Photo-production of Reactive Oxygen Species and Degradation of Dissolved Organic Matter by Hematite Nanoplates Functionalized by Adsorbed Oxalate
Environmental Significance Statement

Natural and anthropogenic nanomaterials are ubiquitous in aqueous environments and appear intimately linked with biogeochemical cycles on earth. However, the photocatalytic interactions between organic-coated iron oxide nanoparticles and dissolved organic matter (DOM), an interaction that may strongly couple the cycling of iron and carbon in the euphotic zone of natural waters remains elusive. Here we report a systematic study of the indirect photodegradation of two water-extractable chromophoric DOM compounds from Midwest agricultural soils by hematite nanoplates functionalized by adsorbed oxalate. The findings suggest that this indirect DOM photodegradation pathway is significant in aquatic systems where these components pervade, adding a controlling process to the total DOM pool in euphotic zones and thereby impacting the global carbon cycle.
Photo-production of Reactive Oxygen Species and Degradation of Dissolved Organic Matter by Hematite Nanoplates Functionalized by Adsorbed Oxalate

Xiaopeng Huang,* † Qian Zhao, ‡ Robert P. Young, † Xin Zhang, † Eric D. Walter, ‡ Ying Chen, ‡ Elias Nakouzi, † Sandra D. Taylor, † John S. Loring, † Zheming Wang, ‡ Kirsten S. Hofmockel‡ and Kevin M. Rosso* †

†Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

*To whom correspondence should be addressed.

(K.M.R) kevin.rosso@pnnl.gov, +1-509-371-6357;

(X.H.) xiaopeng.huang@pnnl.gov, +1-509-375-6719.
Abstract. The geochemical cycling of iron and carbon can couple in unique ways in the euphotic zone of aquatic systems. For example, the prevalence of hematite nanoparticles and low molecular weight organics that can functionalize their surfaces, such as oxalate, creates a solar-photoactive interfacial system capable of generating reactive oxygen species (ROS) that degrade natural organic matter. Here we report a systematic study of this pathway and its efficiency to mineralize model chromophoric dissolved organic matter (DOM) compounds into CO$_2$ under mildly acidic conditions. When illuminated, synthetic hematite nanoplates coated with adsorbed oxalate undergo ligand-to-metal charge transfer yielding Fe(II) via photoreductive dissolution, while oxalate decomposes into the carboxyl anion radical as detected by electron paramagnetic spectroscopy using selective spin trap compounds. This important radical quickly reduces molecular oxygen into hydrogen peroxide, which initiates the canonical Fenton reactions that yield hydroxyl radical via Fe(II)/Fe(III) valence cycling. Production of hydroxyl radical in this photocatalytic system is shown to efficiently degrade the pseudo-DOM chromophore RhB, as well as two natural water-extractable chromophoric DOM compounds from agricultural soils, characterized in molecular detail using Fourier transform ion cyclotron resonance mass spectrometry, infrared fluorescence and nuclear magnetic resonance spectroscopies. The study highlights the photocatalytic interactions that can occur between common iron oxide nanoparticles, low molecular weight dicarboxylic acids, and dissolved organic matter that can couple their steady-state fluxes in the euphotic zone, pointing to the importance of light-induced ROS generation as a key mechanism.

1. INTRODUCTION

Natural and anthropogenic nanomaterials are ubiquitous in aquatic environments and thus can exert an important influence on various biogeochemical cycles on earth.1,2 For example, in the euphotic
zone, hematite (α-Fe₂O₃) nanoparticles³,⁴ play a central role in the iron biogeochemical cycling that impacts other elemental cycles,⁵,⁶ nitrogen fixation⁷,⁸, photosynthesis⁹ as well as elimination of persistent organic micropollutant in nature¹⁰-¹². The photochemical dissolution of iron oxides is regarded as an indispensable function in sustaining the bioavailability of iron,¹³,¹⁴ a particularly critical factor in controlling phytoplankton growth in the ocean.¹⁵,¹⁶

Turnover of natural dissolved organic matter (DOM) in the euphotic zone is also strongly coupled to the interaction of light with hematite nanoparticles, though the specific reaction pathways by which this occurs remain poorly understood. Derived from biological sources,¹⁷ DOM encompasses millions of organic molecules that comprise a critical component of the global carbon cycle.¹⁸ DOM often contains light-absorbing chromophore groups,¹⁹ which give rise to its color as well as its propensity to be directly photodegraded. However, common low molecular weight (LMW) carboxylic organic substances (e.g., oxalic acid) that bind to iron oxide surfaces can photocatalyze the production of reactive oxygen species (ROS) through interfacial electron transfer and valence cycling of iron sites at the interface. The mechanism involved was well applied in remediation strategies of organic pollutants. For instance, Lan et al investigated the photodegradation of pentachlorophenol in the presence of iron oxides and oxalate under UV illumination.²⁰,²¹ Similarly, Huang et al. investigated the photodegradation of norfloxacin in the presence of various iron oxides and oxalate under UV illumination.²² However, all of them are focused on simulated remediation/environmental engineering applications of toxic organic chemicals based on laboratory conditions, the generation of involved ROS were not directly confirmed, and the intrinsic mechanism is ambiguous since the structures of these iron oxides were not as thoroughly characterized. To constrain the mechanism in detail, a highly precise, controlled iron oxide material, such as the hematite nanoplates in the present study, are preferable to the irregular iron oxide
particles used previously. What’s more, cycling processes of DOM from real soils in contact with hematite and oxalate has long been overlooked due to the complicated character of natural DOM samples. As the electrophilic nature of ROS leads to facile reaction with the electron-rich functional groups in DOM, the consequent background ROS flux could thus also comprise a photodegradation pathway, albeit indirectly via photosensitization of hematite nanoparticles by adsorbed oxalate.

