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Water impact statement

Reducing the dissemination of ARGs and MGEs is critical for 

limiting human exposure to emerging health threats, particularly 

in water reuse. This study investigates ARG and MGE removal 

during co-treatment of domestic wastewater and livestock manure 

in an anaerobic membrane bioreactor (AnMBR). Results show an 

AnMBR can effectively treat complex wastes and limit the spread 

of ARGs in the environment.
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Abstract

Anaerobic membrane bioreactors (AnMBRs) can manage complex combined waste 

streams, recover energy, and produce nutrient-rich effluents for irrigation. To advance 

AnMBRs for water reuse, the removal of antibiotic resistance genes (ARGs) during co-

treatment of waste streams requires further attention. Here, an AnMBR was fed domestic 

wastewater with increasing amounts of cattle manure. The removal of target genes 

including nine ARGs and two mobile genetic elements (MGEs) was assessed. Manure 

addition was found to significantly improve the removal of target genes, with a removal 

efficiency of 99.95% during the stage with the greatest addition of manure. Further, the 

effluent contained more cell-free ARGs (cfARGs) than cell-associated ARGs (caARGs) 

when manure loading was greatest. This study is the first to evaluate ARG and MGE 

removal during co-treatment of domestic wastewater and livestock manure using AnMBRs, 

and also the first to differentially characterize the cfARGs/caARGs in an AnMBR effluent 

treating complex waste streams.

Keywords: Anaerobic membrane bioreactor, antibiotic resistance genes, wastewater, 

manure, cell-associated ARGs, cell-free ARGs
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1 1. Introduction

2 Seventy percent of the world’s freshwater supply is currently used for agricultural 

3 irrigation,1 which is driving the adoption of nontraditional water sources to ensure the 

4 long-term supply of water for crop production. Treated wastewater represents a reliable 

5 source of water that can offset the rate of freshwater depletion while concurrently reducing 

6 nutrient discharges into freshwater systems and redirecting those nutrients to offset 

7 fertilizer requirements. This is especially relevant considering that traditional approaches 

8 to crop fertilizer delivery (i.e., application of manure) are coming under increasing 

9 scrutiny because of their greenhouse gas emissions, lack of energy valorization, and 

10 nutrient runoff issues.2 Given that approximately 335 million tons of manure are produced 

11 each year in the United States.3 the co-management of manure and wastewater is an 

12 attractive approach for advancing the use of alternative water sources for irrigation. 

13 Anaerobic membrane bioreactors (AnMBRs) are an emerging biotechnology that are 

14 ideally suited to co-manage manure and wastewater because they produce a high-quality, 

15 nutrient-rich effluent for reclaimed water irrigation while also recovering energy in the 

16 form of biogas.

17 One of the primary obstacles to reuse of treated wastewater for agricultural 

18 irrigation is the presence of emerging contaminants such as antibiotics, pathogens, 

19 antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Antibiotic 

20 resistance has been deemed one of the most significant human health challenges of the 21st 

21 century. Wastewater treatment plants represent a hotspot for the dissemination of ARGs in 

22 the environment.4 Even after treatment, the elevated concentrations of nutrients, salts, and 
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23 lytic phages in wastewater effluents can contribute to cell competency and transformation, 

24 which can further promote the uptake of ARGs by microbial communities in receiving 

25 environments.5 Thus, irrigation using reclaimed wastewater may lead to the dissemination 

26 of antibiotic resistance elements.6,7

27 ARGs have also been widely detected in livestock waste.8–10 Considering that 

28 manure management frequently involves land application of biosolids, the dissemination 

29 of ARGs in soil is also a major source of antibiotic resistance loading on the 

30 environment.11 ARGs have been found in significantly higher abundances in soil that has 

31 received manure application as compared to un-manured soil.12,13 ARG removal by 

32 conventional livestock waste management technologies (e.g., anaerobic digestion and 

33 composting) has been observed as variable and limited.9,14,15 However, the impact of co-

34 managing wastewater and manure on effluent ARG abundances in water for reuse for 

35 irrigation has not been investigated. 

