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To decarbonize electricity grids, CO2 capture and renewable wind/solar are two promising path-
ways. However, the intermittency of these variable renewable sources and the high energy re-
quirement of carbon capture restrict their widespread deployment. These challenges are tradi-
tionally addressed independently at the grid-level, leading to conservative costs and limited oper-
ational flexibility for both systems. Here, we examine the synergistic integration of renewables and
flexible carbon capture with individual fossil power plants. Renewables provide clean energy for
carbon capture, while flexible carbon capture acts as a form of energy storage to counter renew-
able intermittency. To assess whether the benefits obtained from integration outweigh the capital
cost under spatiotemporal variability of electricity markets and renewable energy, we develop a
mathematical programming-based optimization framework. We decouple the design and opera-
tional decisions in a two-stage optimization strategy to efficiently solve the large-scale problem.
When applied to a nationwide case study on coal plants across the US, we observe that, for fu-
turistic carbon tax and renewable cost scenarios, it is profitable to invest in solar-assisted carbon
capture for nearly one-third of the coal plants. It reduces carbon capture cost by 8.9%, and ac-
commodates solar intermittency while avoiding the capital cost of an equivalent battery, which is
4.4 times the solar farm cost. Furthermore, the levelized cost of electricity will be less than that of
new natural gas plants with overall emission reduction between 87.5-91%. The integrated system
thereby provides a cost-effective and sustainable measure to reduce CO2 emissions and improve
the operational flexibility of existing fossil-based systems for accelerating the clean energy transi-
tion of the global energy sector.

1 Introduction
Coal, petroleum and natural gas contribute to almost two-thirds
of the total electricity generation in the US. The CO2 emissions
from these fossil fuels amounted to nearly 93% of the total an-
thropogenic CO2 emissions in 2018.1 The use of CO2 capture, uti-
lization and storage (CCUS) and the integration of renewable en-
ergy sources are two major pathways for reducing the CO2 emis-
sions from the power sector. For instance, carbon capture alone
can reduce power plant emissions by up to 90%.2–4 The captured
CO2 can be further utilized for enhanced oil recovery (EOR)5–7 or
converted to value-added fuels and chemicals.8–10 On the other
hand, renewables are sustainable with near-zero marginal gener-
ation costs.

To achieve a low-carbon grid, however, the challenges in the
implementation of these two technologies need to be addressed.

a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, TX 77843-3122, USA. Tel: (979) 862-1449; E-mail: hasan@tamu.edu
† Electronic Supplementary Information (ESI) available. See DOI:
00.0000/00000000.

Carbon capture is highly energy-intensive, which can reduce the
net power output of the plant by 25-40% and drive up power gen-
eration costs as much as 70%.11,12 This limits the widespread de-
ployment of the technology, with currently only two power plants
worldwide with fully operational CCUS units.13 Flexible opera-
tion of the capture unit in response to dynamically varying elec-
tricity price and demand presents a potential solution to this chal-
lenge.14–17 Flexible carbon capture enables the power plant to
reduce CO2 emissions while maximizing its profit, thereby mak-
ing CO2 capture less costly in a dynamic pricing-driven electricity
market.

On the other hand, the intermittency and non-dispatchability
of variable renewable energy (VRE) sources, especially wind and
solar, is a major hurdle in their seamless integration with electric-
ity grids. In the rest of the text, the term renewable energy refers
to VRE in the form of wind and solar. Although wind and solar
may have some lifecycle CO2 emissions from their manufacture
and construction, they have near-zero direct emissions.18 Specif-
ically, they have negligible emissions as compared to fossil-based
energy sources. Here, we also refer to wind and solar energy
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(a) Conventional, non-integrated system configuration.
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Fig. 1 Two paradigms of integrated power generation, CO2 capture and renewable energy systems. (a) The conventional paradigm only considers
the integration of CO2 capture with coal-based fossil energy generation. The integration of renewable energy with the capture system is typically not
considered. The energy required for CO2 capture is sourced from the power plant alone. There is no interaction between the CO2 capture system
and the renewable energy farms, thereby missing on opportunities for potential synergies. Overall, the cost of integration is high. (b) The proposed
paradigm, on the other hand, leverages on the mutually beneficial interaction between the CO2 capture and renewable energy systems through localized
integration with existing power plants. The CO2 capture system is flexible such that it can dynamically vary the schedule for the energy-intensive solvent
regeneration through solvent storage. This allows the solar or wind farm to utilize its surplus energy for CO2 capture, and reduce the intermittency
problem.

sources as clean energy, indicating that they have negligible di-
rect emissions.

To maintain grid reliability under high renewable integra-
tion, capital-intensive modifications to grid infrastructure, such
as large-scale energy storage and transmission capacities, are
required.19–21 Moreover, due to minimum marginal costs, re-
newables are the first to be dispatched when they are avail-
able, thereby displacing the mid-merit fossil-fueled power plants.
These conventional power plants are again forced to rapidly ramp
up their output during periods when renewable availability is lim-
ited. Such cycling operation of the fossil energy plants to main-
tain electricity supply and demand balance reduces the overall
efficiency and increases operational costs.22,23

Traditionally, the integrations of CCUS and renewable energy
systems with power plants and electricity grids are attempted in-
dependently of each other, resulting in the high cost and limited
flexibility for both technologies. Figure 1a illustrates this con-
ventional approach considering the independent integration of
carbon capture with coal-based fossil energy generation, and the
integration of renewable energy with the electricity grid. CO2
from the exhaust flue gas of the coal plant is removed in the
capture system through solvent-based absorption.24 The steam
energy required to regenerate the CO2-rich solvent and the elec-
tricity required for CO2 compression are sourced from the power
plant alone, thereby significantly reducing its power output. On
the other hand, independent grid-level integration of renewable
energy requires the cost-intensive storage and transmission mea-
sures to mitigate its intermittency.

As policy-makers seek to attain low-carbon grids with increased
renewable penetration, it would be difficult to completely phase
out fossil energy plants owing to their foothold in the energy mix
and their ability to provide reliable back-up power in face of inter-
mittent renewable integration. Albeit its high energy consump-
tion, CCUS provides a sustainable means for the continued use
of fossil-based energy. Thus, as we transition to power grids with
high renewable penetration, it is important to explore the synergy
between these two pathways for decarbonization: renewable en-
ergy and carbon capture.

In this work, we hypothesize that the CO2 emissions from fos-
sil power plants can be effectively reduced by co-investing in a
flexible CO2 capture system and a co-located renewable energy
farm, thereby leveraging on the synergies between the two tech-
nologies. We investigate the potential of an integrated system
including a coal-fired power plant, a CO2 capture system, a solar
PV field and a wind turbine farm. The capture system is flexible in
a sense that it can dynamically vary the schedule for the energy-
intensive solvent regeneration through solvent storage. The inte-
grated system configuration is depicted through Figure 1b.

Furthermore, we study if investing in the integrated system of
CO2 capture and renewables is more cost-effective as compared
to replacing the coal plant with a new natural gas facility to obtain
reduced emissions. We demonstrate the framework through both
statewide and nationwide case studies on coal plants across the
US, and address the following questions through our work:

1. For a coal power plant, is it profitable to invest in a CO2
capture retrofit and/or a co-located renewable energy farm
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to reduce emissions?

2. What is the optimal design of the integrated system consid-
ering spatiotemporal variability in electricity prices, solar ra-
diation and wind speed?

3. How does the integrated system cost compare with that of a
new natural gas plant?

4. To what extent can renewables reduce the cost of CO2 cap-
ture? Can CO2 capture effectively counter renewable inter-
mittency?