In this regard, it is well documented that ligand to metal charge transfer (LMCT) in the photolysis of iron-oxalate complexes can generate bioavailable ferrous iron and environmentally persistent ROS, such as singlet oxygen (\(^1\text{O}_2 \)), hydroxyl radicals (\(^\cdot\text{OH} \)), superoxide anion radicals (\(^\cdot\text{O}_2^- \)), and hydrogen peroxide (\(\text{H}_2\text{O}_2 \)).\(^{23, 24}\) Bleaching of naturally occurring organics by these ROS then produces identifiable LMW organics and mineralized inorganic species (e.g., \(\text{CO}_2 \)), according to the general scheme:

\[
\text{Fe(III)-L + O}_2 + h\nu \rightarrow \text{Fe(II) + ROS} \quad (1)
\]
\[
\text{Organics + ROS} \rightarrow \text{LMW + CO}_2 + \text{H}_2\text{O} \quad (2)
\]

In this regard, it is noteworthy that the LMW products include the prospect of regeneration of oxalate,\(^{25}\) which could help maintain the concentration of this photosensitizer and propagate the indirect photodegradation process. In addition to the euphotic zone, such processes have also been documented for atmospheric aerosol particles.\(^{24, 26, 27}\)

Photo-induced iron redox cycling with consequent ROS production has been shown to enhance the bleachability of terrestrially derived DOM.\(^{28}\) Likewise, photoproduction of hydroxyl radicals can steadily bleach DOM in open-ocean surface water, impacting organics and biota in deeper seawater.\(^{29}\) Prior work is thus strongly suggestive that the indirect photodegradation of DOM by environmentally persistent ROS may significantly impact the total DOM pool and the global carbon cycle. However, the LMCT process for iron-oxalate complexes under illumination, particularly when
involving hematite nanoparticles, and the reactivity of DOM with the resulting ROS has yet to be specifically examined.

Here we do so, using a well-defined model system of synthetic hematite nanoparticles, functionalized by adsorbed oxalate, under mildly acidic conditions, with illumination designed to mimic the frequency range and irradiance of solar light, and using various representations of DOM. The adsorption of oxalate onto size and morphologically controlled hematite nanoplates, and their subsequent photodissolution under illumination were systematically investigated with Fourier transform infrared (FTIR) spectroscopy, aqueous analytical dissolution kinetics, transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). Electron paramagnetic resonance (EPR) spectroscopy was then used to detect and characterize associated ROS during illumination, the reactivity of which was first evaluated using the dye rhodamine B (RhB) as a proxy for the chromophoric component of DOM. Finally, degradation of naturally chromophoric DOM was examined using DOM extracted from two agricultural soils, with generalized molecular characterization using 1H nuclear magnetic resonance (NMR) spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), and FTIR spectroscopy. The collective findings establish the efficacy of this indirect DOM photodegradation pathway, shedding light on important ROS species and the mechanism. As a major result, the prospect of this photochemical cycle mediated by hematite nanoparticles impacting the dynamics of natural organic matter in the euphotic zone is suggested.

2. Experimental Section

2.1 Materials. 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide (DEPMPO), 5,5-Dimethyl-1-Pyrroline N-oxide (DMPO), and other reagents were obtained from Sigma-Aldrich.
Text S1 in the Supporting Information provides further details regarding materials used in this study.

2.2 Synthesis. The synthesis method used for the hematite nanoplates is described in our previous work (see Text S2 in the Supporting Information), and the same material has been used in prior reactivity studies.

2.3 Characterization. The morphology and crystallinity of the hematite sample were investigated by high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field (HADDF) scanning transmission electron microscope (STEM). Further details regarding the analyses of defects of hematite nanoplates are described in Text S3 the Supporting Information.

2.4 Experimental pH. Unless otherwise stated, all experiments were performed at the mildly acidic pH of 4, a value chosen to optimize experimentally accessible mechanistic insight. For example, this value enabled real-time examination of oxalate-assisted hematite photodissolution rates and consequent surface dissolution features. It also optimized ROS generation by Fenton reactions, while preserving the ability to isolate by EPR specific radical species using pH-sensitive scavenger molecules such as DEPMPO and DMPO.

2.5 Analytical Methods. The sophisticated spectroscopic methods including the measurement of oxalate coordination on hematite by infrared spectra, H$_2$O$_2$ measurement by UV-vis, and fluorescence emission spectra are described in detail in Text S4 in the Supporting Information.

2.6 EPR Spectroscopy. All EPR measurements were performed on Bruker ELEXSYS E580 spectrometer equipped with an SHQE resonator with an optical access port for in situ illumination, which are described in detail in Text S5 in the Supporting Information.

2.7 Natural DOM Extraction. The methods of dissolved organic matter extracted from Wisconsin soil (DOM$_{WS}$) and Michigan soil (DOM$_{MS}$) are described in detail in Text S6 in the Supporting Information.
2.8 FTICR MS Data Acquisition and Data Analysis. For ultrahigh resolution characterization of dissolved organic matter, the samples extracted from soil were analyzed using a 12 Tesla FTICR mass spectrometer (Bruker-SolariX) that uses an electrospray ionization (ESI) source to generate negatively charged molecular ions. The methods are described in detail in Text S7 of the Supporting Information.

2.9 Nuclear Magnetic Resonance (NMR) Spectroscopy. Measurements were conducted using a Bruker Avance III spectrometer operating at a field strength of 17.6 T (\(^1\)H \(\nu_0\) of 750.24 MHz) and equipped with a 5mm Bruker TCI/CP HCN (inverse) cryoprobe. 1D \(^1\)H NMR spectra were acquired on samples in 100% D\(_2\)O with the W5-WATERGATE pulse program (‘zggpw5’)\(^32\) that included 128 transients acquired with a 1.4 s acquisition time (16k TD points, 16 ppm spectral width), and 45 s relaxation delay. Post-acquisition processing included zero-filling to 32k points and multiplication by a decaying exponential function (line broadening of 5 Hz). Additional experimental details are provided in Text S8 of the Supporting Information.

2.10 Photodegradation Experiments. The photodegradation experiments were set up according to our previous study,\(^30\) and are described in detail in Text S9 in the Supporting Information.

3. Results and Discussion

3.1 Hematite Nanoplates. TEM images of the as-prepared hematite particles showed the desired hexagonal nanoplate morphology in which the length and thickness of the nanoplates were about 93.5 and 13.1 nm, respectively (Fig. 1A). HRTEM indicated that nanoplates were highly crystalline; three sets of distinguishable lattice fringes of 0.25 nm agreed with (110), (-210), (-120) planes in the fast Fourier transformation (FFT) pattern (Fig. 2B). Hence, nanoplates were enclosed with basal (001) and edge (012) facets. STEM images displayed that the diameter and thickness were the same
as that interpreted from TEM images (Fig. 1C). Zoomed in STEM imaging could resolve individual
nanoplates (Fig. 1D), which displayed characteristic spectral features in electron energy loss spectral
mapping at the Fe L-edge (Fig. 1E), Fe K-edge (Fig. 1F), and O K-edge (Fig. 1G).