36 AnMBRs have been successfully applied for both low-strength domestic 

37 wastewaters and high-strength organic waste streams (e.g., food waste and manure), 

38 illustrating their versatility in managing organic waste streams.16,17 Furthermore, AnMBR 

39 systems in or proximal to agricultural areas could be used in decentralized applications to 

40 increase energy recovery while also managing livestock waste by co-treating wastewater 

41 with animal manure. Co-management of domestic wastewater with higher strength waste 

42 streams, such as animal manure, increases the potential for net energy positive treatment 

43 using AnMBR.18 In addition, AnMBRs may be uniquely suited to reduce antibiotic 

44 resistance proliferation during the co-treatment of wastewater and manure because 
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45 membrane systems, in general, have been shown to achieve better ARG removal than 

46 conventional activated sludge systems.19 A lingering question related to ARG removal by 

47 AnMBRs, however, is the extent to which cell-free ARGs (cfARGs; i.e. extracellular 

48 ARGs that are present due to lysis of dead cells or the secretion of DNA from live cells) 

49 are capable of passing through the membranes of these systems.20

50 To advance the application of AnMBRs for the co-management of wastewater and 

51 manure for water reuse applications, we need a better understanding of their ability to 

52 remove ARGs and mobile genetic elements (MGEs) during treatment. The goal of this 

53 study was to (1) determine if there is an association between the amount of cattle manure 

54 added to domestic wastewater and the corresponding removal efficiencies of target genes in 

55 AnMBR, and (2) investigate how manure addition impacted the profile of ARGs and MGEs 

56 and their dominant form (i.e., cell-associated vs. cell-free) in AnMBR effluent. This is the 

57 first study to characterize ARG removal during AnMBR co-treatment of real wastewater 

58 and manure, and the first study to differentially characterize effluent cell-associated and 

59 cell-free ARGs and MGEs from an AnMBR treating real waste streams.

60

61 2. Methods

62 2.1 AnMBR set-up and monitoring

63 A bench-scale AnMBR with a liquid volume of 4.5 L (Chemglass Life Science, 

64 Vineland, NJ) was operated at ambient temperature (average 17.7 ± 0.39 °C). The pH of 

65 reactor mixed liquor was spot checked routinely and the observed values ranged from 7.2 to 
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66 7.6). The reactor was equipped with three submerged membrane housings that each 

67 contained a flat-sheet silicon carbide ultrafiltration membrane (Cembrane, Denmark) with 

68 0.1 µm pore size and 0.015 m2 effective surface area. Headspace biogas was recirculated 

69 via transversally mounted sparging tubes to limit membrane fouling, while operating at a 

70 sub-critical flux of 5.27 L/m2/h (LMH) which yielded a hydraulic retention time (HRT) of 

71 approximately 19 hrs. The AnMBR was inoculated with anaerobic digester sludge from the 

72 Joint Water Pollution Control Plant (Carson, CA). The detailed configuration of the 

73 AnMBR and operational parameters are shown in ESI† Section 1.1.1.

74 The operation of the AnMBR consisted of 5 stages: Baseline operation, Stage 1, 

75 Stage 2, Stage 3, and Stage 4. Domestic wastewater used in this study was collected from 

76 the City of West University Place WWTP (Houston, TX), a full-scale activated sludge 

77 WWTP that treats an average of 2 million gallons per day. The wastewater samples were 

78 collected periodically under dry weather conditions and at the same time of day to avoid 

79 diurnal variations. The wastewater was immediately transported to the lab and stored at 4 

80 °C before feed preparation. In Stages 1 through 4, manure slurry was added to the domestic 

81 wastewater in increasing amounts. Manure from beef cattle was collected from McGregor 

82 Research Center (McGregor, TX) and then diluted with water to form a manure slurry with 

83 a target solids content of 3%. Table 1 provides detailed influent composition along with the 

84 corresponding organic loading rate (OLR) for each stage. Across the different stages of 

85 treatment, the OLR increased from 0.6 kg COD/m3/d in Baseline operation to 2.5 kg 

86 COD/m3/d in Stage 4 operation. 
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87 Performance indicators including chemical oxygen demand (COD), soluble COD 

88 (sCOD), mixed liquor total and volatile suspended solids (MLSS/MLVSS), pH, volatile 

89 fatty acids (VFAs; including acetic acid, formic acid, propionic acid, butyric acid, and 

90 valeric acid) and headspace biogas were monitored and described in ESI† Section 1.1.2. In 

91 addition, chemical cleaning using 0.5% sodium hypochlorite was performed at the end of 

92 each operational stage to avoid the potential impact of membrane fouling on the 

93 experimental results, and to maintain a consistent flux across all operational stages. In 

94 addition, effluent tubing was cleaned periodically to remove downstream tube wall biofilms 

95 that may have formed.

