	and VFA concentrations in ESI [†] Table S2.

3.2 Wastewater contributed the majority of influent ARGs during manure cotreatment

209 Although manure contributed the majority of influent COD in Stages 1 through 4 210 (Fig. 1A, p<0.001), the majority of influent ARGs and MGEs across those same stages 211 remained dominated by the domestic wastewater (Stage 1 shown in Fig. 1B, p<0.05). The 212 most abundant target ARGs and MGEs in the wastewater were *intI1*, *sul1* and *sul2*, which was consistent with previous studies.^{32,33} While approximately 97% of the target ARGs and 213 MGEs in the influent was contributed by the wastewater fraction during Stage 1, 214 215 erythromycin ribosome methylation genes (ermB and ermF) that confer resistance to 216 macrolide antibiotics were mainly contributed by the manure fraction (Fig. 1B). This result is consistent with the fact that the manure was collected from cattle that were fed Tylosin, a 217

218	macrolide antibiotic. Tylosin is a commonly used in-feed antibiotic in both cattle and swine
219	livestock farms, and previous studies have observed high occurrences of <i>ermB</i> and <i>ermF</i> in
220	livestock wastes. ^{24,25} . Interestingly, the multi-drug resistance gene, <i>blaNDM1</i> was below
221	the limit of detection in the influent and effluent samples during Baseline operation when
222	the AnMBR was treating solely domestic wastewater (number of samples = 5), but was
223	detected at concentrations above 10 ² copies/mL when manure was added to the influent
224	(Fig. 1B). No studies to our knowledge have specifically investigated the presence of the
225	blaNDM1 gene in livestock manure; however, one study detected two blaNDM1-postitive
226	bacteria strains in the soil around animal farms. ³⁴
227	3.3 The overall removal efficiency of target ARGs and MGEs from domestic
228	wastewater was comparable to or greater than reported removal efficiencies of
229	conventional wastewater treatment
230	Influent (cell-associated) and effluent (cell-associated and cell-free) ARGs and
231	MGEs were quantified across all operational stages to calculate removal efficiencies. The
232	LDV- of the terr of ADC- and MCE- many of the terrs on 0.20 to 4.12 domine Develop
	LRVs of the target ARGs and MGEs ranged between 0.20 to 4.13 during Baseline
233	operation when the AnMBR was solely treating domestic wastewater, with significant
233 234	operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline
233 234 235	operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This
233 234 235 236	operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This removal efficiency is comparable to a study of two full-scale WWTPs, which reported a
233 234 235 236 237	DRVS of the target ARGS and MGES ranged between 0.20 to 4.13 during Baseline operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This removal efficiency is comparable to a study of two full-scale WWTPs, which reported a 89.0% – 99.8% removal of target ARGs. ³⁵ High LRVs of <i>tet</i> genes, <i>tet</i> (O) (2.41) and <i>tet</i> (W)
233 234 235 236 237 238	LRVs of the target ARGs and MGEs ranged between 0.20 to 4.13 during Baseline operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This removal efficiency is comparable to a study of two full-scale WWTPs, which reported a 89.0% - 99.8% removal of target ARGs. ³⁵ High LRVs of <i>tet</i> genes, <i>tet</i> (O) (2.41) and <i>tet</i> (W) (4.63) reported here are consistent with previous findings of <i>tet</i> gene log reductions in
233 234 235 236 237 238 239	LRVs of the target ARGs and MGES ranged between 0.20 to 4.13 during Baseline operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This removal efficiency is comparable to a study of two full-scale WWTPs, which reported a 89.0% - 99.8% removal of target ARGs. ³⁵ High LRVs of <i>tet</i> genes, <i>tet</i> (O) (2.41) and <i>tet</i> (W) (4.63) reported here are consistent with previous findings of <i>tet</i> gene log reductions in membrane bioreactors treating domestic wastewater. ^{33,36} LRVs of <i>sul</i> genes, <i>sul1</i> (1.43) and
233 234 235 236 237 238 239	LRVs of the target ARGs and MGEs ranged between 0.20 to 4.13 during Baseline operation when the AnMBR was solely treating domestic wastewater, with significant differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This removal efficiency is comparable to a study of two full-scale WWTPs, which reported a 89.0% - 99.8% removal of target ARGs. ³⁵ High LRVs of <i>tet</i> genes, <i>tet</i> (O) (2.41) and <i>tet</i> (W) (4.63) reported here are consistent with previous findings of <i>tet</i> gene log reductions in membrane bioreactors treating domestic wastewater. ^{33,36} LRVs of <i>sul</i> genes, <i>sul1</i> (1.43) and