3.2 Photodissolution of Hematite Nanoplates. ATR-FTIR spectroscopy was used to characterize
how oxalate coordinates at the hematite surface as a surface complex.

\[\equiv\text{Fe(III)} + \text{Ox} \rightarrow \equiv\text{Fe(III)-Ox} \]

(3)

Binding can occur either as predominantly outer-sphere or inner-sphere complexes, or a combination
(see Fig. 2B). In outer-sphere complexes, water molecules remain between the hematite surface
and oxalate. A model for outer-sphere oxalate is that of the unprotonated oxalate anion, which has
bands at 1568 and 1307 cm\(^{-1}\), corresponding to the degenerated asymmetric stretching of C-O
(\(\nu_{\text{asC-O}}\)) and symmetric stretching of C-O (\(\nu_{\text{sC-O}}\)), respectively (Fig. 2A). For inner-sphere
complexes, oxalate is bound directly to Fe(III) in a bidentate chelating fashion. A model for this type
of coordination geometry is the trioxalatoferric(III) anion, which has peaks at 1710, 1683, 1392, and
1267 cm\(^{-1}\) attributed to the stretching of C-O (\(\nu_{\text{nbC-O}}\)), second harmonic stretching of C-O (\(\nu_{\text{nbC-O}}\)),
coupled stretching of C-O and C-C (\(\nu_{\text{C-O+C-C}}\)), and coupled stretching of C-O and bending of O-C-O
(\(\nu_{\text{C-O}} + \delta_{\text{O-C-O}}\)) (where \(\text{nb}\) and \(\text{b}\) represent the oxygen of the carboxylate group not bonded to iron
and the oxygen of the carboxylate group bonded to iron, respectively), consistent to our previous study, and Persson and Axe’s research.

For hematite nanoplates after reaction with oxalate at our experimental pH of 4, in the absence
of light, four peaks could be identified at 1705, 1687, 1404 and 1249 cm\(^{-1}\), consistent with
inner-sphere coordinated oxalate. There was no evidence for intensity at around 1568 and 1307 cm\(^{-1}\),
indicating that the outer-sphere iron-oxalate complexes was negligible. The same four peaks were
observed under simulated solar light illumination, indicating the predominantly inner-sphere surface
complex formation on hematite. However, although the frequencies were the same, close examination showed a slight intensity decrease of all four peaks compared to spectra collected in the absence of illumination. For instance, the intensity decreased 14.54% at 1687 cm⁻¹ under illumination. This suggested that surface iron-oxalato complexes were decomposing under illumination, generally consistent with prior studies,²⁰,³⁵ reducing the amount of oxalate adsorbed on the hematite surfaces.

In addition, the formation of such inner sphere complexes has been regarded as the hematite surface activation process – the primary step for the dissolution of hematite.³⁶,³⁷ This surface activation could be interpreted in terms of Lewis acid-base theory. The surface of hematite can be regarded as a Lewis acid under mildly acidic conditions at pH 4, the exposed iron cations on the hematite surface would be sufficiently bound by the Lewis base which are the negatively charged oxalate species. The surface complexation is hence primed for reductive dissolution. For instance, the formation of ascorbic acid inner-sphere bidentate and monodentate mononuclear complexes on the hematite (001) and (012) facets, respectively, which was confirmed by the combination of IR spectra and theoretical calculations, showed different reductive dissolution behavior.¹⁴ The bidentate complexes on hematite (001) facets facilitated reductive dissolution more, in comparison with the monodentate ones on the (012) facets.¹⁴ Hematite (001) and (012) facets generally possess iron sites of different coordination,⁴,¹⁴ accounting for the facet-dependent adsorption of ascorbic acid. However, for the nanoplates in the current study the proportion of basal (001) plane exposure is roughly seven times larger than the edge (012) facets.³⁰ Under this circumstance, to observe the spectral contribution from the (012) facets in the current experimental setup would be difficult. In future work, comparison to particles bearing dominantly (012) facets could be useful to further evaluate facet-dependent adsorption mechanisms. Therefore, here we consider primarily the
bidentate inner sphere complexes of oxalate formed (001) exposed facets as primarily responsible for observed dissolution.

Given the expectation of photocatalyzed decomposition of adsorbed oxalate by LMCT to surface Fe(III) sites yielding Fe(II), we examined the dissolution kinetics of the nanoplates with and without illumination (Fig. 2C). For reference, the concentration of dissolved iron without oxalate at pH 4, irrespective of illumination, remained under the detection limit of the 1, 10-phenanthroline colorimetric method, thus proton-assisted dissolution of hematite was safely negligible in all experiments. In the absence of light, the total concentration of aqueous Fe, and its Fe(II) fraction both increased to 8.76×10^{-5} and 1.94×10^{-5} mol/L respectively after 7 h. Fe(III) was predominantly generated compared to Fe(II) (22.15%), most likely resulting from ligand-promoted dissolution of the hematite nanoplates. The non-negligible amount of Fe(II) production indicated that mild reductive dissolution by spontaneous oxalate decomposition was operable under our conditions. However, under light illumination, over the same time period the concentrations of total dissolved iron and Fe(II) reached 3.99×10^{-4} and 1.72×10^{-4} mol/L, respectively. In this case, the much larger Fe(II) fraction (43.11%) indicated substantial photocatalyzed LMCT and photoreductive dissolution occurred. In addition, the 8.87x increase in Fe(II) production was accompanied by a 2.84x increase in Fe(III) production, suggesting that light enhanced both reductive and ligand-promoted dissolution kinetics. In addition, Fe(II) was not observed with hematite alone under illumination because of the relative inefficiency of this process due to the ultrafast electron-hole recombination time (1 ps) and short hole diffusion length (2-4 nm) of hematite. This confirms that the direct photodissolution of the hematite nanoplates directly by band gap excitation (2.09 eV for hematite nanoplates in our previous study) should be negligible compared to the observed photodissolution by LMCT.

Previous research demonstrated that Fe(II) was slowly released into the solution at the beginning
of the induction period after the primary surface activation period and during the dissolution of hematite by oxalate.36, 37 As the reaction proceeds, accumulation of a sufficient amount of Fe(II) in the solution, which leads to formation of iron(II)-oxalato complexes, can accelerate further detachment of Fe(II) from the surface, which is known as the autocatalytic dissolution period.35, 36

The pseudo-zero-order-rate constant (k) of Fe(II) production in the solution was 0.0027 mmol L-1 h-1 for the dissolution of hematite by oxalate in the dark, due to an insufficient amount of produced Fe(II) in the induction period during the whole process (Fig. 2C). In the hematite dissolution by oxalate under light, Fe(II) was slowly released at a k of 0.0121 mmol L-1 h-1 in the induction period within 3 hours (Fig. 2C). After 3 hours, a sufficient accumulation of Fe(II) in the solution increased the Fe(II) production autocatalytically and, as a result, the corresponding k reached 0.0348 mmol L-1 h-1, 2.88 times larger than its induction rate constant.