96 2.2 DNA extraction with internal standards

97 Cell-associated DNA (caDNA) and cell-free DNA (cfDNA) were separated in order 

98 to quantify cell-associated ARGs (caARGs) and cell-free ARGs (cfARGs), respectively. 

99 Internal standards were spiked into all samples prior to DNA extraction. caDNA internal 

100 standards were E. coli cells containing a modified engineered plasmid (ESI† Section 1.2). 

101 The plasmid, pReporter_8 (RRID: Addgene_60568),21 is a low-copy plasmid that was 

102 previously modified by knocking out the gene encoding green fluorescence reporter (GFP) 

103 and inserted with the methyl-halide transferase (MHT) gene found in Batis maritima.22 A 

104 112 bp region on MHT gene (primers in ESI† Table S3) was selected as the target for 

105 qPCR to quantify the initial concentration of standard spiked into the samples (Co in 

106 Equation 1) and the amount recovered in each corresponding sample (Cs in Equation 1). E. 

107 coli cells were harvested from overnight culture supplemented with 34 µg/mL 

108 chloramphenicol, mixed well and aliquoted into equal volumes for: (1) spiking in the 
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109 influent and effluent samples, and (2) conducting plasmid extraction on three of the aliquots 

110 to get the reference copy number through qPCR (Co in Equation 1).

111 cfDNA internal standards were pUC19 plasmids containing a target insertion for 

112 qPCR quantification (ESI† Section 1.2). The insertion was a 183 bp fragment of the 

113 ARHGAP11B gene, a human-associated gene that is specific to the brain neocortex (Florio 

114 et al., 2015). Approximately 108 copies of the plasmid were spiked into each effluent 

115 sample prior to filtration. The initial concentration of spiked cfDNA internal standard was 

116 calculated using the concentration of the plasmid stock used measured by Qubit and the 

117 volume spiked. The initial concentration of spiked cfDNA (Co in Equation 1) was 

118 quantified by performing qPCR on the plasmid stock. The concentration of recovered 

119 internal standard was quantified using qPCR to determine Cs. caDNA and cfDNA standards 

120 did not amplify in non-spiked influent, manure, or effluent samples in 40-cycles of qPCR 

121 (data not shown).

122 Influent and effluent samples were passed through membrane filters (mixed 

123 cellulose ester, 0.22 µm pore size, Millipore Sigma, MA) and caDNA was defined as DNA 

124 extracted from biomass retained on the filters, whereas cfDNA was defined as DNA in the 

125 filtrate. Five influent (30 mL each) and five effluent (350 mL each) samples were collected 

126 during each operational stage. caDNA was quantified in influent and effluent samples, and 

127 cfDNA was quantified in effluent samples only because the influent contained significantly 

128 higher cell counts than the effluent indicated by the concentration of rpoB (50 to 104-fold 

129 higher concentrations in the influent versus effluent). Right before the sample filtration 

130 step, both caDNA and cfDNA internal standards were spiked into samples and mixed well.
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131 Membrane filters with caDNA were stored in 50% ethanol at -20 °C until DNA 

132 extraction. DNA extraction was performed using FastDNA SPIN Kits for Soil (MP 

133 Biomedicals, CA). cfDNA was analyzed in effluent samples by successively collecting the 

134 filtrate from the 0.22 µm filtration step and concentrating the DNA in the filtrate using an 

135 adsorption-elution method as described by Wang et al.23 cfDNA samples were stored at -20 

136 °C until DNA extraction using FastDNA SPIN Kits for Soil (MP Biomedicals, CA). Total 

137 DNA was quantified in caDNA and cfDNA extracts using Qubit 3.0 with the dsDNA HS 

138 Assay Kit (Invitrogen, CA).

139 2.3 Quantification of ARGs and MGEs

140 Target genes for qPCR quantification included 9 ARGs (sul1, sul2, tet(O), tet(W), 

141 ermB, ermF, ampC, blaOXA-1 and blaNDM1), 2 MGEs (intI1 and tp614) and rpoB (coding 

142 for β-subunit of RNA polymerase) used for normalizing ARGs and MGEs to calculate 

143 relative abundance. These ARGs were selected because they are frequently detected in 

144 wastewater. In addition, we specifically included erm genes because the manure used in 