This article is structured as follows: Section 2 describes the
integrated system configuration and lays out the pathway to
determine the overall design and operation as a system-wide
optimization problem with key decisions. Section 3 presents
the optimization-based methodology that allows us to study the
large-scale implementation of the integrated system. Sections 4
and 5 illustrate the nationwide and statewide case studies respec-
tively. They present a discussion of the optimization results to
address the aforementioned questions. Finally, Section 6 presents
a summary of the work and highlights the key findings.

2 Synergistic integration of renewables and
carbon capture

The individual challenges of carbon capture and renewables can
be possibly addressed if they are operated in tandem. Clean re-
newable energy can be used to partially meet the energy require-
ment of carbon capture. Conversely, flexible carbon capture can
counter renewable intermittency by dynamic scheduling of sol-
vent regeneration. Such synergy between renewables and car-
bon capture has been studied in literature mostly at the com-
plete electricity system level, where the impact of carbon capture
and renewables to achieve low-carbon, flexible grids has been as-
sessed.25–29 Among the limited studies at the power plant level,
the emphasis is mostly on the integration of a single renewable
technology, primarily solar thermal energy. Although the current
capital cost of solar thermal systems is more other renewable en-
ergy technologies,30 the advantage of solar thermal systems lies
in the conversion of solar energy to steam, which can be directly
used for solvent regeneration in the capture system for CCUS.

Parvareh et al.31 presented a comprehensive review on the dif-
ferent configurations of integrating solar thermal energy with coal
plants. Cohen and Rochelle32 performed preliminary feasibility
studies on using solar thermal energy for the complete and par-
tial compensation of the CO2 reboiler heat duty. Mokhtar et al.33

conducted a techno-economic assessment of integration for coal
plants in Australia using actual weather and electricity market
data. The feasibility analysis by Li et al.34 showed that the local
climatic conditions play a crucial role in the economic viability of
solar integration. Qadir et al.35 determined the optimal opera-
tion of a solar-assisted coal plant with CO2 capture through dy-
namic modeling and optimization. They inferred that the integra-
tion is viable in regions where solar energy availability coincides
with high electricity prices and load demand. Zhao et al.36 com-
pared two configurations of integrating mid-temperature solar-
generated steam in a coal plant with CO2 capture. They found

that the integration increases overall power output from the plant
by nearly 17% as compared to a non-hybridized system.

Apart from solar thermal energy, the second most common
technology considered for integration is wind energy. Kang et
al.37 studied a modular system comprising of a coal plant with
CO2 capture integrated with a natural gas combustion turbine
and wind energy. They compared the performance of a heuris-
tic procedure and a local optimization algorithm to maximize the
profit from the integrated system. Bandyopadhyay and Patiño-
Echeverri38 determined the optimal design and operation of a
coal-wind hybrid system. Phadke et al.39 studied a coal gasifica-
tion unit with CCS integrated with wind energy. They concluded
that the hybrid system has a lower levelized cost of electricity
(LCOE), or the net present cost incurred per unit of electricity
generated, compared to an independent coal/wind system owing
to the avoided cost of building additional transmission lines for
wind integration.

Additionally, there are few studies on integrating biomass as
well as solar photovoltaics (PV). Carapellucci et al.40 studied the
integration of an auxiliary biomass boiler and a concentrated so-
lar power (solar thermal) technology with a coal power plant with
CO2 capture. Similarly, Khorshidi et al.41 investigated the use of
an auxiliary biomass-based unit to provide both the heat and elec-
tricity requirements of the CO2 capture system. They performed
a techno-economic analysis and provided estimates of CO2 and
biomass prices to make the integration economically attractive.
Gouse et al.42 considered several integration options of PV sys-
tems with integrated gasification combined cycle (IGCC) power
plants to reduce emissions. Most of these studies focus on using
renewable integration to supply the steam energy required for the
solvent regeneration reboiler of the CO2 capture system. The en-
ergy consumption of auxiliary units, such as pumps, blowers and
CO2 compressors, amounts to nearly 50% of the equivalent work
requirement of the reboiler,43 but is often overlooked. This en-
ergy penalty is assumed to be parasitically drawn from the power
plant.

Till now, the predominant focus has been on the feasibility as-
pect of integration, often ignoring the optimization of both the
design and operational decisions. The high upfront cost of renew-
able technologies and their intermittent availability has a direct
impact on the economic viability of the integration.33 Thus, it is
important to determine both the optimal investment and operat-
ing decisions of the integrated system.

There are several benefits to considering the localized integra-
tion, as shown in Figure 1b, as compared to the conventional
grid-level analysis. Firstly, renewable integration with the grid is
facilitated without the costly grid-level modifications. Secondly,
to accommodate the variable renewable energy, the flexible car-
bon capture operation also improves the operational flexibility of
individual power plants without frequent cycling operation. In
face of high renewable availability, carbon capture can reduce
power output from the plant thereby keeping it online for longer
durations. Similarly, the capture operation can be turned down
to meet peak power requirements at times when renewables are
not readily available. Thirdly, the installation of additional trans-
mission capacities for renewable integration is eliminated. In the
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integrated system, the renewable energy farm delivers electricity
to the grid using the transmission lines of the power plant and
the transmission capacity generated from flexible carbon capture
operation.

We consider a combination of renewable technologies for po-
tential integration: both solar PV and onshore wind systems, as
opposed to the single technology analysis which is commonly
done. This counters the limitations of the latter, such as the re-
quirement of a high-efficiency solar field with thermal storage to
meet the capture energy penalty through solar integration alone.
We hypothesize that the consideration of a mix of renewable tech-
nologies can distribute the onus of capture penalty compensa-
tion over the individual technologies depending on their avail-
ability. This can potentially avoid the reliance on a single highly
efficient technology. Additionally, to maximize the utilization of
clean renewable energy in compensating the carbon capture en-
ergy penalty, we consider its use to provide the electricity required
in the capture system’s auxiliary components along with the pro-
vision of steam for solvent regeneration.

To illustrate the interaction among the various system compo-
nents, the integrated system of the coal-based unit, renewables
and carbon capture is concisely represented using a superstruc-
ture shown by Figure 2. The energy sources include the coal
power plant, and the renewable energy technologies i.e. wind
and solar PV. Exhaust flue gas generated from the coal plant with
a typical CO2 concentration of 15 vol.% is directed to the cap-
ture system for solvent-based CO2 separation and removal. The
extracted CO2 is compressed and sent to downstream units for
further utilization. The energy sinks in the superstructure con-
sist of the electricity grid and the various stages of the capture
system, such as the CO2 absorption, desorption (solvent regen-
eration), and compression sections. Among the capture system
components, the CO2 desorption step is the most energy-intensive
with energy requirement in the form of steam.

The three energy sources generate energy in the form of elec-
tricity. The generated electricity is delivered to the grid and/or
used to meet the electricity requirement of CO2 capture, i.e. in
the CO2 absorption and compression systems. Power require-
ment in the absorption section stems from auxiliary units such
as pumps to circulate the solvent. The steam required for CO2
desorption from the solvent is sourced by directing a portion of
the steam from the intermediate and low-pressure steam turbines
of the coal power plant. To maximize the use of renewable en-
ergy for CO2 capture, we consider the use of an electric boiler to
produce steam from renewable-generated electricity. This steam
is used in the CO2 desorption step, along with steam extracted
from the coal power plant.

Along with meeting the energy requirement of CO2 capture,
renewables provide a clean energy source for the system to meet
the grid electricity demand and generate revenue. On the other
hand, flexible CO2 capture helps in handling the intermittency of
renewables by acting in the form of an energy storage system.
During periods of low electricity price or grid demand and excess
renewable availability, the CO2 capture operation is ramped up
and the surplus energy is utilized for capture. Conversely, the cap-
ture operation is turned down during peak grid demand periods
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Fig. 2 Plausible ways of integrating energy sources and sinks. A coal
power plant, for example, can meet the energy demand of the electric-
ity grid. It can also supply the required energy for CO2 capture. The
wind/solar PV can do the same. Furthermore, the electricity generated
by the wind and solar is converted to steam using an electric boiler, for
use in solvent regeneration. The challenge is, however, to obtain the opti-
mal connectivity and network configuration that will maximize the energy
economics of the system.

and low renewable availability to increase the energy delivered
to the grid.