In addition, in the presence of oxalate under illumination, the density of the surface adsorbed Fe(II) on hematite extracted by HCl methods11, 14 was measured to be 1.16×10^{-6} mol/m2 which was approximately 4 times larger than the controlled dark reaction (2.83×10^{-7} mol/m2) (inserted in Fig. 2C), suggesting the occurrence of LMCT process on hematite surface.

To examine facet-specific aspects of the photoreductive dissolution of oxalate-coated hematite nanoplates, we collected and washed the solids after reaction and then used TEM and HADDF-STEM to examine the reacted particle morphology in detail (Fig. 3; Table S1 in the Supporting Information). Although major features remained unchanged, defects consistent with dissolution features were evident at fine scales. For example, compared to the as-synthesized material (Fig. 3A), after photoreaction quantitative TEM image analysis of (001) surfaces indicated that 2.44% of the area was attributable to defects of 0.1434 nm2 average size, yielding a density of 2.14×10^{-4} defects/nm2 (Figs. 3B, C). HADDF-STEM was used to characterize these (001) defects
independently, and similar results were obtained. The defect area, average defect size and defect densities, which were found 0.40%, 0.0225 nm2 and 0.50×10$^{-4}$ defects/nm2, respectively on unreacted material (Figs. 3D, E), increased to 2.55%, 0.0608 nm2, and 2.31×10$^{-4}$ defects/nm2, respectively. The 2.70 times increase of the defect size on photoreacted materials as compared to that of the unreacted counterpart offered clear evidence of (001) photodissolution.

The (012) edge surfaces were likewise examined after photoreaction. Defect areas, average defect size and defect densities were respectively analyzed to be 0.17%, 0.0236 nm2 and 0.021×10$^{-4}$ defects/nm2, slightly lower than that on unreacted (012) surfaces (0.19%, 0.0382 nm2 and 0.018×10$^{-4}$ defects/nm2, respectively). From this we conclude that these small differences are within the statistical sampling error of the image analytical method, and that photodissolution of (012) facets was likely much less favorable that that on basal (001) surfaces of the nanoplates.

3.3 ROS Generation Investigated by EPR. EPR spectroscopy with selective radical scavenger compounds was then employed to investigate the associated ROS and carbon radical generation in the suspensions. Figure 4A shows typical DEPMPO-trapped EPR signal changes in aqueous solutions as hematite and oxalate reacted under illumination. DEPMPO is a sensitive trap for hydroxyl radicals, as well as for various carbon-based radicals. As expected, no signal was detected in the absence of illumination (Fig. 4A) because free radicals were not produced by hematite and oxalate contact alone, indicating a negligible role of the dark reaction. Furthermore, with light illumination, neither hematite nor oxalate alone produced ROS (Fig. 4A), reinforcing that the direct photodegradation effect of hematite from band gap excitation or oxalate was negligible.

However, for hematite with oxalate under illumination, multiple peaks were produced in the EPR signal, which we quantified as a function of reaction time. Using DEPMPO, we were able to assign the peaks according to standard spectra for various species that this molecule is capable of
trapping. For example, the twelve strong straight lines with roughly the same intensity could be assigned to DEPMPO adducts with carboxyl anion radicals (DEPMPO-•CO\textsubscript{2}-) (Fig. 4B, top). This distinction was enabled in part by test measurements in deoxygenated conditions, in which only the carboxyl anion radical appeared (Fig. 4B, middle), and in which its hyperfine coupling constants of \(a_P = 46.3 \text{ G}, a_N = 14.4 \text{ G} \) and \(a_H = 21.3 \text{ G} \) were fully consistent with previous studies.\(^{41}\) Hence, in oxygenated conditions the eight weaker straight lines with intensity of 1:2:2:1:1:2:2:1 could be assigned to the DEPMPO adduct with hydroxyl radical (DEPMPO-•OH) (\(a_P = 47.0 \text{ G}, a_N = 14.0 \text{ G} \) and \(a_H = 13.0 \text{ G} \)),\(^{41}\) in agreement with a separate control measurement where hydroxyl radicals form from \(\text{H}_2\text{O}_2 \) alone after 10 seconds UV illumination (Fig. 4B, bottom). Because most of the two sets of peaks arising from the two adducts overlapped, we chose the single non-overlapping peaks at 3269.9 and 3273.9 Gauss as representative of DEPMPO-•CO\textsubscript{2}- and DEPMPO-•OH adducts, respectively. Early in the photocatalyzed reaction between oxalate and hematite, we found that the intensity of DEPMPO-•CO\textsubscript{2}- and DEPMPO-•OH adducts increased rapidly and plateaued at steady state concentrations within a few minutes of illumination (Fig. 4C). To compare the spin traps, DMPO was also used to characterize the generation of radicals under otherwise identical conditions (Fig. 4D). The DMPO-trapped EPR signal was much weaker than the DEPMPO counterpart but still clearly distinguishable. In this case the six main peaks were attributed to DMPO-•CO\textsubscript{2}- adduct with hyperfine coupling constants of \(a_N = 15.7 \text{ G} \) and \(a_H = 18.8 \text{ G} \), in agreement with previous literature.\(^{42}\) The four weaker straight lines with intensity ratios of 1:2:2:1 were assigned to DMPO-•OH adduct with \(a_N = a_H = 14.7 \text{ G} \).\(^{26}\) Both of the results from DEPMPO and DMPO solidly confirmed that carboxyl anion radicals and hydroxyl radicals were generated.

Additionally, use of a TiOSO\textsubscript{4}/H\textsubscript{2}SO\textsubscript{4} reagent enabled us to successfully observe the photochemical formation of \(\text{H}_2\text{O}_2 \),\(^{43}\) whose concentration was found to steadily increase over the
entire course of reaction, achieving 2.8×10^{-4} mol/L within 5 h (Fig. 4E). Analogous to the sudden change of Fe(II) in the solution, the concentration of H$_2$O$_2$ also changed greatly at about 3 hours, for reasons discussed in detail below.