145 this study was collected from beef cattle that were fed Tylosin, a macrolide-class antibiotic 

146 that may have resulted in selective pressure for ermB and ermF.24,25 A class 1 integron gene 

147 (intI1) and a transposon gene (tp614) were also included because they have been found to 

148 be associated with the transfer of ARGs and to play an important role in the evolution and 

149 proliferation of multi-drug resistant bacteria.26–28 The qPCR reaction was carried out in 

150 triplicate with each reaction containing 10.5 µL that included Forget-Me-Not EvaGreen 

151 qPCR mastermix (Biotium, CA), 50 nM ROX (Biotium, CA), 500 nM of forward and 

152 reverse primers, PCR grade H2O, and DNA template. Primers and qPCR reaction 
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153 conditions are provided in ESI† Table S3 and S4. Ten-fold serial dilutions of cloned 

154 plasmids with each target gene were amplified in triplicate for each qPCR assay. The 

155 efficiencies of the real-time qPCR assays for the target ARGs and MGEs ranged from 

156 89.1% to 103%. R2 values were greater than 0.99 for all qPCR assays. The limit of 

157 quantification (LOQ) for the target genes ranged from 6 to 920 copies/reaction, which was 

158 equivalent to 19 to 3070 copies/mL for 30 mL influent samples and 2 to 263 copies/mL for 

159 350 mL effluent samples. Quality control steps for qPCR are detailed in ESI† Section 1.3.

160 The concentration of target genes in each sample (gene copy number/mL) was 

161 calculated using the following equation (1):

162                                                                                      163 (1)

164 Where Cs is the copy number of the target gene in the sample’s DNA extract (copies) 

165 determined by qPCR, Vs is the volume of sample used (mL) to generate the DNA extract, 

166 Ci is the copy number of the internal standard (copies) determined by qPCR, and Co is the 

167 copy number of the internal standard (copies) spiked into the sample prior to DNA 

168 extraction. Further information on internal standards of cell-associated genes and cell-free 

169 genes along with the calibration methods can be found in ESI† Section 1.2. The recoveries 

170 of caDNA and cfDNA are provided in ESI† Table S6. 

171 2.4 Statistical methods

172 SciPy (https://www.scipy.org) was used for t-test and correlation analysis. The two-

173 tailed unpaired t-test was used to identify significant differences between effluent target 

174 gene concentrations between stages (n=5 for cell-associated genes; n=5 for cell-free genes). 
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175 The log removal values (LRVs) reported in this study for each gene for each operational 

176 stage were calculated using the following equation: LRV = log10(influent gene 

177 concentration/ effluent gene concentration). The influent and effluent gene concentrations 

178 were calculated by taking the average of n=5 samples. The effluent gene concentrations 

179 were the sum of cell-associated and cell-free fractions. A t-test was performed to assess 

180 whether a given LRV was significantly different between operational stages. Before 

181 performing a t-test, the Kolmogorov–Smirnov and Shapiro–Wilk tests were used to ensure 

182 that the dataset followed a normal distribution (α=0.01). P values less than 0.01 were 

183 regarded as statistically significant. Pearson’s correlation analysis was used for identifying 

184 correlations between any pair of two target genes in effluent samples over a 95% 

185 confidence interval. Pearson coefficient (r) was used to identify strength of correlations.

186

187 3. Results & Discussion

188 3.1 Percent COD removal was consistent across all operational stages

189 Percent COD removal was measured across all operational phases to assess the 

190 impact of manure addition on AnMBR performance and effluent water quality. During 

191 Baseline operation where the influent consisted of only domestic wastewater (influent COD 

192 = 431 ± 42 mg/L), the effluent COD was 54 ± 12 mg/L and the average COD removal was 

193 87.6 ± 2.27%, which is consistent with the range of COD removals reported in similar 

194 systems at psychrophilic temperature.29 Upon increasing the influent COD in subsequent 

195 operational stages from under 500 mg/L to above 1600 mg/L COD through the addition of 
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196 livestock manure, the COD removal rate remained relatively constant, ranging between 

197 87.0% to 89.7% (ESI† Fig. 1). This suggests that AnMBRs have the capacity to provide 

198 consistent COD removal during the co-management of domestic wastewater and livestock 

199 manure. The results are also consistent with COD removal efficiencies reported in previous 

200 studies investigating anaerobic treatments with other high-strength organic substrates at 

201 similar temperatures under mono-digestion conditions.30,31 As the addition of manure 

202 resulted in an increase in effluent COD across the Stages 1 through 4 (ESI† Fig. S1), the 

203 OLR and ratio of influent manure to wastewater would have to be taken into consideration 

204 depending on the final application of the effluent. Other performance data including 

205 methane production are provided in ESI† Fig. S1, solids concentrations in ESI† Table S1, 

206 and VFA concentrations in ESI† Table S2.