The economics of this configuration is impacted by the high
capital cost of the system components and the spatiotemporal
variability of electricity price and renewable availability. To in-
corporate the cost-emission trade-offs in optimal decision making,
we propose a mathematical programming-based optimization ap-
proach to determine the conditions under which the benefits ac-
crued by a coal power plant through a carbon capture retrofit or
a co-located renewable farm installation outweigh the capital in-
vestment of these systems.

We define the problem statement as follows: for given time-
varying electricity price, solar irradiation intensity and wind
speed profiles, determine the optimal design and operational de-
cisions of integration with an existing coal power plant which
maximizes its net present value (NPV). NPV signifies the present
value of the investment based on projected costs and earnings of
the system. The design decisions include: (i) retrofit of the coal
plant with a CO2 capture system, (ii) installation of co-located
wind/solar PV fields and their nominal capacities, and (iii) in-
vestment in an electric boiler and its capacity. The dynamic op-
erational decisions comprise of: (i) the extent of flexible capture
system operation i.e. the rates of CO2 absorption, desorption and
compression, and (ii) the power flow among the various system
components.

3 Methodology
The optimization objective is to simultaneously determine the
long-term design and the hourly operational decisions under
given, deterministic profiles of electricity price, solar radiation
and wind speed. However, developing a unified approach to
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determining the optimal integration configuration in our system
is computationally non-trivial due to the multi-scale variability
exhibited by intermittent renewable energy as well as electric-
ity markets. Specifically, electricity price and renewable energy
availability display high-frequency and low-frequency temporal
variability depending on the time of the day and season. Also,
there is significant spatial variation of these parameters based on
geographic location.

To solve this multi-scale problem with design decisions span-
ning several years and operating decisions focusing on shorter
time periods, we employ a two-stage solution strategy. The
two-stage framework decouples the complicating design decisions
from the hourly operating decisions and enables us to solve the
large-scale optimization problem in a computationally tractable
manner. To the best of our knowledge, such a framework has
not been applied previously in this particular application of inte-
grating renewable energy and CO2 capture with coal plants. The
optimization formulation and the two-stage solution strategy are
described below.

3.1 Integrated system model formulation
The assumptions which prelude the model development are as
follows:

• Each year is identical in terms of electricity price, solar radi-
ation and wind speed. The system operation does not vary
from year to year, resulting in the same cash flow.

• Considering an existing coal power plant, its nameplate ca-
pacity and base-case emission intensity i.e. emission inten-
sity of the stand-alone power plant (ton CO2/MWh), are
fixed.

• Complete shutdown of the power plant is not considered.
The power plant always operates with output between its
minimum turndown and nominal capacity.

• The specific solvent consumption for CO2 absorption (kg/kg
CO2) is assumed to be a constant. Additionally, the specific
energy penalty (MWh/kg CO2) of the capture system ab-
sorption, desorption and compression sections is a constant.
There is no loss of solvent in the capture system.

• The size of the capture system scales linearly with respect to
a reference power plant case with given nameplate capac-
ity and emission intensity. Similarly, the maximum rich and
lean solvent flowrates are determined as a linear function of
the reference case solvent flowrate. A fixed maximum stor-
age duration is assumed.

• The maximum power output of the system is the same as the
coal plant nameplate capacity, avoiding the installation of
additional power transmission lines for integration. The sys-
tem is contractually obligated to produce a pre-determined
fraction of this maximum capacity at each hour which is sold
to the grid at a fixed price. Power output in excess of this is
then sold in the electricity spot market subject to variable
price profiles.

• There exist policy measures to provide economic incentive
for the reduction of carbon emissions from the power plant.
These measures include both a tax on CO2 emissions as well
as a selling price on the utilized CO2. The selling price of
CO2 can be in the form of the price on carbon credits earned
through the utilization of the captured CO2 for end-uses
such as EOR or conversion to value-added fuels and chem-
icals (methanol, methane, dimethyl ether, gasoline, etc.).
Such CO2 utilization may not be restricted to EOR only. The
CO2 can also be further purified to increase its commercial
value for utilization in high purity applications, for instance
in the food and beverage industry.44 This utilization route
represented the second most common end-use of captured
CO2 in the US in 2019.45,46 The costs for CO2 conversion
and purification downstream are not included in the current
work.

Temporal variability in electricity price, wind speed and solar
radiation is represented through deterministic scenarios, where
ω ∈Ω = {1,2, ...,NS} represents a scenario, and Ω denotes the set
of scenarios in a year with hourly resolution. Furthermore, pω

denotes the deterministic frequency of scenario occurence, which
follows:

∑
ω∈Ω

pω = 1. (1)

For ease of comparison between the availability of the two re-
sources, the actual renewable power output determined by the
wind speed or solar irradiation is normalized with the maximum
possible output using the capacity factor. Specifically, capacity
factor of wind turbines c f w,ω is calculated as a dimensionless cu-
bic function of wind speed vw,ω through the given power curve:47

c f w,ω = 0, vw,ω < vci
w ,

c f w,ω =
vw,ω

3− vci
w

3

vr
w

3− vci
w

3 , vci
w ≤ vw,ω ≤ vr

w,

c f w,ω = 1, vr
w < vw,ω ≤ vco

w ,

c f w,ω = 0, vw,ω > vco
w ,

(2)

where, vci
w ,v

r
w,v

co
w denote the wind turbine cut-in, rated and cut-off

wind speeds respectively. The effect of turbine hub height on ca-
pacity factor is not considered in Eq. 2. Similarly, Eq. 3 represents
the capacity factor of solar PV arrays as a fraction of the actual
solar irradiation at scenario ω, Hω , to the reference irradiation of
the solar panel, Hre f .48 ηarr,ηdc/ac and ηwir signify the PV array,
DC-to-AC conversion and wiring efficiency respectively. Here, we
do not consider the effect of ambient temperature on efficiency.

c f sp,ω =
Hω

Hre f η
arr

η
dc/ac

η
wir (3)

The various model attributes along with the overall NPV maxi-
mization model are described below.

3.1.1 Sets, indices and variables.

We define T and M as two master sets and consider other
sets to be subsets of these. T represents the set of time steps
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in the scheduling horizon and M includes the system com-
ponents shown in the superstructure of Figure 2. The index
t ∈ T = {1,2, ...,NT} denotes a time step, while m,m′ ∈M =

{cl,w,sp,g,a,d,c,b} denotes a superstructure block. Here, the
coal, wind and solar energy sources are represented as cl,w and
sp respectively. The electric boiler is denoted by b and the en-
ergy sinks comprising the grid, CO2 capture absorption, desorp-
tion and compression sections are represented as g,a,d and c re-
spectively.

The subsets of the master set M include the set of energy
sources: sorm = {cl,w,sp}, set of energy sinks: sksm = {g,a,d,c},
renewable sources set: renm = {w,sp} and the set of blocks repre-
senting the CO2 capture system: captm = {a,d,c}. Additionally, to
represent the energy flows between the blocks, we define subsets
Im and Jm. Im denotes the set of blocks from which there is en-
ergy input to block m ∈M , where Ib = {w,sp}, Ig = {cl,w,sp}, Ia =

{cl,w,sp}, Id = {cl,b}, Ic = {cl,w,sp}. Similarly, Jm signifies the
set of blocks to which there is energy output from block m ∈M ,
where Jcl = {g,a,d,c},Jw = {g,a,b,c},Jb = {d},Jsp = {g,a,b,c}.