3.4 Proposed Photocatalytic Reaction Mechanisms. Within the context of generally known mechanisms of heterogeneous Fenton chemistry, these EPR-based observations of radical production are sufficient to propose a photocatalytic reaction mechanism dominating this system. The key initial reaction is the production of Fe(II) and •CO$_2^-$, which occurs by photolysis of iron-oxalato surface complexes via LMCT:

\[= \text{Fe(III)-Ox} + \text{hv} \rightarrow \text{Fe(II)} + \text{•CO}_2^- \] (4)

Production of •CO$_2^-$, a transient radical species with a very reducing potential ($E^0_{\text{CO}_2^-/\text{CO}} = -1.8$ V vs SHE,26, 45, 46) is rapidly oxidized to stable CO$_2$ species by dissolved oxygen. This oxygen reduction reaction (ORR), which activates and cleaves the O-O bond, is known to proceed by a proton-coupled electron transfer (PCET) process.47 Reduction products of the ORR can entail complete reduction to H$_2$O through a four proton-coupled four electron transfer process ($O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$, $E^0 = 1.229$ V vs SHE), or partial reduction to form H$_2$O$_2$ through a two proton-coupled two electron transfer process ($O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$, $E^0 = 0.695$ V vs SHE).48 In our system, because significant photoproduction of H$_2$O$_2$ was observed, the latter process appears to be active. One can then write an overall reaction as:

\[2\text{•CO}_2^- + O_2 + 2H^+ \rightarrow H_2O_2 + 2CO_2 \] (5)

That this reaction should be more favorable than oxygen reduction by Fe(II) is evident by its much higher reductive potential ($E^0_{\text{Fe(III)/Fe(II)}} = 0.77$ V vs SHE). Reactions 4 and 5 are also consistent with previous research showing the formation of H$_2$O$_2$ from direct solar photolysis of iron(III)-oxalato complexes.49 Notably, ROS generation from the photolysis of combined ferric and oxalate ions was
negligible. This was likely due to negligible desorption of the oxalate from the hematite surface indicating a surface-mediated LMCT process for the whole reaction.

More importantly, it was expected that the production of •CO$_2$ was simultaneously accelerated during accelerated Fe(II) release in the autocatalytic dissolution period (equation 4). From equation 4, the molar ratio of produced Fe(II) and •CO$_2$ was quantitatively 1:1, suggesting that the concentration of •CO$_2$ should be equal to Fe(II) during the period when the consumption of these species was neglected. Therefore, the change of •CO$_2$ should be consistent with the change of Fe(II) and, if the production of •CO$_2$ accelerates after 3 hours, the concentration of H$_2$O$_2$ would also be expected to accelerate, assuming a constant concentration of dissolved oxygen (equation 5). Indeed, the generation of H$_2$O$_2$ was initially slow as $k = 0.0269$ mmol L$^{-1}$ h$^{-1}$ during the first 3 hours and greatly accelerated to a higher $k = 0.0435$ mmol L$^{-1}$ h$^{-1}$ after 3 hours (Fig. 4E), which was consistent with the abrupt increase of Fe(II) at 3 hours.

With respect to natural environments, it is noteworthy that such a process has also been suggested as one of the most important sources of environmentally persistent H$_2$O$_2$ in surface marine waters29 as well as in atmospheric water droplets,50 where the key components including LMW organic dicarboxylate substances, iron and oxygen are all abundantly found and they are illuminated by sunlight. Additionally, •CO$_2$ produced $in vivo$ in a free radical metabolic pathway has been ascribed as one of the most important reactants generating superoxide anion radicals within bile and urine samples by reduction of molecular oxygen, in this case with a nearly diffusion-controlled rate ($k = 4.2 \times 10^9$ L mol$^{-1}$ s$^{-1}$),51 spontaneous disproportionation of superoxide then enables rapid production of H$_2$O$_2$ ($k = 2.3 \times 10^9$ L mol$^{-1}$ s$^{-1}$),52 the key species leading to •OH in the Fenton reaction.53

The Fe(II) generated by the photoreductive dissolution of hematite also plays an important role
which, given the presence of H$_2$O$_2$, initiates the well-known Fenton reactions that produce the observed hydroxyl radicals. Summarizing this key aspect, the essential O-O bond heterolysis of H$_2$O$_2$ triggered by Fe(II) proceeds according to:

$$\text{Fe(II)} + \text{H}_2\text{O}_2 \rightarrow \text{Fe(III)} + \cdot\text{OH} + \text{OH}^- \quad (6)$$

This process is maintained by valence cycling of iron - the photoproduction of \cdotOH with its high oxidative potential of $E^0 = +2.7$ eV54 oxidizes Fe(II) to regenerate Fe(III) ($k = 5 \times 10^8$ L mol$^{-1}$ s$^{-1}$)55.

Noteworthily, the lamp we used essentially provided visible light, and decomposition of H$_2$O$_2$ was known to be weak under visible light. The observation of a constant increase of H$_2$O$_2$ further indicated its stability under illumination. Additionally, from the viewpoint of thermodynamics, \cdotCO$_2$ would preferentially react with dissolved oxygen instead of H$_2$O$_2$. Under these circumstances, \cdotOH generation from direct photo-decomposition of H$_2$O$_2$ or from \cdotCO$_2$ was negligible.

Having identified the most likely reaction pathways to \cdotCO$_2$ and \cdotOH, we can now address the significance of the microscopic observations of preferential dissolution on (001) basal facets relative to (012) edge facets. Formation of surface complexes of bound oxalate on hematite nanoplates is prerequisite to the photolysis reaction that occurs by LMCT. The donation of electrons to the conduction band (CB) of hematite creates a supply of Fe(II) and \cdotCO$_2^-$. Previous research by our group has shown that the extent of iron coordination on the surface plays an important role in the reactivity of those sites; three-fold coordinated iron sites (Fe$_{3c}$) characteristic of hematite (001) surfaces tend to be more reactive compared to five-fold coordinated iron cation active sites (Fe$_{5c}$) characteristic of hematite (012) surfaces.30 Although for the present system whether this has more to do with the increased ability of iron sites on (001) to be complexed by oxalate or their propensity to accept electron density by LMCT remains unclear, this nonetheless may explain more facile photoreductive dissolution of (001) facets (Fig. 3). This aspect of the importance of individual
atomic site types, along with the major important ROS-generating reactions in the photocatalytic scheme, are summarized in the conceptual model illustrated in Figure 4F.