207 3.2 Wastewater contributed the majority of influent ARGs during manure co-

208 treatment

209 Although manure contributed the majority of influent COD in Stages 1 through 4 

210 (Fig. 1A, p<0.001), the majority of influent ARGs and MGEs across those same stages 

211 remained dominated by the domestic wastewater (Stage 1 shown in Fig. 1B, p<0.05). The 

212 most abundant target ARGs and MGEs in the wastewater were intI1, sul1 and sul2, which 

213 was consistent with previous studies.32,33 While approximately 97% of the target ARGs and 

214 MGEs in the influent was contributed by the wastewater fraction during Stage 1, 

215 erythromycin ribosome methylation genes (ermB and ermF) that confer resistance to 

216 macrolide antibiotics were mainly contributed by the manure fraction (Fig. 1B). This result 

217 is consistent with the fact that the manure was collected from cattle that were fed Tylosin, a 
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218 macrolide antibiotic. Tylosin is a commonly used in-feed antibiotic in both cattle and swine 

219 livestock farms, and previous studies have observed high occurrences of ermB and ermF in 

220 livestock wastes.24,25. Interestingly, the multi-drug resistance gene, blaNDM1 was below 

221 the limit of detection in the influent and effluent samples during Baseline operation when 

222 the AnMBR was treating solely domestic wastewater (number of samples = 5), but was 

223 detected at concentrations above 102 copies/mL when manure was added to the influent 

224 (Fig. 1B). No studies to our knowledge have specifically investigated the presence of the 

225 blaNDM1 gene in livestock manure; however, one study detected two blaNDM1-postitive 

226 bacteria strains in the soil around animal farms.34

227 3.3 The overall removal efficiency of target ARGs and MGEs from domestic 

228 wastewater was comparable to or greater than reported removal efficiencies of 

229 conventional wastewater treatment

230 Influent (cell-associated) and effluent (cell-associated and cell-free) ARGs and 

231 MGEs were quantified across all operational stages to calculate removal efficiencies. The 

232 LRVs of the target ARGs and MGEs ranged between 0.20 to 4.13 during Baseline 

233 operation when the AnMBR was solely treating domestic wastewater, with significant 

234 differences across stages (discussed in Section 3.4) and genes (Fig. 2A). During Baseline 

235 operation, 87.4% (0.90 log) of target ARGs and MGEs were removed (Fig. 2B). This 

236 removal efficiency is comparable to a study of two full-scale WWTPs, which reported a 

237 89.0% – 99.8% removal of target ARGs.35 High LRVs of tet genes, tet(O) (2.41) and tet(W) 

238 (4.63) reported here are consistent with previous findings of tet gene log reductions in 

239 membrane bioreactors treating domestic wastewater.33,36 LRVs of sul genes, sul1 (1.43) and 
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240 sul2 (1.28), were comparable to LRVs reported in previous studies on WWTPs, which 

241 ranged from 1.2 - 2.7 logs.33,37,38 In addition, we observed high removal efficiencies of erm 

242 genes. The LRVs of ermB and ermF were 3.39 and 3.48, respectively, and they were both 

243 ~1.0 log higher than the LRVs reported from conventional WWTPs.37,39 Although erm 

244 genes in influent increased across stages due to manure addition, the ultimate concentration 

245 in effluent was still less than 100 copies/mL which is lower than typically seen in biological 

246 effluent in conventional WWTPs or even in the final disinfected effluents.26,37,40 All ARGs 

247 and MGEs were successfully reduced during baseline operation at over 87% removal, with 

248 the exception of ampC, which increased in effluent samples. The enrichment of ampC may 

249 have been due to the growth of organisms harboring this gene in the bioreactor. Enrichment 

250 of certain target ARGs in terms of their relative abundance (ARG copy number normalized 

251 by rpoB copies) was also observed for sul1 and blaNDM1, despite the fact that their 

252 absolute abundance decreased during the AnMBR treatment. Other studies have observed 

253 enrichment of different ARGs across biological treatment compartments in WWTPs in 

254 terms of both absolute abundance41,42 and in relative abundance.33,43 The inconsistent 

255 patterns of ARG removal/enrichment during wastewater treatment underscore the 

256 challenges of predicting the fate of ARGs released to the environment and need to develop 

257 a more mechanistic understanding of the factors that control ARG proliferation and 

258 attenuation during treatment. 