The design decision variables include the binary variable for
carbon capture retrofit bret , installed capacity of the renewable
energy technologies szw,szsp, and electric boiler capacity szb. The
scenario-dependent operational decision variables comprise of
the power flow from block m to m′, P f low

m,m′,ω , and the capture system
flexible operation ra,ω ,rd,ω . Here, ra,ω and rd,ω denote the rates of
CO2 absorption and desorption respectively. These can be further
represented as the ratio of the amount of CO2 absorbed, desorbed
or compressed in scenario ω to the amount of CO2 processed for
inflexible operation at 100% capture load.

For instance, a power plant with nameplate capacity pmax
cl (MW)

and base-case CO2 emission intensity of Ecl (ton MWh−1) will
have CO2 emissions equal to pmax

cl Ecl (ton h−1) if operated at
maximum load. If this plant has a capture system installed with
the absorber, desorber and compressor kept at maximum load,
the amount of CO2 absorbed from the flue gas would be given
by γa pmax

cl Ecl (ton h−1), where γa is the CO2 removal rate of the
absorber (90%). As there is no storage of solvent in the inflexible
case, the amount of CO2 desorbed and compressed at any time
scenario would also be equal to γa pmax

cl Ecl . The variables ra,ω and
rd,ω then define the amount of CO2 absorption and desorption
taking place for the flexible case with solvent storage as compared
to the inflexible case of maximum capture rate. As the capture
system may not absorb 90% CO2 from the power plant flue gas
during flexible operation, the amount of CO2 absorbed at scenario
ω is ra,ω γa pmax

cl Ecl . Here, ra,ω denotes the fractional absorption
rate that varies between 0 and 1. Similarly, due to the solvent
storage, the amount of CO2 desorbed at scenario ω is given by
rd,ω γa pmax

cl Ecl .

The remaining variables in the model are given in Table 1.

3.1.2 NPV maximization model.

The optimization formulation maximizing the NPV of the inte-
grated system is given below. The overall model is a mixed-

Table 1 Mathematical model variables

Variable Description Unit
NPV Net present value $
CCtot Total capital cost $
PFnet Net profit $ yr−1

PFgro Gross profit $ yr−1

Revω Revenue for scenario ω $ h−1

Costω Operating cost for scenario ω $ h−1

Pin
m,ω Power input to block m for scenario ω MW

Pout
m,ω Power output from block m for scenario ω MW

Mcapt
ω Compressed CO2 for scenario ω ton h−1

Mem
ω Net CO2 emissions for scenario ω ton h−1

M f lue
ω CO2 in power plant flue gas for scenario ω ton h−1

RCcl,ω Ramping costs of coal plant for scenario ω $
V rich

ω Volume of rich solvent tank for scenario ω m3

V lean
ω Volume of lean solvent tank for scenario ω m3

integer linear programming (MILP) problem.

M1: max NPV =−CCtot +
CCtot

td p rtax

(
1

rdisc −
1

rdisc (1+ rdisc)
td p

)

+ PFnet

(
1

rdisc −
1

rdisc (1+ rdisc)
t l f

)
(4a)

s.t. CCtot = ∑
m∈ren

COm szm +COb szb+

(
COcapt pmax

cl
Ecl

Ere f
cl

I17

I02 +NtankCOtanksztank

)
bret , (4b)

PFnet = (1− rtax) PFgro, (4c)

PFgro = ∑
ω∈Ω

tω (Revω −Costω ) , (4d)

Revω = pl
π

l +(Pin
g,ω − pl)πs

ω +Mcapt
ω π

csp, ∀ω ∈Ω, (4e)

Costω = Pout
cl,ω Cgen

cl +Mem
ω Cem +Mcapt

ω Cts +
RCcl,ω

tω
, ∀ω ∈Ω,

(4f)

RCcl,ω ≥Cramp
(

Pout
cl,ω+1−Pout

cl,ω

)
, ∀ω ∈Ω\{NS}, (4g)

RCcl,ω ≥Cramp
(

Pout
cl,ω −Pout

cl,ω+1

)
, ∀ω ∈Ω\{NS}, (4h)

RCcl,ω=NS = 0, (4i)

Pin
m,ω = ∑

m′∈Im

P f low
m′,m,ω , ∀m ∈M , ∀ω ∈Ω, (4j)

Pout
m,ω = ∑

m′∈Jm

P f low
m,m′,ω , ∀m ∈M , ∀ω ∈Ω, (4k)

∑
m∈sor

Pout
m,ω = ∑

m∈sks
Pin

m,ω +(Pin
b,ω −Pout

b,ω ), ∀ω ∈Ω, (4l)
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l f min
cl pmax

cl ≤ Pout
cl,ω ≤ pmax

cl , ∀ω ∈Ω, (4m)

−∆pmax
cl tω ≤ Pout

cl,ω+1−Pout
cl,ω ≤ ∆pmax

cl tω , ∀ω ∈Ω\{NS},
(4n)

Pout
m,ω = c f m,ω szm, ∀m ∈ ren, ∀ω ∈Ω, (4o)

pl ≤ Pin
g,ω ≤ pmax

cl , ∀ω ∈Ω, (4p)

M f lue
ω = Pout

cl,ω Ecl , ∀ω ∈Ω, (4q)

Mcapt
ω = rc,ω pmax

cl Ecl γa, ∀ω ∈Ω, (4r)

Mem
ω = M f lue

ω − ra,ω pmax
cl Ecl γa, ∀ω ∈Ω, (4s)

rd,ω = rc,ω , ∀ω ∈Ω, (4t)

0≤ ra,ω ≤ bret rmax
a , ∀ω ∈Ω, (4u)

0≤ rd,ω ≤ bret rmax
d , ∀ω ∈Ω, (4v)

−∆rmax
a tω ≤ ra,ω+1− ra,ω ≤ ∆rmax

a tω , ∀ω ∈Ω\{NS},
(4w)

−∆rmax
d tω ≤ rd,ω+1− rd,ω ≤ ∆rmax

d tω , ∀ω ∈Ω\{NS},
(4x)

Pin
a,ω = µa p0

cl ra,ω , ∀ω ∈Ω, (4y)

Pin
d,ω = µd p0

cl rd,ω , ∀ω ∈Ω, (4z)

Pin
c,ω = µc p0

cl rc,ω , ∀ω ∈Ω, (4aa)

V rich
ω+1 =V rich

ω +Smax (ra,ω − rd,ω
)

tω , ∀ω ∈Ω\{NS},
(4ab)

V lean
ω+1 =V lean

ω +Smax (rd,ω − ra,ω
)

tω , ∀ω ∈Ω\{NS},
(4ac)

V rich
1 =V rich

0 +Smax (ra,1− rd,1
)

t1, (4ad)

V lean
1 =V lean

0 +Smax (ra,1− rd,1
)

t1, (4ae)

V rich
0 =V rich

NS , (4af)

V lean
0 =V lean

NS , (4ag)

0≤V rich
ω ≤ sztank, ∀ω ∈Ω, (4ah)

0≤V lean
ω ≤ sztank, ∀ω ∈Ω, (4ai)

0≤ szb ≤ ∑
m∈ren

szm, (4aj)

0≤ Pin
b,ω ≤ szb, ∀ω ∈Ω, (4ak)

Pout
b,ω = Pin

b,ω η
b
η

te, ∀ω ∈Ω, (4al)

bret ∈ {0,1}, szw ∈ R+, szsp ∈ R+, szb ∈ R+,

P f low
m,m′,ω ∈ R+, ra,ω ∈ R+, rd,ω ∈ R+, ∀ω ∈Ω.