240	sul2 (1.28), were comparable to LRVs reported in previous studies on WWTPs, which
241	ranged from $1.2 - 2.7 \log 3^{33,37,38}$ In addition, we observed high removal efficiencies of <i>erm</i>
242	genes. The LRVs of <i>ermB</i> and <i>ermF</i> were 3.39 and 3.48, respectively, and they were both
243	~1.0 log higher than the LRVs reported from conventional WWTPs. ^{37,39} Although <i>erm</i>
244	genes in influent increased across stages due to manure addition, the ultimate concentration
245	in effluent was still less than 100 copies/mL which is lower than typically seen in biological
246	effluent in conventional WWTPs or even in the final disinfected effluents. ^{26,37,40} All ARGs
247	and MGEs were successfully reduced during baseline operation at over 87% removal, with
248	the exception of $ampC$, which increased in effluent samples. The enrichment of $ampC$ may
249	have been due to the growth of organisms harboring this gene in the bioreactor. Enrichment
250	of certain target ARGs in terms of their relative abundance (ARG copy number normalized
251	by <i>rpoB</i> copies) was also observed for <i>sul1</i> and <i>blaNDM1</i> , despite the fact that their
252	absolute abundance decreased during the AnMBR treatment. Other studies have observed
253	enrichment of different ARGs across biological treatment compartments in WWTPs in
254	terms of both absolute abundance ^{41,42} and in relative abundance. ^{33,43} The inconsistent
255	patterns of ARG removal/enrichment during wastewater treatment underscore the
256	challenges of predicting the fate of ARGs released to the environment and need to develop
257	a more mechanistic understanding of the factors that control ARG proliferation and
258	attenuation during treatment.

To our knowledge, there is only one study on the fate of ARGs in AnMBRs treating real domestic wastewater.³⁶ In this study, a higher LRV of target ARGs (3.3 to 3.6 log) was found in the AnMBR treating primary clarifier effluent, but the mechanisms behind such high ARG removal efficiency were not well understood. This study, in combination with
the limited number of previous studies on ARG removal during AnMBR treatment on real
and synthetic wastewater,^{36,44} suggests that AnMBRs are effective at removing a large suite
of diverse ARGs present in domestic wastewater. This could be an important advantage
over conventional wastewater treatment for improving microbial safety during agricultural
reuse, especially considering that AnMBRs have also been shown to also surpass pathogen
removal rates observed for full-scale aerobic MBRs.⁴⁵

269 3.4 ARG and MGE removal efficiency increased with increased manure loading

270 This study is the first to examine the impact of co-treatment of domestic wastewater 271 and manure on ARG removal. Results generally showed that the addition of manure was beneficial to overall target ARG and MGE removal rates, which was strongly supported by 272 273 the consistent trend of decreasing target gene concentration in the effluent through Baseline 274 operation to Stage 4 (Fig. 2C). Further, as the fraction of manure added to the influent wastewater was incrementally increased, the removal efficiency of overall target ARGs and 275 276 MGEs also increased steadily from Baseline operation to Stage 4 (Fig. 2B). In addition, the 277 overall target ARG and MGE removal rate was largely driven by the removal of *sull*, *intIl* 278 and sul2 genes (ESI⁺ Fig. S2). The LRVs of intI1, sul1 and ampC consistently increased from Baseline operation to Stage 4 due to manure addition (p<0.01). In Stage 4, the LRV of 279 all target ARGs and MGEs reached 3.31, which was mainly due to the highest LRV of the 280 281 most abundant influent MGEs and ARGs, namely, intll (4.77) and sull (3.54) (Fig. 2A). 282 The removal efficiency of target ARGs and MGEs observed in Stage 4 was higher than previously reported values from several WWTP studies (Jilu Wang et al., 2015; Y. Yang et 283