259 To our knowledge, there is only one study on the fate of ARGs in AnMBRs treating 

260 real domestic wastewater.36 In this study, a higher LRV of target ARGs (3.3 to 3.6 log) was 

261 found in the AnMBR treating primary clarifier effluent, but the mechanisms behind such 
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262 high ARG removal efficiency were not well understood. This study, in combination with 

263 the limited number of previous studies on ARG removal during AnMBR treatment on real 

264 and synthetic wastewater,36,44 suggests that AnMBRs are effective at removing a large suite 

265 of diverse ARGs present in domestic wastewater. This could be an important advantage 

266 over conventional wastewater treatment for improving microbial safety during agricultural 

267 reuse, especially considering that AnMBRs have also been shown to also surpass pathogen 

268 removal rates observed for full-scale aerobic MBRs.45

269 3.4 ARG and MGE removal efficiency increased with increased manure loading 

270 This study is the first to examine the impact of co-treatment of domestic wastewater 

271 and manure on ARG removal. Results generally showed that the addition of manure was 

272 beneficial to overall target ARG and MGE removal rates, which was strongly supported by 

273 the consistent trend of decreasing target gene concentration in the effluent through Baseline 

274 operation to Stage 4 (Fig. 2C). Further, as the fraction of manure added to the influent 

275 wastewater was incrementally increased, the removal efficiency of overall target ARGs and 

276 MGEs also increased steadily from Baseline operation to Stage 4 (Fig. 2B). In addition, the 

277 overall target ARG and MGE removal rate was largely driven by the removal of sul1, intI1 

278 and sul2 genes (ESI† Fig. S2). The LRVs of intI1, sul1 and ampC consistently increased 

279 from Baseline operation to Stage 4 due to manure addition (p<0.01). In Stage 4, the LRV of 

280 all target ARGs and MGEs reached 3.31, which was mainly due to the highest LRV of the 

281 most abundant influent MGEs and ARGs, namely, intI1 (4.77) and sul1 (3.54) (Fig. 2A). 

282 The removal efficiency of target ARGs and MGEs observed in Stage 4 was higher than  

283 previously reported values from several WWTP studies (Jilu Wang et al., 2015; Y. Yang et 
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284 al., 2014; Wen et al., 2016). The LRVs of genes blaOXA-1, ermB, ermF, tet(O), tet(W) and 

285 tp614 were consistently high across all stages (Fig. 2A; ESI† Table S7). Further, it was 

286 interestingly observed that ermB, ermF and tp614 were significantly more abundant in the 

287 influent manure fraction as compared to the influent wastewater fraction (p<0.01, Fig. 1B). 

288 The higher influent concentrations contributed by manure addition may have increased the 

289 AnMBR’s potential to remove them when manure was added compared to Baseline 

290 operation(when only the wastewater was treated). A previous study found that manure was 

291 dominated by cell-associated DNA as opposed to cell-free DNA (Zhang et al., 2013). We 

292 observed that ermB, ermF and tp614 were significantly more abundant in the manure than 

293 the wastewater fraction of the influent (p<0.01, Fig. 1B). Thus, their superior removal when 

294 manure was added to the AnMBR may have been because the cell-associated DNA was 

295 readily removed via filtration.

296 The overall target ARG and MGE concentration in the effluent decreased 

297 consistently with the addition of manure (Fig. 2C, p<0.01), and in Stage 4 effluent, this 

298 concentration was approximately 90% lower than that of Baseline operation when the 

299 AnMBR was treating domestic wastewater without manure. The removal efficiency of 

300 target ARGs and MGEs observed in Stage 4 was higher than the previously reported values 

301 from several WWTP studies39,41,46 and of manure treatment approaches including advanced 

302 anaerobic digestion14,47 and composting.48 This result, combined with the fact that 

303 AnMBRs can recover energy in the form of biogas, underscore that AnMBR is a strong 

304 candidate for the co-management of wastewater and manure because they can potentially 

305 reduce the proliferation of ARGs in wastewater and animal waste. The results support the 
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306 application of AnMBRs in decentralized agricultural applications where multiple waste 

307 streams must be managed and water and energy reuse could be harnessed.