The objective function of net present value can be expressed as
the difference between the system’s future cash flows discounted
for the time value of money and the current investment cost in-
curred. The first term in Eq. 4a denotes the total capital cost of
the system. The system earns tax savings on this initial invest-
ment every year owing to depreciation. The present value of this
tax saving is expressed using the second term assuming straight
line depreciation. The third term represents the present value of
system earnings over the project lifetime or the discounted net an-
nual profit. Owing to the assumption of each year to be identical,
the cash flow is the same per year, PFnet .

Eq. 4b denotes the total capital cost of the integrated system as
the sum of individual costs of the renewable energy farm, elec-
tric boiler and the CO2 capture system including solvent storage
tanks. Furthermore, the net profit can be expressed as the gross
profit earned per year less any applicable taxes, given by Eq. 4c.
Eq. 4d represents the yearly gross profit as the sum of cash flow
over all scenarios in a year, determined by the difference between
the total revenue earned and cost incurred. A weightage is as-
signed to the earnings in a particular scenario ω depending on
the length of time, tω , of the scenario occurrence in a year. This
weightage is derived from the scenario frequency pω and number
of operating hours hop such that

tω = pω hop, ∀ω ∈Ω. (5)

The various financial parameters in Eqs. 4a - 4d are given in Table
S1 of the ESI.† Eq. 4e depicts the scenario-based system revenue
as the sum of individual components. The three terms in Eq. 4e
represent the revenue earned by the system from long-term con-
tracts, in the spot market and through the sale of the captured
CO2, respectively.

Furthermore, the various operating cost components, given
in Eq. 4f include: power generation costs for the coal power
plant including fuel costs and variable operating and maintenance
(O&M) costs, costs associated with CO2 emissions owing to envi-
ronmental regulations, costs of storing and transporting the cap-
tured CO2 to end-use sites (T&S cost) and finally, ramping costs
associated with flexible power plant operation. Since we consider
the coal power plant to be an existing facility, the capital costs and
fixed costs associated with its design are not considered in the
cost equations. Since flexible operation of the coal power plant
designed typically for base-load has a detrimental effect on criti-
cal components owing to the build-up of thermal and mechanical
stresses, the resulting increase in operating and maintenance cost
is accounted for through Eqs. 4g-4i. The revenue and cost param-
eters used in the model are given in Table S3 of the ESI.†

Eqs. 4j-4l represent the energy balance equations for the sys-
tem. In Eq. 4l, we are also accounting for the loss of energy in the
electric boiler due to its efficiency of steam generation. Bounds on
power output from the coal power plant are given in Eq. 4m. The
maximum power output is given by the nameplate capacity and
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the turndown limit is determined by the minimum load factor.
Eq. 4n depicts ramping constraints on the power plant output.
Power output from renewable energy sources is determined by
Eq. 4o as a product of the capacity factor and installed capacity.
Furthermore, Eq. 4p represents the bounds on the total power de-
livered by the system to the grid, with the minimum power output
to be that pre-determined by the contractual agreement and the
maximum output equal to the coal plant nameplate capacity.

Eqs. 4q-4ai depict the constraints on the CO2 capture sys-
tem and are derived from our previous work on flexible CO2
capture.14 A short summary is presented here; interested read-
ers can refer to the aforementioned work for further informa-
tion. The capture model is based on a chemical absorption-based
CO2 separation process that uses 30% by weight aqueous mo-
noethanolamine (MEA) solution as the solvent. MEA-absorption
is a widely considered technology that is suitable for capturing
CO2 from power plants.2 The typical operating conditions for the
MEA-based process are as follows: The flue gas consists of 12
vol% CO2, 10 vol% H2O, 73 vol% N2 and 4 vol% O2. The ab-
sorber pressure is 1 atm with a temperature of 40 °C. The stripper
bottom pressure is 1.7 atm with a temperature of 120 °C. The pu-
rity of recovered CO2 is 99 vol%. The CO2 is compressed to an
end pressure of 13.7 MPa for transportation. To enable a high-
level nationwide analysis for integration, we use mathematical
models from literature to represent the dynamic operation of the
CO2 capture process. These models, based on the work of Chen
et al.,49 use linear functions to relate the partial load of absorp-
tion and desorption columns to their energy consumption. The
linearization facilitates computational tractability without signif-
icant loss of accuracy in the large-scale optimization problem.
In addition, a detailed discussion on the specifics of the capture
system considered, potential improvements and comparison with
other capture technologies are included in Section S2 of the ESI.†

The amount of CO2 captured and resulting power consumption
in the flexible operation is expressed in comparison to the inflex-
ible capture case using relative rates ra,ω ,rd,ω ,rc,ω . To maintain
consistency, the thermal energy consumption of the stripper is
represented in terms of equivalent electricity consumed in Eq. 4z.
We assume both solvent tanks to be initially half-filled. To en-
sure that each year is identical, cyclical conditions are imposed
on the system through Eqs. 4af-4ag which indicate the initial sol-
vent storage volume to be the same as that at the end of a year.

Eqs. 4aj - 4al denote the design and operational constraints for
the electric boiler. The upper bound on boiler size is determined
by the installed capacity of renewables as given by Eq. 4aj. This
also indicates that the boiler capacity is zero (no boiler selected)
when there is no renewable integration. Electric power output
corresponding to the steam energy produced is calculated assum-
ing a constant thermal energy to electricity conversion factor η te

in Eq. 4al. This represents the equivalent power production if
the generated LP steam were to be used in the coal power plant
turbine to produce electricity. The various system design and op-
erational parameters are given in Table S2 of the ESI.†

3.2 Solution strategy
The major challenge in optimization lies in striking an appropriate
balance between computational tractability of the model and so-
lution accuracy. Although hourly discretized time-varying profiles
over a year sufficiently capture the seasonal and daily variation
of electricity price and renewable availability, it tremendously in-
creases the computational complexity in simultaneously solving
for system design and operation. Time-aggregation or temporal
clustering is a popular method to handle the complexity, wherein
time periods with similar parameter profiles are grouped together
and reduced number of scenarios adequately representing the pa-
rameter variability are obtained.50–55

The overall problem is then recast to two stages. In the first
stage, the reduced scenarios are used to solve for the optimal
system design. The second stage then optimizes the scenario-
based system operation for a given design. The overall solution
strategy is discussed below.

3.2.1 General formulation.

To implement the two-stage solution strategy decoupling the de-
sign and operational decisions, we represent the overall NPV max-
imization model M1 in a general form as follows:

M0 : max
x, yω

fd(x)+ ∑
ω∈Ω

pω fo(x, yω , kω ) (6a)

s.t. g(d)(x)≤ 0, (6b)

h(d)(x) = 0, (6c)

g(o)(x,yω ,kω )≤ 0, ∀ω ∈Ω, (6d)

h(o)(x,yω ,kω ) = 0, ∀ω ∈Ω, (6e)

s(o)(x,yω ,yω+1) = 0, ∀ω ∈Ω. (6f)

Here, x is a vector representing the design decisions, while the
vector yω encapsulates the scenario-dependent operational deci-
sions. The set kω represents the external parameters associated
with scenario ω. The objective function consists of two compo-
nents: (i) fd , which depends on design decisions alone, and (ii)
fo determined through both the design and operational decisions.
On comparison with the overall formulation M1, we can represent
the two components as follows:

fd(x) =−CCtot +
CCtot

td p rtax

(
1

rdisc −
1

rdisc (1+ rdisc)
td p

)
, (7a)

fo(x, yω ,kω ) = (1− rtax)

(
1

rdisc −
1

rdisc (1+ rdisc)
t l f

)