al., 2014; Wen et al., 2016). The LRVs of genes *blaOXA-1*, *ermB*, *ermF*, tet(O), *tet*(W) and 284 285 *tp614* were consistently high across all stages (Fig. 2A; ESI⁺ Table S7). Further, it was 286 interestingly observed that *ermB*, *ermF* and *tp614* were significantly more abundant in the influent manure fraction as compared to the influent wastewater fraction (p<0.01, Fig. 1B). 287 288 The higher influent concentrations contributed by manure addition may have increased the 289 AnMBR's potential to remove them when manure was added compared to Baseline 290 operation(when only the wastewater was treated). A previous study found that manure was 291 dominated by cell-associated DNA as opposed to cell-free DNA (Zhang et al., 2013). We 292 observed that ermB, ermF and tp614 were significantly more abundant in the manure than 293 the wastewater fraction of the influent (p<0.01, Fig. 1B). Thus, their superior removal when 294 manure was added to the AnMBR may have been because the cell-associated DNA was readily removed via filtration. 295

296 The overall target ARG and MGE concentration in the effluent decreased consistently with the addition of manure (Fig. 2C, p<0.01), and in Stage 4 effluent, this 297 concentration was approximately 90% lower than that of Baseline operation when the 298 299 AnMBR was treating domestic wastewater without manure. The removal efficiency of target ARGs and MGEs observed in Stage 4 was higher than the previously reported values 300 from several WWTP studies^{39,41,46} and of manure treatment approaches including advanced 301 anaerobic digestion^{14,47} and composting.⁴⁸ This result, combined with the fact that 302 303 AnMBRs can recover energy in the form of biogas, underscore that AnMBR is a strong 304 candidate for the co-management of wastewater and manure because they can potentially reduce the proliferation of ARGs in wastewater and animal waste. The results support the 305

application of AnMBRs in decentralized agricultural applications where multiple wastestreams must be managed and water and energy reuse could be harnessed.

The improvement in ARG removal with increasing manure loading may have 308 309 resulted from enhanced microbial activity caused by the increasing OLR. The increase in 310 microbial activity may have impacted ARG removal in several different ways. First, manure addition could have resulted in a shift in the microbial community to fast-growers 311 312 that could quickly break down the organics in the substrate. This, in turn, may have selected 313 for microbes that harbor fewer ARGs since they can exert a metabolic burden (i.e. fitness cost) that can result in slower growth rates.⁴⁹ Second, the enhanced biological activity 314 resulting from a greater input of nutrients to the system may have boosted growth generally 315 and resulted in greater turnover of cells and biodegradation of DNA that included ARGs. 316 We also observed a consistent shift in the effluent DNA from cell-associated to cell-free 317 318 from Baseline operation to Stage 4 (Fig. 3). This observation supports the assumption that 319 manure addition resulted in an increase in biological activity in the bioreactor as a previous study by Nagler et al.⁵⁰ in which it was found that the ratio of cfDNA to total DNA content 320 321 was significantly positively associated with biological activity in anaerobic digesters. Further, the methane COD conversion normalized by the feed COD (Table 1) consistently 322 323 increased from Baseline operation to Stage 4 (p<0.01), supporting the hypothesis that 324 manure addition resulted in increased biological activity.

325 3.5 The effluent ARG and MGE reservoir shifted from cell-associated to cell-free with 326 increased manure loading

The majority of effluent ARGs and MGEs were cell-associated during all 327 328 operational stages except for Stage 4 (ESI⁺ Fig. S4). In Stage 4, the cell-free fraction of 329 target genes was significantly elevated as compared to the previous stages (t-test, p < 0.001) and accounted for approximately 89% of the target ARGs and MGEs in the effluent. At the 330 331 same time, the concentration of the cell-associated fraction of target ARGs and MGEs in 332 effluent decreased consistently from Baseline operation to Stage 4 (p<0.01). These results 333 indicated that cfDNA became the primary reservoir of target genes in the effluent when the 334 manure loading to the system was the highest. The abundance of effluent cell-free ARGs 335 and MGEs confirms that they should not be overlooked in wastewater effluents (or 336 unquantified because of the DNA concentration protocol used) (Fig.4), as they can make up 337 a substantial fraction of effluent ARGs under some conditions.³⁷ The vast majority of 338 studies on ARGs in wastewater did not explicitly capture the cell-free fraction of ARGs, and thus may have significantly underestimated the risk of ARG propagation from effluents 339 340 in receiving environments. Previous studies that distinguished between cell-associated and cell-free ARGs using PMA-based PCR,⁵¹ magnetic bead extraction,⁵² or NAAP-based 341 extraction (same as applied in this study)⁵³ found that most ARGs in WWTP effluent 342 following disinfection were in extracellular forms or within cells with compromised 343 membranes, underscoring the importance of accounting for cfARGs. 344