3.5 Coupling to Photodegradation of Chromophoric DOM. The electrophilic property of hydroxyl radicals allows fast destruction of the electron-rich functional groups that endow unsaturated bonds and low steric hindrance components of organic molecules, such as those mimicked by the “pseudo DOM” RhB (see Fig. S1 and Text S10 in the Supporting Information). However, because it is vastly more complex and variable, degradation of natural chromophoric DOM by the same mechanism is less certain and requires direct testing. For our study, we chose to examine terrestrial DOM from agricultural soil. Globally, approximately 0.25 Pg of dissolved organic carbon (DOC) is transported annually from soils to ocean through riverine systems, especially in agricultural landscapes of the Midwest (e.g. Wisconsin and Michigan) where tile drains are used to manage rainfed agriculture. Photodegradation is regarded as one of the major pathways by which terrigenous DOM is decomposed. For instance, forest and grassland dominate drivers in basins that lost up to 50% of DOC during irradiation. In this scenario, DOM from agricultural soil is exposed to sunlight when it enters the euphotic zone in rivers and is then decomposed through photodegradation. For our study, we examined water-extractable DOM from Wisconsin and Michigan soil sites, characterizing them in molecular detail using multiple spectroscopic methods including UV-vis absorption, FTICR-MS, ATR-FTIR, fluorescence, and 1D 1H NMR spectroscopies before and/or after the photoreaction in the presence of hematite and oxalate under light illumination. The results and discussion of UV-vis absorption (Fig. S2A in the Supporting Information) and FTICR-MS (Fig. S2B in the Supporting Information) of the pristine DOM solutions are included in Text S11 of Supporting Information.

As is well known, oxalate is an extremely strong chelate reagent that could bind to the surface iron
active sites and then dissolve the hematite.33, 34 Different from oxalate, higher molecular weight compounds in DOM that contain moieties such as long carbon chains would potentially sterically hinder or otherwise diminish the efficacy of DOM-hematite interactions. Under this circumstance, DOM could not compete with oxalate for surface iron active sites. As ROS were directly observed in the presence of hematite nanoparticles and oxalate under light illumination (Figure 4), we demonstrated that ROS are stable in the presence of oxalate and thus the quenchable effect of oxalate on ROS consumption was negligible under current conditions. Overall, the influence of oxalate on competitive adsorption for surface iron active sites and mineralization of DOM were safely negligible.

ATR-FTIR spectroscopy was employed to investigate the change of the functional groups of DOM before and after photoreaction with hematite and oxalate (Fig. 5A). The general IR spectral profiles of DOM\textsubscript{WS} and DOM\textsubscript{MS} were similar but differ in the spectral details. For the natural DOM, the broad peak at 3305 cm-1 was assigned to amide NH or alcohol OH. In the region from 1800 cm-1 to 1000 cm-1, IR spectra displayed peaks corresponding to the organic functional groups, including aromatic C=C and/or amide C=O (1655 cm-1),59 aliphatic CH\textsubscript{2} scissoring or in-plane aromatic ring deformation (1492 cm-1),59 aliphatic CH\textsubscript{3} or acetyl CH\textsubscript{3} symmetry bend (1428 cm-1),59 phenol and/or carboxyl C-O or alkene C-N/C-H (1286 cm-1),60, 61 and aliphatic C-C-O stretching in ester (1187 cm-1) and aliphatic O-C-C stretching in ester (1038 cm-1).59 The noticeable peaks of the chromophoric DOM remained almost the same after the photochemical reaction, but with careful observation they show small differences within the peaks in relation to the unreacted ones, confirming the bleachability of the chromophoric DOM. For instance, the prominent peak at 1655 cm-1 for DOM\textsubscript{MS} was slightly decreased due to the degradation of the aromatic C=C and/or amide C=O functional groups and the depolymerization of the organics in DOM\textsubscript{MS} (Fig. S3 in the
Supporting Information).

The fluorescence emission spectra showed a broad band at around 400-550 nm (Fig. 5B), typical of humic-like fluorophores. The intensity at 440 nm after reaction was respectively reduced 24.9% and 51.8% for DOM\textsubscript{WS} and DOM\textsubscript{MS}, revealing that both of them were efficiently bleached by the hydroxyl radicals. Obviously, the main peaks became broad and had hypsochromic shifts in emission wavelength after the photoreaction (especially for DOM\textsubscript{MS}), likely due to the formation of new fluorophores.

We measured the DOC change of DOM as a function of reaction time in the presence of hematite and oxalate under illumination (Fig. 5C). As expected, the DOC values of DOM\textsubscript{WS} and DOM\textsubscript{MS} decreased as a function of reaction time, indicating that the organic carbon of DOM was mineralized into inorganic carbon species, such as CO\textsubscript{2}. The chamber used to expose samples to the light source is not equipped to directly measure CO\textsubscript{2} evolution in the headspace. The TOC measurements on both DOM samples following light exposure showed a decrease in concentration relative to their respective unexposed controls. As CO\textsubscript{2} generation is the only known pathway to release carbon from DOM under oxic conditions, the drop in TOC concentrations in the exposed DOM extracts suggests an efficient release of CO\textsubscript{2}. The degradation rate constants were calculated to be 7.94 and 4.50 mg L-1 h-1 with coefficients of determination (R2) of 0.51 and 0.71 for DOM\textsubscript{WS} and DOM\textsubscript{MS}, respectively. The degradation rate constant of DOM\textsubscript{WS} was 1.76 times than DOM\textsubscript{MS}, likely because DOM\textsubscript{WS} is endowed with higher organic chromophore content relative to DOM\textsubscript{MS}.

1D 1H NMR spectroscopy was also used to characterize the water extracted DOM samples after exposure to 5 hours of light in the presence of hematite nanoparticles and oxalate along with identically prepared controls not exposed to light (for consistency, controls and exposed samples will be referred to as “before” and “after” respectively). The extracts were concentrated by lyophilization
prior to measurement, reconstituted in D$_2$O, and the spectra are shown in Figure 5D. General comparisons were made by dividing each spectrum into five specific chemical shift regions, corresponding to common structural moieties present within, and integrating their areas to yield comparative proportions of each type as in Hertkorn et al.$^{63, 64}$ Specifically, the structural types and 1H chemical shift ranges employed were 1) aliphatics (CCCH) from 0.5 – 1.9 ppm, a region which may contain significant contributions from compounds that were mainly derived from linear terpenoids (MDLT) as noted by Lam et al.65; 2) functionalized aliphatics (XCCH, X = O, N, or S,64 or NCH of primary and secondary amines) from 1.9 – 3.1 ppm, wherein other studies have noted major refractory components for DOM in this region to be attributable to compounds such as carboxylic-rich alicyclic molecules (CRAM)66 and oxidized sterols67 as two examples; 3) oxygenated (OCH) type resonances from 3.1 – 4.5 ppm that would encompass carbohydrates but also C$_{\alpha}$ protons of amino acids; 4) unsaturated/olefinic (HC=C) from 5.3 – 7.0 ppm, with some overlap from carbohydrate anomeric protons (O$_2$CH) and 5) aromatics/heteroaromatics (HC$_{\text{aromatic}}$) from 7.0 – 10.0 ppm.63 The region between 4.5 – 5.3 ppm was not integrated due to suppression of the residual water signal (approx. 4.7 ppm). The integration results indicating the percent contribution of the integrated region to the total integrated area of each spectrum as well as relative percent differences before and after exposure are compiled in Table 1 below. Profiles of the DOM regions were roughly similar for DOM$_{WS}$ and DOM$_{MS}$ and both showed notable changes in all regions including decreasing intensity in aromatic (HC$_{\text{aromatic}}$), olefinic/anomeric (HC=C/O$_2$CH), and oxygenated (CHO) regions with concomitant increases in the functionalized (XCCH) and aliphatic (CCCH) regions. The DOM$_{MS}$ sample showed greater relative percent changes in every region relative to DOM$_{WS}$. With respect to the aromatic region, in particular, not only was there a clear decrease in overall intensity and loss of the few sharper features (especially DOM$_{MS}$) but resonances
with shifts consistent with aldehydes (ca. 9.7 ppm) also appear in both light exposed DOM samples versus the unexposed controls. The olefinic/O\textsubscript{2}CH regions overall decreased, however there was an apparent slight increase in intensity at the lower chemical shift end of the range (ca. 5.6 – 5.3 ppm) in both exposed DOM samples. The net increases in intensity for the functionalized aliphatics (XCCH) and aliphatics (CCCH) were punctuated by several new intense and narrower resonances appearing in both DOM samples after exposure that, although no specific compound identifications were made in the post-exposure samples in this region, were consistent with the formation of long chain aliphatics with carboxylic or amino functional groups.