× (Revω −Costω ) . (7b)

g(d)(x) and h(d)(x) are the inequality and equality constraints
on system design, represented by Eqs. 4aj and 4b respectively.
g(o)(x,yω ,kω ) and h(o)(x,yω ,kω ) denote the inequality and equal-
ity constraints on system operation. g(o)(x,yω ,kω ) is represented
by Eqs. 4m, 4p, 4u -4v, 4ah-4ai, 4ak of model M1. On the other
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Fig. 3 Time-aggregation process of parameter profiles via scenario reduction through SCENRED. 56 Starting from hourly discretized data for a repre-
sentative year, we first obtain the time-varying input parameters. We then formulate the scenario tree and assign the scenario frequencies, assuming
that each branch has an equal frequency. This allows us to directly employ the SCENRED 56 package in GAMS 57 to perform scenario reduction
and obtain the reduced scenario tree along with the re-assigned frequencies. Finally, we transform the scenario tree into time-aggregated parameter
profiles. These profiles are used to determine the optimal system design.

hand, the set of equality constraints h(o)(x,yω ,kω ) is denoted by
Eqs. 4c -4f, 4j-4l, 4o, 4q-4t, 4y-4aa, 4al. s(o)(x,yω ,yω+1) signifies
the set of time-coupling constraints, representing the volumetric
balance for the solvent tanks given by Eqs. 4ab-4ag, as well as
the ramping constraints of the power plant denoted by Eqs. 4g-4i,
4n, and the ramping constraints of the capture system given by
Eqs. 4w-4x. From model M1, parameter vector kω comprises of
the spot-market electricity price πs

ω and capacity factors of wind
and solar PV systems c f w,ω ,c f sp,ω respectively.

3.2.2 Time aggregation of scenarios.

Time-aggregation of parameter profiles in the first stage of the so-
lution strategy is performed using the SCENRED reduction pack-
age56 in GAMS57 environment. The workflow of this process is
depicted in Figure 3.

To begin with, we first obtain the hourly discretized parame-
ter vector kω =

(
πs

ω , c f w,ω , c f sp,ω
)

using data from a previously
observed year. This data is recast into a scenario tree with the
branches denoting the time steps or the different scenarios. Each
branch consists of three nodes, representing the three parameters
constituting vector kω . For the original scenario tree, we have
NS = hop scenarios and equal frequency of each scenario occur-
rence. Using Eq. 1, the scenario frequency can be derived as:

pω =
1

hop , ∀ω ∈Ω. (8)

The developed scenario tree, as illustrated in Figure 3, with the
node data and frequencies for each branch is given as an input
to the SCENRED tool. The desired reduction accuracy is specified
as 94% and the algorithm to be backward reduction.59 To obtain
the desired accuracy, the tool eliminates branches corresponding

to similar parameter values and generates a smaller scenario tree
with fewer branches. The frequencies are then reassigned among
the preserved scenarios with the deleted branches assigned zero
frequencies. The set of reduced scenarios is denoted by: Ω′ ⊆ Ω,
with pr

ω denoting the updated frequency of scenario ω ∈Ω′. Fur-
thermore, the reduced scenario tree may not maintain the prop-
erty of equal scenario frequencies of the original tree. The node
data for the preserved branches along with the updated frequen-
cies pr

ω is used to obtain the time-aggregated parameter profiles,
with the time-weightage of each scenario calculated as:

tr
ω = pr

ω hop, ∀ω ∈Ω
′. (9)

3.2.3 Overall algorithm.

The reduced scenario set is then used to solve the NPV maximiza-
tion model in the general form M0 to obtain the complicating
design decisions x. These decisions are fixed and the second-
stage problem, represented by Eqs. 6a, 6d-6f of M0, is then solved
using the original scenario set Ω to obtain the optimal opera-
tional decisions yω . This two-stage optimization framework de-
couples the first-stage and second-stage decisions, thereby pro-
viding computational advantages without compromising on the
solution quality. The entire workflow of the solution strategy com-
bined with the scenario reduction process is given in Algorithm 1.
The implementation of the algorithm for a sample power plant
is also included on our GitHub repository: https://github.

com/manali-zantye/renewables_fcc. This demonstrates
the various steps of the optimization algorithm in detail.

We demonstrate this framework through case studies on power
plants in a single state as well as across the nation in the United
States. For the two case studies, we further consider two different
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Algorithm 1: Two-Stage Optimization through Scenario Reduction
Step 0: Obtain hourly-discretized data for πs

ω ,vw,ω ,Hω from a full representative year.
Step 1: Apply Eqs. 2-3 to obtain parameter vector kω =

(
πs

ω , c f w,ω , c f sp,ω
)
, with frequency pω given by Eq. 8.

Formulate the original scenario tree.
Step 2: Specify desired scenario reduction accuracy.
Step 3: Perform time-aggregation via scenario reduction using SCENRED.

Obtain the following attributes from the reduced scenario tree: Ω′ ⊆Ω and pr
ω . Calculate tr

ω using Eq. 9.
Step 4: Solve overall model M0 using Ω′ and tr

ω to obtain the optimal design decisions x∗.
Step 5: For the second-stage problem given by Eqs. 6a, 6d-6f, fix x = x∗.

Solve using data from the original scenario set Ω, with frequency pω , to obtain the optimal operating decisions y∗ω .

2 3 4 5 6
Average annual wind speed (m/s)

(a) Wind speed.

120 140 160 180 200 220 240
Average annual solar irradiation (W/m2)

(b) Solar irradiation.

Fig. 4 Nationwide variation of renewable resource availability in the US. Hourly-discretized data is obtained from NREL’s National Solar Radiation
Database (NSRDB) for 1020 Typical Meteorological Year (TMY3) sites. 58 The dataset represents the typical weather conditions in any location, derived
based on historical observations for the past 30 years. Voronoi polygons are used to depict the variation of annual average data, where each polygon
represents the data for a single weather station and the area covered by the polygon is closer to that station as compared to any other. The wind
speed data suggests that the Midwest region of the US is potentially suitable for wind integration with power plants. On the other hand, the Southwest
region has abundant solar energy. The integration of power plants with such geographically distributed energy resources requires optimization-based
informed decision-making.

cases for optimization, current and future, defined by the cost of
renewables and the cost of emitting CO2 to the atmosphere. Table
S4 of the ESI shows the specific cost values for the current and
future cases.† We present the optimization results in the form of
addressing the research questions listed in Section 1.

4 Results: Nationwide integration

Hourly-discretized data for wind speed vw,ω and solar insolation
Hω across the nation is obtained from NREL’s National Solar Ra-
diation Database (NSRDB) for 1020 Typical Meteorological Year
(TMY3) sites.58 The TMY dataset constitutes a full year of time-
series data based on historical observations for the past 30 years
and is representative of the typical weather conditions in a lo-
cation. Figure 4 shows the nationwide variation of the yearly
average wind speed and solar radiation intensity.

As expected, the highest solar resource availability is observed
in the Southwest part of the US and the lowest in the Northeast.
On the other hand, the Midwest region exhibits the highest wind
speeds. The corresponding capacity factor of wind turbines and

solar PV is determined using Eqs. 2-3. Figure 5a-5b shows the na-
tionwide variation of the annual average of the capacity factors.
We observe that the capacity factor for wind turbines exhibits a
larger range of variation as compared to the variation in capac-
ity factor of solar PV systems. Additionally, the capacity factor of
solar PV is on an average higher as compared to wind turbines.

Furthermore, data for coal power plants across the nation is ac-
quired from the United States Environmental Protection Agency
(EPA)’s Emissions & Generation Resource Integrated Database.62

Owing to tighter emission regulations and poor cost competitive-
ness as compared to other generating resources, about 50 GW
coal-fired capacity in the US was retired between 2010 to 2019,
14.3 GW had the boiler repurposed to burn natural gas, and 15.3
GW capacity was entirely replaced with natural gas combined
cycle (NGCC) plants.63 There are about 309 operational power
plants with coal-based generating units as per EPA’s eGRID2018v2
database.