In the cell-associated fraction of effluent target genes, the abundance of *int11* and *sul1* decreased significantly with the addition of manure across all stages (p < 0.05) (Fig. 2A). The removal of *int11* may have been due to the elimination of manure-associated aerobic hosts of integrons (e.g., *Actinomycetales* and *Bacilli*) during anaerobic treatment.⁵⁴

Overall, the cell-associated fraction of target ARGs and MGEs in the effluent decreased 349 350 steadily from Baseline operation to Stage 4 (ESI⁺ Fig. S4). Indeed, LRVs of the cell-351 associated fraction of target ARGs and MGEs across all five stages ranged from 1.54 - 4.20 352 logs and were consistent with reported ARG removal efficiencies using membrane-based treatment technologies.^{33,55,56} Given that ultrafiltration membranes (0.01 - 0.1 pore size) 353 354 retain the vast majority of microbes in AnMBRs, it is likely that some of the caARGs in the 355 effluent are due to microbial regrowth within post-membrane effluent lines. Considering 356 the higher effluent nutrient concentrations during the stages with higher manure addition, it 357 is also possible that the observed reduction of cell-associated target genes was due to 358 effluent selection for microbial groups which are less likely to harbor ARGs and MGEs due 359 to fitness cost. We also performed correlation analysis to identify significant associations between effluent ARGs that were observed in cell-associated and cell-free fractions and the 360 results are discussed in the ESI⁺ Section 2.3. 361

362 Results of a previous quantitative microbial risk assessment (QMRA) on AnMBR 363 effluents indicate that AnMBR treatment would likely need to be paired with a downstream disinfection process in agricultural reuse applications.⁴⁵ Based on this, the form of effluent 364 ARGs (i.e., cell-associated vs. cell-free) may also influence their inactivation rates during 365 disinfection (here, we define inactivation as the destruction of the ARG such that is no 366 367 longer functional). Specifically, a greater proportion of ARGs in the cfDNA fraction may improve ARG inactivation during disinfection. Cell-associated ARGs are more difficult to 368 369 inactivate because the cell serves as a barrier between the disinfectant and DNA and can thus protect the DNA against damage. A recent study evaluated multiple disinfection 370

371	methods including free chlorine, monochloramine, chlorine dioxide, ozone, UV, and
372	hydroxyl radicals, and reported that among all these disinfection processes, caARG
373	inactivation always lagged behind cell inactivation.57 This indicates that the removal of
374	caARGs requires cell inactivation to occur first, whereas cfARGs may be inactivated
375	directly during disinfection. In a few of the very limited amount of studies that
376	distinguished between caARGs and cfARGs during disinfection processes, caARGs were
377	found to be more difficult to remove than cfARGs during chlorination and UV
378	disinfection. ^{57–59} Further, other studies observed that caARGs became cfARGs during the
379	disinfection process, indicating some disinfection may not be sufficient to completely
380	destroy caARGs. ^{52,53} In this study, the concentration of effluent caARGs decreased steadily
381	with increased manure loading (ESI† Fig. S4). In Stage 4, there were 2.34×10^4 copies/mL
382	of caARGs in the effluent, which was much lower than secondary effluent caARG
383	concentrations reported by previous studies of conventional WWTPs. Thus, our results
384	show that application of AnMBRs for the co-treatment of domestic wastewater and
385	livestock manure could reduce the proliferation risk potential during reuse, as they generate
386	an effluent with relatively low ARG concentrations where cfARGs (which are easier to
387	inactivate than caARGs) make up a substantial fraction of the total effluent ARGs and
388	MGEs assessed in this study.