308 The improvement in ARG removal with increasing manure loading may have 

309 resulted from enhanced microbial activity caused by the increasing OLR. The increase in 

310 microbial activity may have impacted ARG removal in several different ways. First, 

311 manure addition could have resulted in a shift in the microbial community to fast-growers 

312 that could quickly break down the organics in the substrate. This, in turn, may have selected 

313 for microbes that harbor fewer ARGs since they can exert a metabolic burden (i.e. fitness 

314 cost) that can result in slower growth rates.49 Second, the enhanced biological activity 

315 resulting from a greater input of nutrients to the system may have boosted growth generally 

316 and resulted in greater turnover of cells and biodegradation of DNA that included ARGs. 

317 We also observed a consistent shift in the effluent DNA from cell-associated to cell-free 

318 from Baseline operation to Stage 4 (Fig. 3). This observation supports the assumption that 

319 manure addition resulted in an increase in biological activity in the bioreactor as a previous 

320 study by Nagler et al.50 in which it was found that the ratio of cfDNA to total DNA content 

321 was significantly positively associated with biological activity in anaerobic digesters. 

322 Further, the methane COD conversion normalized by the feed COD (Table 1) consistently 

323 increased from Baseline operation to Stage 4 (p<0.01), supporting the hypothesis that 

324 manure addition resulted in increased biological activity.

325 3.5 The effluent ARG and MGE reservoir shifted from cell-associated to cell-free with 

326 increased manure loading 
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327 The majority of effluent ARGs and MGEs were cell-associated during all 

328 operational stages except for Stage 4 (ESI† Fig. S4). In Stage 4, the cell-free fraction of 

329 target genes was significantly elevated as compared to the previous stages (t-test, p<0.001) 

330 and accounted for approximately 89% of the target ARGs and MGEs in the effluent. At the 

331 same time, the concentration of the cell-associated fraction of target ARGs and MGEs in 

332 effluent decreased consistently from Baseline operation to Stage 4 (p<0.01). These results 

333 indicated that cfDNA became the primary reservoir of target genes in the effluent when the 

334 manure loading to the system was the highest. The abundance of effluent cell-free ARGs 

335 and MGEs confirms that they should not be overlooked in wastewater effluents (or 

336 unquantified because of the DNA concentration protocol used) (Fig.4), as they can make up 

337 a substantial fraction of effluent ARGs under some conditions.37 The vast majority of 

338 studies on ARGs in wastewater did not explicitly capture the cell-free fraction of ARGs, 

339 and thus may have significantly underestimated the risk of ARG propagation from effluents 

340 in receiving environments. Previous studies that distinguished between cell-associated and 

341 cell-free ARGs using PMA-based PCR,51 magnetic bead extraction,52 or NAAP-based 

342 extraction (same as applied in this study)53 found that most ARGs in WWTP effluent 

343 following disinfection were in extracellular forms or within cells with compromised 

344 membranes, underscoring the importance of accounting for cfARGs.

345 In the cell-associated fraction of effluent target genes, the abundance of intI1 and 

346 sul1 decreased significantly with the addition of manure across all stages (p < 0.05) (Fig. 

347 2A). The removal of intI1 may have been due to the elimination of manure-associated 

348 aerobic hosts of integrons (e.g., Actinomycetales and Bacilli) during anaerobic treatment.54 
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349 Overall, the cell-associated fraction of target ARGs and MGEs in the effluent decreased 

350 steadily from Baseline operation to Stage 4 (ESI† Fig. S4). Indeed, LRVs of the cell-

351 associated fraction of target ARGs and MGEs across all five stages ranged from 1.54 - 4.20 

352 logs and were consistent with reported ARG removal efficiencies using membrane-based 

353 treatment technologies.33,55,56 Given that ultrafiltration membranes (0.01 - 0.1 pore size) 

354 retain the vast majority of microbes in AnMBRs, it is likely that some of the caARGs in the 

355 effluent are due to microbial regrowth within post-membrane effluent lines. Considering 

356 the higher effluent nutrient concentrations during the stages with higher manure addition, it 

357 is also possible that the observed reduction of cell-associated target genes was due to 

358 effluent selection for microbial groups which are less likely to harbor ARGs and MGEs due 

359 to fitness cost. We also performed correlation analysis to identify significant associations 

360 between effluent ARGs that were observed in cell-associated and cell-free fractions and the 

361 results are discussed in the ESI† Section 2.3. 