For the 309 operational plants, data for the nameplate capac-
ity is obtained as an input parameter for model M1, pmax

cl . We
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Nameplate capacity (MW)
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(a) Variation of wind turbine capacity factor and power plant nameplate capacity.
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Solar PV average annual capacity factor (%)

(b) Variation of solar PV capacity factor and power plant nameplate capacity.

Base-case CO2 emission intensity (ton/MWh)
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(c) Variation of power plant base-case CO2 emission intensity.

Fig. 5 Nationwide variation of renewable capacity factors and power
plant data. Capacity factors for the 1020 weather stations are shown us-
ing Voronoi polygons. The discrete points depict the data for each power
plant, with the size proportional to the magnitude of the data represented.
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Fig. 6 Annual variation of electricity price for different settlement points
in the state of Texas. Hourly discretized data for the representative year
of 2017 is shown for 6 load zones in the state: CPS, Houston, Lower
Colorado River Authority (LCRA), North, South and Southwest Power
Pool (SPP) South. 60,61

assume that the base-case CO2 emission intensity, Ecl , for each
plant is equal to its average annual CO2 emission rate derived
from the database. Moreover, if the plant’s primary fuel is coal as
per eGRID2018v2, its nameplate capacity and base-case emission
intensity are assumed to be the same as that of the entire plant
given in the database and not specifically for its coal generating
units alone. This is because the emission intensity of individual
generating units is not provided and since coal is the primary fuel
of the plant, majority of its production capacity and CO2 emis-
sions can be attributed to the use of coal.

Figure 5a-5b also depict the power plant locations and their
nameplate capacities. Majority of the plants (around 57%) have
a nameplate capacity below 1000 MW. We also observe a small
fraction of plants (less than 3%) with large capacities above 3000
MW. Weather data for each power plant is derived from the
weather station in its closest proximity using the Haversine for-
mula for spherical distance, or the data for the Voronoi polygon
it falls into. Figure 5c shows the base-case CO2 emission inten-
sity of the power plants. Nearly 97% of the plants have emission
intensities within the range of 0.5-2 ton MWh−1. High emission
intensities, above 2 ton MWh−1, are observed for power plants
with capacities less than 100 MW. The nationwide average emis-
sion intensity is around 1.11 ton MWh−1.

It is difficult to obtain publicly available data of electricity price
for all power plants, especially those which fall under the purview
of traditional wholesale electricity markets. These markets, which
typically exist in the Southwest, Southeast and Northwest involve
vertically-integrated utilities responsible for the generation, trans-
mission and distribution of electricity to the customers.64 Owing
to the limited data and the difficulty associated with deriving data
for each power plant separately, we assume a fixed price profile
for the nationwide case study. As the electricity price profiles in
the statewide case given in Figure 6 do not exhibit significant
variation over the different settlement points, we also extrapolate
this to the nationwide case and derive the fixed profile by taking
the average price from the statewide case over all the settlement
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points. The data used to derive this price profile is included on
the following GitHub repository link:https://github.com/
manali-zantye/renewables_fcc. The data for the weather
stations and power plants are also included here.

Using scenario reduction, the number of scenarios are signifi-
cantly reduced from 8760 to be in the range of 50 to 70 for all
the plants, while retaining 94% accuracy. Depending on the num-
ber of scenarios, the number of equations and variables in Step
4 of the two-stage optimization algorithm given in Section 3.2.3
vary in the range of 3000-4500. The number of equations and
variables in Step 5 of the algorithm is the same for all the power
plants: 534,371 and 551,905 respectively. The MILP model of
Step 4 and the LP model of Step 5 are solved using BARON65

v. 20.4.14 in GAMS57 environment with a resource limit of 48
hours. The resulting optimality gap in Step 4 ranges between
0.01%-25%. On the other hand, the optimality gap for Step 5 is
0.01% for all the power plants.

The optimization results for the two cost scenarios are pre-
sented below. The current cost scenario is representative of the
latest cost estimates for renewable systems and the present car-
bon pricing landscape. On the other hand, the future case char-
acterizes projected estimates of reduced renewable energy cost
and the carbon pricing incentive required to cost-effectively tran-
sition to a low-carbon energy sector. How soon we can get to
these estimates will depend on future policies and carbon pricing
strategies. For instance, one of the several federal tax proposals
pending in the US Congress projects the increase in CO2 tax to
$80 per ton by 2024.66,67 The CO2 selling price of $35 per ton
is based on the projected increase in the 45Q Credit for carbon
capture, storage and utilization projects through 2026.68 On the
other hand, increasing economies of scale and technological ad-
vancements can drive the reduction in solar/wind investment cost
to $0.3 per Watt over the next two decades.69

4.1 Is it profitable for a coal power plant to invest in the
integrated system to reduce CO2 emissions?

Owing to the high cost of renewables and low incentive to reduce
CO2 emissions in the current cost scenario as given in Table S4
of the ESI,† the optimal solution indicates that it is uneconomical
to integrate either a CO2 capture system or a renewable energy
farm with any of the 309 coal power plants across the nation. In
the absence of the additional investment, the cost of electricity
generation (COE), or the optimal operating cost of generating 1
MWh of electricity, is given by

COE =

∑
ω∈Ω

tω Costω
∗

∑
ω∈Ω

tω Pin
g,ω
∗ , (10)

where the optimal power input to the grid Pin
g,ω
∗ equals the power

output from the stand-alone coal plant Pout
cl,ω
∗. The optimal cost

Costω
∗ includes the operational cost components of the coal plant

i.e. the variable O&M cost including the cost of fuel, tax paid on
CO2 emissions and power plant ramping cost. Figure 7a shows
the variation of the COE with the base-case CO2 emission inten-
sity of the power plants, excluding the outlier data point with
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Fig. 7 Power plant cost, capacity factor and CO2 emissions for the cur-
rent cost scenario. Due to the low economic incentive, the integration
of emission reduction techniques such as CO2 capture or renewable
integration is economically unfavorable. The operating cost portion of
the total cost is constant at $31 per MWh. In the absence of emission
abatement schemes, a higher cost on emissions is incurred for increas-
ing base-case emission intensity. This also results in lower utilization of
coal power at higher base-case intensities. The total annual emissions
increase with the size of the power plant.

emission intensity greater than 10 ton MWh−1. As can be seen
from Figure 7a, the cost of electricity generation varies between
$33.6-53.4 per MWh and shows an increasing trend with increas-
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Fig. 8 Nationwide variation of system design and cost for the future cost scenario. The high economic incentive facilitates the installation of emission
reduction techniques in existing coal plants. The integration of solar PV is optimal for one-third of existing coal plants in the US, with CO2 capture
retrofit optimal for all 309 plants. Solar-assisted CO2 capture is selected predominantly in regions with average solar capacity factors above 16%. The
solar farm size is below 200 MW for a majority of the plants. The corresponding LCOE for the integrated system falls between $36-40 per MWh, with
lower LCOE observed for plants with solar energy integration.

ing base-case emission intensity due to the increasing tax paid on
CO2 emissions. The O&M cost associated with coal power gener-
ation forms a major component of the total cost and is constant
at Cgen

cl as can be validated from Eqs. 4f and 10. The power plant
ramping cost is relatively insignificant as compared to the other
cost components.

The average annual capacity factor of the coal power plant, or
the percentage utilization as compared to its maximum installed
capacity is determined using

c f avg
cl =

∑
ω∈Ω

tω Pout
cl,ω
∗

pmax
cl hop . (11)

The average annual capacity factor ranges between 66.7%-71.9%
and shows a decreasing trend with increasing base-case emission
intensity as depicted in Figure 7b. On the other hand, in the ab-
sence of a capture system to reduce emissions, the annual emis-
sions from the power plants increase with the plant size, as shown
in Figure 7c.

The optimization results for the projected future cost of renew-
ables and CO2 emissions suggest the integration of solar PV with
102 plants of the 309 power plants in the nationwide case, with
CO2 capture retrofit selected for all the power plants. Wind en-
ergy installation as well as an electric boiler to convert electricity
from renewables to steam energy for use in CO2 capture is not
selected for any of the 309 plants.