390 4. Conclusions

391 Our results demonstrate that co-management of domestic wastewater and livestock392 manure using AnMBRs can both improve resource recovery and mitigate the spread of

393	antibiotic resistance in reclaimed water. The removal efficiency of total target genes
394	significantly improved with the increased manure loading in the AnMBR co-treatment
395	process and was greater than many conventional WWTP treatment processes. Increasing
396	manure loading not only decreased total target gene abundance in the effluent but also
397	made cfARGs the dominant form of effluent ARGs. cfARGs require uptake by competent
398	cells to be functional and are easier to inactive during disinfection. Thus, the ability of
399	AnMBR to reduce ARGs during co-treatment of wastewater and manure and generate an
400	effluent with primarily cell-free ARGs (as opposed to cell-associated) may be advantageous
401	in water reuse applications.
402	Conflicts of interest
402	
403	There are no conflicts to declare.
403	Acknowledgements
403 404 405	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016-
403 404 405 406	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was
403 404 405 406 407	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was partially supported by Rice University. The authors are grateful to Eric Rice, Laney Baker,
403 404 405 406 407 408	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was partially supported by Rice University. The authors are grateful to Eric Rice, Laney Baker, Andrew Brower, and Sophie Gao for their help with reactor construction, maintenance, and
403 404 405 406 407 408 409	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was partially supported by Rice University. The authors are grateful to Eric Rice, Laney Baker, Andrew Brower, and Sophie Gao for their help with reactor construction, maintenance, and sample analysis. The authors would also like to thank Paul King and his team of operation
403 404 405 406 407 408 409 410	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was partially supported by Rice University. The authors are grateful to Eric Rice, Laney Baker, Andrew Brower, and Sophie Gao for their help with reactor construction, maintenance, and sample analysis. The authors would also like to thank Paul King and his team of operation from the West University City Place WWTP for helping with logistics related to
403 404 405 406 407 408 409 410 411	Acknowledgements This work was supported by funding from Water for Agriculture grant no. 2016- 68007-25044 from the USDA National Institute of Food and Agriculture. The research was partially supported by Rice University. The authors are grateful to Eric Rice, Laney Baker, Andrew Brower, and Sophie Gao for their help with reactor construction, maintenance, and sample analysis. The authors would also like to thank Paul King and his team of operation from the West University City Place WWTP for helping with logistics related to wastewater sampling.

415	1.	AQUASTAT. FAO's Global Water Information System. 2014. Available online:
416		http://www.fao.org/nr/water/ aquastat/infographics/Infographics_all_eng.pdf
417		(accessed April 2020).
418	2.	Font-Palma C. Methods for the Treatment of Cattle Manure—A Review. Journal
419		Carbon Res. 2019,5,27.
420	3.	USDA. National Program 206: Manure and Byproduct Utilization. 2004. Available
421		online:https://www.ars.usda.gov/ARSUserFiles/np206/206ActionPlan2004/NP206A
422		ctionPlanOctober2004Revisedwosynames.pdf (accessed April 2020).
423	4.	Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban
424		wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes
425		spread into the environment: A review. Sci Total Environ. 2013,447,345-60.
426	5.	Keen EC, Bliskovsky V V., Malagon F, Baker JD, Prince JS, Klaus JS, et al. Novel
427		"superspreader" bacteriophages promote horizontal gene transfer by transformation.
428		Groisman EA, editor. MBio. 2017,8,1–12.
429	6.	Qin Q, Chen X, Zhuang J. The fate and impact of pharmaceuticals and personal care
430		products in agricultural soils irrigated with reclaimed water. Crit Rev Environ Sci
431		Technol. 2015, 45 , 1379–408.
432	7.	Han XM, Hu HW, Shi XZ, Wang JT, Han LL, Chen D, et al. Impacts of reclaimed
433		water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia.
434		Environ Pollut. 2016, 211 ,48–57.

435	8.	Mu Q, Li J, Sun Y, Mao D, Wang Q, Luo Y. Occurrence of sulfonamide-,
436		tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in
437		livestock feedlots in Northern China. Environ Sci Pollut Res. 2015, 22, 6932–40.
438	9.	Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and
439		abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S
440		A. 2013, 110 ,3435–40.
441	10.	Zhang Y, Snow DD, Parker D, Zhou Z, Li X. Intracellular and extracellular
442		antimicrobial resistance genes in the sludge of livestock waste management
443		structures. Environ Sci Technol. 2013,47,10206–13.
444	11.	McKinney CW, Dungan RS, Moore A, Leytem AB. Occurrence and abundance of
445		antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS
446		Microbiol Ecol. 2018, 94 ,1–10.
446 447	12.	Microbiol Ecol. 2018, 94 ,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1
446 447 448	12.	Microbiol Ecol. 2018, 94 ,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS
446 447 448 449	12.	Microbiol Ecol. 2018, 94 ,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016, 92 ,1–7.
446 447 448 449 450	12.	Microbiol Ecol. 2018, 94 ,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016, 92 ,1–7. Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following
446 447 448 449 450 451	12.	Microbiol Ecol. 2018,94,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016,92,1–7. Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential
446 447 448 449 450 451 452	12.	Microbiol Ecol. 2018,94,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016,92,1–7. Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. Appl Environ Microbiol. 2015,81,7905–13.
446 447 448 449 450 451 452 453	12. 13. 14.	 Microbiol Ecol. 2018,94,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016,92,1–7. Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. Appl Environ Microbiol. 2015,81,7905–13. Wallace JS, Garner E, Pruden A, Aga DS. Occurrence and transformation of
446 447 448 449 450 451 452 453 454	12. 13. 14.	Microbiol Ecol. 2018,94,1–10. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol. 2016,92,1–7. Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. Appl Environ Microbiol. 2015,81,7905–13. Wallace JS, Garner E, Pruden A, Aga DS. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by