362 Results of a previous quantitative microbial risk assessment (QMRA) on AnMBR 

363 effluents indicate that AnMBR treatment would likely need to be paired with a downstream 

364 disinfection process in agricultural reuse applications.45 Based on this, the form of effluent 

365 ARGs (i.e., cell-associated vs. cell-free) may also influence their inactivation rates during 

366 disinfection (here, we define inactivation as the destruction of the ARG such that is no 

367 longer functional). Specifically, a greater proportion of ARGs in the cfDNA fraction may 

368 improve ARG inactivation during disinfection. Cell-associated ARGs are more difficult to 

369 inactivate because the cell serves as a barrier between the disinfectant and DNA and can 

370 thus protect the DNA against damage. A recent study evaluated multiple disinfection 
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371 methods including free chlorine, monochloramine, chlorine dioxide, ozone, UV, and 

372 hydroxyl radicals, and reported that among all these disinfection processes, caARG 

373 inactivation always lagged behind cell inactivation.57 This indicates that the removal of 

374 caARGs requires cell inactivation to occur first, whereas cfARGs may be inactivated 

375 directly during disinfection. In a few of the very limited amount of studies that 

376 distinguished between caARGs and cfARGs during disinfection processes, caARGs were 

377 found to be more difficult to remove than cfARGs during chlorination and UV 

378 disinfection.57–59 Further, other studies observed that caARGs became cfARGs during the 

379 disinfection process, indicating some disinfection may not be sufficient to completely 

380 destroy caARGs.52,53 In this study, the concentration of effluent caARGs decreased steadily 

381 with increased manure loading (ESI† Fig. S4). In Stage 4, there were 2.34 × 104 copies/mL 

382 of caARGs in the effluent, which was much lower than secondary effluent caARG 

383 concentrations reported by previous studies of conventional WWTPs. Thus, our results 

384 show that application of AnMBRs for the co-treatment of domestic wastewater and 

385 livestock manure could reduce the proliferation risk potential during reuse, as they generate 

386 an effluent with relatively low ARG concentrations where cfARGs (which are easier to 

387 inactivate than caARGs) make up a substantial fraction of the total effluent ARGs and 

388 MGEs assessed in this study. 

389

390 4. Conclusions

391 Our results demonstrate that co-management of domestic wastewater and livestock 

392 manure using AnMBRs can both improve resource recovery and mitigate the spread of 
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393 antibiotic resistance in reclaimed water. The removal efficiency of total target genes 

394 significantly improved with the increased manure loading in the AnMBR co-treatment 

395 process and was greater than many conventional WWTP treatment processes. Increasing 

396 manure loading not only decreased total target gene abundance in the effluent but also 

397 made cfARGs the dominant form of effluent ARGs. cfARGs require uptake by competent 

398 cells to be functional and are easier to inactive during disinfection. Thus, the ability of 

399 AnMBR to reduce ARGs during co-treatment of wastewater and manure and generate an 

400 effluent with primarily cell-free ARGs (as opposed to cell-associated) may be advantageous 

401 in water reuse applications.
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Fig. 1. AnMBR influent composition: (A) COD of wastewater and manure fractions of influent, and total 
influent COD across all operational stages. Error bars represent the standard deviation of biological 

replicates within each stage (n=5); (B) Concentrations of ARGs and MGEs during a Stage 1 loading (influent 
consisted of approximately 125 g of manure added to 20 L of domestic wastewater). Separate quantification 

of target genes in wastewater and manure was only performed during Stage 1. In all other stages, target 
genes were quantified in the influent after combining the wastewater and manure. 

149x81mm (300 x 300 DPI) 

Page 32 of 37Environmental Science: Water Research & Technology



 

Fig. 2. ARG and MGE removal across operational stages: (A) Average influent (shaded bars) and effluent 
(solid bars) concentrations of target genes (n = 5 for influent and effluent samples); (B) Log removal values 

(LRVs) of total target genes across operational stages; (C) Effluent gene concentrations (sum of cell-
associated and cell-free fractions; n=5). Error bars represent the standard deviations of gene concentrations 

within each operational stage. 
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