The NMR data is consistent with the ATR-FTIR results in supporting predictions that aromatic and unsaturated functional groups would be predominantly degraded by reaction with hydroxyl radicals as a likely consequence of their electron rich properties. Because aromatic functional groups represent large molecular weight compounds, such as lignin, and aliphatic carbon chains refers to LMW compounds (relatively lower molecular weight organics than original counterparts caused by oxidation), like hydrocarbons. As reaction goes by, the LMW organic compounds were further mineralized into inorganic species, such as carbon dioxide which has been regarded as the only pathway to release carbon from DOM samples under oxic conditions. Therefore, the possible degradation pathway of DOM was summarized below. The aromatic and unsaturated functional groups were predominantly attacked by hydroxyl radicals to form LMW organic compounds and further mineralized into inorganic species, such as carbon dioxide.

On the basis of the efficient degradation of both DOM\textsubscript{WS} and DOM\textsubscript{MS} above, our findings indicate that, like the proxy molecule RhB, DOM extracted from agricultural soil is also indirectly photobleached by the hydroxyl free radicals produced by the photocatalyzed LMCT reaction at oxalate functionalized hematite nanoplate surfaces. The broadly consistent mechanism appears to
be electrophilic attack of the electron-rich functional groups (e.g., aromatic rings, conjugated alkyl and hydroxyl groups) that rapidly decompose into LMW organic substances, and/or are further mineralized into inorganic species such as CO$_2$. Although it has been previously shown that oxalate can comprise one of these LMW products,25 hence raising the prospect that regeneration of oxalate might in turn accelerate the photodegradation of DOM concertedly, the present experiments did not enable us to detect oxalate release. In any event, the overall photodegradation process observed in this study can be succinctly summarized by the reaction:

$$\text{DOM} + \bullet \text{OH} \rightarrow \text{LMW} + \text{CO}_2 + \text{H}_2\text{O} \quad (7)$$

It is known that oxalate is the smallest LMW dicarboxylic acid, a plant exudate, a possible degradation intermediate from the oxidation of natural organic matter, and thus abundant in soil and near-surface terrestrial aquatic environments. Oxalate that binds to hematite nanoparticles can photocatalyze the production of ROS through interfacial electron transfer and valence cycling of iron sites at the interface. Although the photochemistry of hematite or oxalate for the generation of ROS has been extensively studied, the photodegradation of DOM by hematite nanoplates functionalized by adsorbed oxalate has long been overlooked due to the complexity of natural DOM samples. Additionally, in natural ecosystems multiple DOM degradation mechanisms may occur, including enzymatic degradation, which is regarded as the main biotic degradation pathway.68 Therefore, DOM degradation products measured in environmental samples may reflect multiple degradation pathways. Thus, model systems using laboratory-synthesized hematite can help isolate the process of DOM degradation by ROS.

In designing such a model experimental system, it is important to consider its composition with respect to real soils, while also maintaining conditions that are practical for laboratory-based measurements. The concentration of oxalate ranged from several micromolar per liter to hundreds of
millimolar per liter, such as 2.0-550 µM in soils and ever higher as 11.7 mM in the atmospheric dust. In the present study, we used 1.0 g/L of hematite (approximately from 1.9-500 g of soil based on hematite contents in natural soils ranging from approximately 0.1-26 g/kg) and 1.0 mM of oxalate by mixing hematite nanoparticles and oxalate with DOM solution extracted from soils. The concentration of oxalate employed in our laboratory investigation is thus comparable to natural environmental conditions. And because the role of hematite in isolation is the focus of the study its concentration was chosen to be comparable with other studies using synthesized hematite for simulating real environmental conditions.

4. Conclusions

Iron oxides, organic ligands, and chromophoric DOM are important components in soils, and common in the euphotic zone of lacustrine and marine environments where solar photogeochemical carbon cycling occurs. We have examined one possible indirect DOM photodegradation pathway that is based on light-induced reactive oxygen species production at hematite nanoparticles coated with oxalate surface complexes. Light catalyzes ligand-to-metal charge transfer from the adsorbed oxalate to Fe(III) in the particles, creating a supply of Fe(II) associated with photodissolution of particle surfaces. At the same time, the key oxalate photolysis product is the carboxyl anion radical •CO₂⁻, which readily reduces dissolved oxygen to yield a supply of H₂O₂. The interaction of Fe(II) and H₂O₂ leads to hydroxyl radical production via the canonical Fenton reactions that cycle Fe valence, which efficiently degrades the pseudo-DOM chromophore RhB as well as model natural chromophoric DOM compounds from agricultural soil. The findings suggest that this indirect DOM photodegradation pathway could be significant in natural aquatic systems where these components pervade, adding a controlling process to the total DOM pool in euphotic zones and thereby impacting the global carbon cycle. The same process may likewise be relevant to the fate of organic
micropollutants in these settings. The findings also add mechanistic understanding to factors controlling steady-state concentrations of environmentally persistent ROS, through its coupling to natural organic matter cycling and, in turn, terrestrial ecosystems.