456	2018, 236 ,764–72.
-----	---------------------------

457	15.	Qian X, Sun W, Gu J, Wang XJ, Sun JJ, Yin YN, et al. Variable effects of
458		oxytetracycline on antibiotic resistance gene abundance and the bacterial community
459		during aerobic composting of cow manure. J Hazard Mater. 2016,315,61-9.
460	16.	Smith AL, Skerlos SJ, Raskin L. Psychrophilic anaerobic membrane bioreactor
461		treatment of domestic wastewater. Water Res. 2013,47,1655-65.
462	17.	Amha YM, Corbett M, Smith AL. Two-Phase Improves Performance of Anaerobic
463		Membrane Bioreactor Treatment of Food Waste at High Organic Loading Rates.
464		Environ Sci Technol. 2019, 53 ,9572–83.
465	18.	Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ. Navigating
466		Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic
467		Membrane Bioreactor and Conventional Treatment Systems with Anaerobic
468		Digestion. Environ Sci Technol. 2014,48,5972-81.
469	19.	Harb M, Hong PY. Anaerobic membrane bioreactor effluent reuse: A review of
470		microbial safety concerns. Fermentation. 2017,3,39.
471	20.	Cheng H, Hong PY. Removal of antibiotic-resistant bacteria and antibiotic resistance
472		genes affected by varying degrees of fouling on anaerobic microfiltration
473		membranes. Environ Sci Technol. 2017,51,12200–9.
474	21.	Yang L, Nielsen AAK, Fernandez-Rodriguez J, McClune CJ, Laub MT, Lu TK, et
475		al. Permanent genetic memory with >1-byte capacity. Nat Methods. 2014,11,1261–6.

476	22.	Cheng HY, Masiello CA, Bennett GN, Silberg JJ. Volatile Gas Production by
477		Methyl Halide Transferase: An in Situ Reporter of Microbial Gene Expression in
478		Soil. Environ Sci Technol. 2016, 50 ,8750–9.
479	23.	Wang DN, Liu L, Qiu ZG, Shen ZQ, Guo X, Yang D, et al. A new adsorption-
480		elution technique for the concentration of aquatic extracellular antibiotic resistance
481		genes from large volumes of water. Water Res. 2016,92,188–98.
482	24.	Sui Q, Zhang J, Chen M, Tong J, Wang R, Wei Y. Distribution of antibiotic
483		resistance genes (ARGs) in anaerobic digestion and land application of swine
484		wastewater. Environ Pollut. 2016,213,751–9.
485	25.	Li Q, Wang Y, Zou Y De, Liao X Di, Liang JB, Xin W, et al. Co-addition of manure
486		increases the dissipation rates of tylosin A and the numbers of resistance genes in
487		laboratory incubation experiments. Sci Total Environ. 2015, 527-528, 126-34.
488	26.	Di Cesare A, Eckert EM, D'Urso S, Bertoni R, Gillan DC, Wattiez R, et al. Co-
489		occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal
490		wastewater treatment plants. Water Res. 2016,94,208-14.
491	27.	Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J, et al.
492		Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-
493		associated genes in the environment. ISME J. 2011,5,1253-1261.
494	28.	Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of
495		antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology
496		Reviews. 2011, 5 ,790-819.

497	29.	Smith AL, Skerlos SJ, Raskin L. Anaerobic membrane bioreactor treatment of
498		domestic wastewater at psychrophilic temperatures ranging from 15 °c to 3 °c.
499		Environ Sci Water Res Technol. 2015,1,56–64.
500	30.	Collins G, Woods A, McHugh S, Carton MW, O'Flaherty V. Microbial community
501		structure and methanogenic activity during start-up of psychrophilic anaerobic
502		digesters treating synthetic industrial wastewaters. FEMS Microbiol Ecol.
503		2003, 46 ,159–70.
504	31.	Massé DI, Masse L, Croteau F. The effect of temperature fluctuations on
505		psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour
506		Technol. 2003, 89 ,57–62.
507	32.	Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide
508		antibiotics with corresponding resistance genes and resistant bacteria in a
509		conventional municipal wastewater treatment plant. Sci Total Environ. 2012,421-
510		422 ,173–83.
511	33.	Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in
512		the effluent and biosolids of five wastewater utilities in Michigan. Water Res.
513		2010, 45 ,681–93.
514	34.	Wang B, Sun D. Detection of NDM-1 carbapenemase-producing Acinetobacter
515		calcoaceticus and Acinetobacter junii in environmental samples from livestock
516		farms. J Antimicrob Chemother. 2015,70,611–3.
517	35.	Mao D, Yu S, Rysz M, Luo Y, Yang F, Li F, et al. Prevalence and proliferation of

518		antibiotic resistance genes in two municipal wastewater treatment plants. Water Res.
519		2015, 85 ,458–66.
520	36.	Kappell AD, Kimbell LK, Seib MD, Carey DE, Choi MJ, Kalayil T, et al. Removal
521		of antibiotic resistance genes in an anaerobic membrane bioreactor treating primary
522		clarifier effluent at 20 °C. Environ Sci Water Res Technol. 2018,4,1783–93.
523	37.	Zhang Y, Li A, Dai T, Li F, Xie H, Chen L, et al. Cell-free DNA: A Neglected
524		Source for Antibiotic Resistance Genes Spreading from WWTPs. Environ Sci
525		Technol. 2018, 52 ,248–57.
526	38.	Chen H, Zhang M. Effects of advanced treatment systems on the removal of
527		antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.
528		Environ Sci Technol. 2013,47,8157–63.
529	39.	Wang J, Mao D, Mu Q, Luo Y. Fate and proliferation of typical antibiotic resistance
530		genes in five full-scale pharmaceutical wastewater treatment plants. Sci Total
531		Environ. 2015, 526 ,366–73.
532	40.	Lee J, Jeon JH, Shin J, Jang HM, Kim S, Song MS, et al. Quantitative and qualitative
533		changes in antibiotic resistance genes after passing through treatment processes in
534		municipal wastewater treatment plants. Sci Total Environ. 2017,605-606,906-14.
535	41.	Yang Y, Li B, Zou S, Fang HHP, Zhang T. Fate of antibiotic resistance genes in
536		sewage treatment plant revealed by metagenomic approach. Water Res. 2014,62,97-
537		106.
538	42.	Rafraf ID, Lekunberri I, Sànchez-Melsió A, Aouni M, Borrego CM, Balcázar JL.

539		Abundance of antibiotic resistance genes in five municipal wastewater treatment
540		plants in the Monastir Governorate, Tunisia. Environ Pollut. 2016,219,353-8.
541	43.	McConnell MM, Truelstrup Hansen L, Jamieson RC, Neudorf KD, Yost CK, Tong
542		A. Removal of antibiotic resistance genes in two tertiary level municipal wastewater
543		treatment plants. Sci Total Environ. 2018,643,292–300.
544	44.	Zarei-baygi A, Harb M, Wang P, Stadler LB, Smith AL. Evaluating Antibiotic
545		Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic
546		Membrane Bioreactors. Environ Sci Technol. 2019,53,3599–609.
547	45.	Harb M, Hong P-Y. Molecular-based detection of potentially pathogenic bacteria in
548		membrane bioreactor (MBR) systems treating municipal wastewater: a case study.
549		Environ Sci Pollut Res. 2017, 24 ,5370–80.
550	46.	Wen Q, Yang L, Duan R, Chen Z. Monitoring and evaluation of antibiotic resistance
551		genes in four municipal wastewater treatment plants in Harbin, Northeast China.
552		Environ Pollut. 2016, 212 ,34–40.
553	47.	Wang J, Ben W, Zhang Y, Yang M, Qiang Z. Effects of thermophilic composting on
554		oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine
555		manure. Environ Sci Process Impacts. 2015,17,1654–60.
556	48.	Zhu L, Zhao Y, Yang K, Chen J, Zhou H, Chen X, et al. Host bacterial community
557		of MGEs determines the risk of horizontal gene transfer during composting of
557 558		of MGEs determines the risk of horizontal gene transfer during composting of different animal manures. Environ Pollut. 2019, 250 ,166–74.