Supporting Information

The Supporting Information is available on the RSC website: Materials (Text S1), Synthesis of hematite nanoplates (Text S2), Characterization (Text S3), Analytical methods (Text S4), EPR spectroscopy (Text S5), Natural DOM extraction (Text S6), FTICR MS data acquisition and data analysis (Text S7), Nuclear magnetic resonance spectroscopy (Text S8), Photodegradation experiments (Text S9), Photodegradation of RhB (Text S10), DOM characterizations (Text S11), Photodegradation of RhB and scavenger experiments (Figure S1), DOM characterizations (Figure S2), The magnified ATR-FTIR spectra of DOM$_{MS}$ (Figure S3), and Defect analyses (Table S1).

Statement of contributions

X.H. and K.M.R. designed the research. X.H. synthesized the nanoparticles, conducted the photodissolution and DOM photodegradation experiments. Q.Z. and K.H. extracted the DOM solutions and conducted TOC and FTICR-MS analysis. R.Y. conducted the NMR and analysis. X.Z. conducted the TEM and STEM and E.N analyzed the images. X.H., E.W. and Y.C. conducted the EPR and analysis. X.H. and S.T. analyzed the dissolution and characterization. X.H. and J.L performed the ATR-FTIR. X.H. and Z.W. performed the fluorescence spectra. All the coauthors co-wrote the manuscript.

Conflicts of interest
There are no conflicts of interest to declare.

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division through its Geosciences program at Pacific Northwest National Laboratory (PNNL). A portion of the research was performed using EMSL (grid.436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and is located at PNNL. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract No. DE-AC05-76RL01830.
References

16. V. Smetacek, C. Klaas, V. H. Strass, P. Assmy, M. Montresor, B. Cisewski, N. Savoye, A.

24. P. Behra and L. Sigg, Evidence for redox cycling of iron in atmospheric water droplets,

33. J. S. Loring, A. A. Simanova and P. Persson, Highly Mobile Iron Pool from a

42. F. A. Villamena, E. J. Locigno, A. Rockenbauer, C. M. Hadad and J. L. Zweier, Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by

52. G. Cohen and R. E. Heikkila, The generation of hydrogen peroxide, superoxide radical, and

FIGURES AND CAPTIONS

Figure 1. Representative morphologies and structures of hematite nanoplates. (A) TEM image, (B) high-resolution TEM image and corresponding SAED pattern (Insert), (C) drift corrected spectrum image scanning of HADDF-STEM, (D) selected area of HADDF-STEM, (E) Fe L-edge mapping, (F) Fe K-edge mapping, and (G) O K-edge mapping of hematite nanoplates.
Figure 2. (A) ATR-FTIR spectroscopy of hematite after photoreaction in the presence and in the absence of light illumination. (B) The possible molecular structures of outer-sphere and inner-sphere complexes of iron-oxalate on hematite (001) surface with Fe-terminations. (C) The reductive dissolution kinetics of hematite with oxalate versus photoreaction time in the presence and in the absence of light illumination (Insert: corresponding surface Fe(II) density on hematite). k and R^2 were the pseudo-zero-order-rate constants of photoproduction of Fe(II) in the solution and the corresponding fitting correlation coefficient values, respectively.
Figure 3. TEM and HADDF-STEM imaging and defect analysis of hematite nanoplates before and after the photochemical reaction in the presence of oxalate. (A) TEM images showing the hematite basal (001) surface before reaction, (B)-(C) TEM images of hematite basal (001) surface after reaction. (D)-(E) HADDF-STEM images showing the hematite basal (001) surface before reaction, (F)-(G) HADDF-STEM images of hematite basal (001) surface after reaction. (H)-(I) HADDF-STEM images showing the hematite edge (012) surface before reaction, (J)-(K) HADDF-STEM images showing the hematite edge (012) surface after reaction. The colored images displayed the defects of basal (001) and edge (012) surface on hematite nanoplates.
Figure 4. EPR spectroscopy to measure the generation of the radicals. (A) DEPMPO-trapped EPR signal changes in aqueous solutions as a function of time with hematite and oxalate ions under illumination (a, b, c, and d represent 4, 8, 12, and 16 min, respectively). (B) Peaks labeling in DEPMPO-trapped EPR spectra. The peaks that correspond to hydroxyl radicals and carboxyl anion radicals are labeled as “•” and “*”, respectively. (C) The intensity of the corresponding radicals in DEPMPO-trapped EPR spectra changes as a function of reaction time. (D) DMPO-trapped EPR signal changes in aqueous solutions as a function of time with hematite and oxalate under illumination. (E) The generation of hydrogen peroxide as reaction time. k and R^2 were pseudo-zero-order-rate constants of photoproduction of hydrogen peroxide in the solution and the corresponding fitting correlation coefficient values, respectively. (F) Conceptual schematic
representation of iron photochemical cycling coupling with reactive oxygen species generation that are mediated by oxalate under sunlight illumination.

Figure 5. Photodegradation of chromophoric dissolved organic matter (DOM) in the presence of hematite and oxalate. (A) ATR-FTIR spectra of the DOM before and after the photoreaction. (B) Fluorescence spectra of the DOM before and after the photoreaction. (C) Photodegradation kinetics of DOM in the presence of hematite and oxalate under illumination. (D) 1D 1H NMR spectra of DOM$_{WS}$ (left) and DOM$_{MS}$ (right) before and after photodegradation with magnified expansion of the aromatic and olefinic regions (5.3 – 10.0 ppm). For the stacked display, the DOM$_{WS}$ “after” spectrum intensity was multiplied by a factor of 1.29 to make its total integrated area equal to the “before” spectrum. No such scaling was required for DOM$_{MS}$.
Table 1. Results of the regional binning and integration of the 1D 1H NMR spectra of DOM$_{WS}$ and DOM$_{MS}$ acquired before (dark control) and after exposure to light in the presence of hematite nanoparticles and oxalate. The predominant substructures and chemical shift ranges for the regions used are on the left side of the table. The percent (%) integrated (int.) area (A) is the contribution of each region to the total integrated area in each spectrum. The percent change was calculated as (% int. A$_{after}$ - % int. A$_{before}$)/(% int. A$_{before}$).

<table>
<thead>
<tr>
<th>Type</th>
<th>$\delta(^1$H) region (ppm)</th>
<th>DOM$_{WS}$</th>
<th>DOM$_{MS}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% int. A before</td>
<td>% int. A after</td>
</tr>
<tr>
<td>HC aromatic</td>
<td>10.0 - 7.0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>HC=C/O$_2$CH</td>
<td>7.0 - 5.3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>OCH</td>
<td>4.5 - 3.1</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>XCCH</td>
<td>3.1 - 1.9</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>CCCH</td>
<td>1.9 - 0.5</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Table of contents entry