560 Microbiol. 1999,**2**,489–93.

561	50.	Nagler M, Podmirseg SM, Griffith GW, Insam H, Ascher-Jenull J. The use of
562		extracellular DNA as a proxy for specific microbial activity. Appl Microbiol
563		Biotechnol. 2018,102,2885–98.
564	51.	Eramo A, Morales Medina WR, Fahrenfeld NL. Viability-based quantification of
565		antibiotic resistance genes and human fecal markers in wastewater effluent and
566		receiving waters. Sci Total Environ. 2019,656,495-502.
567	52.	Yuan Q-B, Huang Y-M, Wu W-B, Zuo P, Hu N, Zhou Y-Z, et al. Redistribution of
568		intracellular and extracellular free & amp; adsorbed antibiotic resistance genes
569		through a wastewater treatment plant by an enhanced extracellular DNA extraction
570		method with magnetic beads. Environ Int. 2019,131,104986.
571	53.	Liu SS, Qu HM, Yang D, Hu H, Liu WL, Qiu ZG, et al. Chlorine disinfection
572		increases both intracellular and extracellular antibiotic resistance genes in a full-scale
573		wastewater treatment plant. Water Res. 2018,136,131-6.
574	54.	Sun W, Qian X, Gu J, Wang XJ, Duan ML. Mechanism and Effect of Temperature
575		on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy
576		Manure. Sci Rep. 2016,6,1–9.
577	55.	Le TH, Ng C, Tran NH, Chen H, Gin KYH. Removal of antibiotic residues,
578		antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater
579		by membrane bioreactor systems. Water Res. 2018,145,498–508.
580	56.	Sui Q, Jiang C, Zhang J, Yu D, Chen M, Wang Y, et al. Does the biological

581		treatment or membrane separation reduce the antibiotic resistance genes from swine
582		wastewater through a sequencing-batch membrane bioreactor treatment process.
583		Environ Int. 2018, 118 ,274–81.
584	57.	Yoon Y, Chung HJ, Wen Di DY, Dodd MC, Hur HG, Lee Y. Inactivation efficiency
585		of plasmid-encoded antibiotic resistance genes during water treatment with chlorine,
586		UV, and UV/H2O2. Water Res. 2017,123,783-93.
587	58.	He H, Zhou P, Shimabuku KK, Fang X, Li S, Lee Y, et al. Degradation and
588		Deactivation of Bacterial Antibiotic Resistance Genes during Exposure to Free
589		Chlorine, Monochloramine, Chlorine Dioxide, Ozone, Ultraviolet Light, and
590		Hydroxyl Radical. Environ Sci Technol. 2019,53,2013–26.
591	59.	McKinney CW, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and
592		their antibiotic resistance genes in water and wastewater. Environ Sci Technol.
593		2012,46,13393–400.
594		

Fig. 1. AnMBR influent composition: (A) COD of wastewater and manure fractions of influent, and total influent COD across all operational stages. Error bars represent the standard deviation of biological replicates within each stage (n=5); (B) Concentrations of ARGs and MGEs during a Stage 1 loading (influent consisted of approximately 125 g of manure added to 20 L of domestic wastewater). Separate quantification of target genes in wastewater and manure was only performed during Stage 1. In all other stages, target genes were quantified in the influent after combining the wastewater and manure.

149x81mm (300 x 300 DPI)

Fig. 2. ARG and MGE removal across operational stages: (A) Average influent (shaded bars) and effluent (solid bars) concentrations of target genes (n = 5 for influent and effluent samples); (B) Log removal values (LRVs) of total target genes across operational stages; (C) Effluent gene concentrations (sum of cell-associated and cell-free fractions; n=5). Error bars represent the standard deviations of gene concentrations within each operational stage.

169x158mm (300 x 300 DPI)

Table of Contents Entry

First investigation of ARG and MGE removal in an anaerobic membrane bioreactor co-treating real wastewater and manure shows increased manure loading improves ARG and MGE removal.

80x40mm (300 x 300 DPI)