Wind energy integration is not optimal due to lower average
capacity factors as compared to solar. The electric boiler is not
chosen in the optimal solutions, mainly due to its high invest-

ment cost, which is nearly 30% of the solar/wind energy cost in
the future cost scenario. Additionally, the equivalent thermal-to-
electric power requirement of the solvent regeneration reboiler is
equal to the combined electric power requirement of the auxiliary
equipment and CO2 compressor in the capture system. Thus, it is
optimal to avoid an additional investment for the electric boiler
and solar power is used for CO2 capture only to meet the electric
power requirement of the auxiliary equipment and compression
system. Although the energy required for the CO2 reboiler comes
entirely from the existing coal plant, the solar farm compensates
for the reduced power output of the plant by delivering a major-
ity of its power output to the grid. This operational aspect will be
discussed in more detail in further sections.

Figure 8 shows the variation of the optimal size of the co-
located solar PV farm across the nation for coal plants where
solar energy is selected. It can be seen that the solar energy is
selected mainly at locations with high annual average capacity
factors, particularly in the southern regions. There is little or no
solar integration with coal power plants in the northeast regions
with lower average PV capacity factors.

Furthermore, a sensitivity study for the reference case power
plant with capacity of 600 MW is performed to analyze the vari-
ation of system profitability with different levels of CO2 tax and
selling price for the future renewables cost scenario. We have in-
cluded the analysis in Section S3 of the ESI.† In the absence of
a significant CO2 tax and CO2 selling price, there would be no
economic drivers for investing in a CO2 capture/renewable sys-
tem even for a futuristic low renewables price. Figure S1 shows
that for a CO2 tax below $5 per ton and a CO2 selling price below

Journal Name, [year], [vol.],1–23 | 13

Page 13 of 23 Energy & Environmental Science



0 1000 2000 3000 4000 5000
Power plant nameplate capacity (MW)

0
200
400
600
800

1000
1200
1400

PV
 fa

rm
 s
ize

 (M
W
)

(a) PV farm size versus power plant nameplate capacity.

0 1000 2000 3000 4000 5000
Power plant nameplate capacity (MW)

0

2000

4000

6000

8000

Ca
pt
ur
e 
ca
pi
ta
l c
os
t (
M
M
$)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Em
iss

io
n 
in
te
ns
ity
 (t
on
/M
W
h)

(b) CO2 capture system capital cost versus power plant nameplate capacity

and base-case emission intensity.

Fig. 9 Optimal integrated system size for the future cost scenario. The optimal solar farm size increases linearly with the coal plant nameplate capacity,
with the average being 25.8% of the coal plant capacity. The optimal size of the CO2 capture system increases with both the coal nameplate capacity
and the base-case emission intensity.

$35 per ton, there is not enough economic incentive to reduce
emissions from the coal power plant and integrate either a CO2
capture system or a solar PV farm. The power generation would
rely entirely on the coal plant and all the CO2 produced would be
emitted to the atmosphere. Inclusion of a high tax, on the other
hand, would drive the integration of both the CO2 capture and
renewables system with the coal plant to reduce emissions. How-
ever, the tax paid on the 10% emissions not being captured would
add to the cost, which could result in a net loss. A combination
of high selling price and a high tax would thereby be necessary
to ensure investment in emission reduction techniques and at the
same time ensure that the system is profitable. Specifically, we
observe that all combinations of CO2 tax above $55 per ton and
CO2 selling price above $35 per ton favor both CO2 capture and
solar PV integration with the coal plant. To summarize, both the
CO2 tax and the CO2 selling price would play an important role
to incentivize carbon abatement technologies.

4.2 What is the optimal design of the integrated system un-
der spatiotemporal variability in electricity price and re-
newable availability?

Figure 8 shows that the majority of the solar PV farms integrated
with coal-based units for the future cost scenario have a capacity
below 200 MW. Figure 9a displays the variation of the solar PV
farm size with power plant nameplate capacity for plants where
solar energy is selected in the future cost scenario. It can be seen
that the optimal solar farm size shows a positive linear correla-
tion to the power plant nameplate capacity. On an average, the
solar farm size is 25.8% of the power plant nameplate capacity.
Figure 9b shows the capture system capital cost variation with the
power plant nameplate capacity and base-case emission intensity.
As expected, the capital cost and thereby the capture system size
increases with the nameplate capacity of the plant. For power
plants with similar nameplate capacities, the capture system size

is greater for plants with a higher emission intensity.

4.3 How does the integrated system cost compare with that
of a new natural gas plant?

Due to their high CO2 emissions and significant operating costs,
coal plants in the US are being increasingly decommissioned or
replaced with the relatively cleaner and cheaper natural gas-fired
units. To assess the economic viability of investment in the inte-
grated system for coal power plants as compared to their replace-
ment with natural gas units, we use the levelized cost of electric-
ity (LCOE). It is typically signified as the ratio between the net
present value of the projected costs of the additional investment
and the discounted energy delivered by the system. In this case,
LCOE represents the revenue required per unit of energy genera-
tion to recover the cost of building and operating the co-located
renewable energy farm and/or the CO2 capture unit. It is post-
calculated based on the optimization solution as follows:

LCOE =

CCtot∗+DF ∑
ω∈Ω

tω
(

Costω
∗−Mcapt

ω

∗
πcsp

)
DF ∑

ω∈Ω

tω Pin
g,ω
∗ , (12)

where, DF denotes the discount factor given by:

DF =
1

rdisc −
1

rdisc (1+ rdisc)
t l f , (13)

and CCtot∗,Costω
∗,Mcapt

ω

∗
and Pin

g,ω
∗ indicate the optimal values

of the capital cost, operational cost, amount of compressed CO2
from capture system and the integrated system’s power output to
grid respectively. Figure 8 depicts the variation of the optimal
LCOE across the nation for the future cost scenario. We observe
that the LCOE for all the power plants is below $40 per MWh.
Figure 10a further shows that lower LCOE is obtained for power
plants with solar energy integration. The nationwide average re-
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duction in LCOE from both solar integration and CO2 capture
retrofit is 2.36% as compared to that with capture retrofit alone.
As the LCOE associated with the installation of a new NGCC
power plant is $40 per MWh,70 investing in a solar-powered CO2
capture unit for the existing coal plant could be economically ad-
vantageous as compared to its entire replacement with a new
NGCC plant.

Variation of the different cost components constituting the
LCOE is shown in Figure 10b. It can be observed that with in-
creasing base-case emission intensity, the CO2 emission tax, CO2
T&S cost and the total capital cost of the integrated system show
an increasing trend. However, the increasing cost is compensated
by the additional revenue generated by the system due to the sale
of captured CO2 in the carbon market. Considering the solvent
loss of MEA to be 1.5 kg ton−1 of captured CO2 and a cost of $1
per kg,71,72 the average cost incurred due to solvent loss would
be only 4.75% of the total system cost. Thus, the negligible cost
from solvent loss is not reported in the overall costs.

Furthermore, Figure 10c depicts the overall percentage reduc-
tion in the base-case CO2 emission intensity of the coal power
plants resulting from the integration. We observe that the over-
all emission intensity reduction achieved is between 87.5-91% for
all the power plants. The average reduction in emission intensity
achieved in plants with CO2 capture retrofit without solar inte-
gration is nearly 87.7%. Additionally, a 0.75% higher average
reduction in emission intensity is observed for plants with both
solar integration and capture retrofit. Thus, overall higher emis-
sion intensity reduction is obtained from integration as compared
to the 60% reduction achieved if the coal plant is replaced with a
natural gas unit.73 This indicates that it is more economical and
beneficial for the coal plant operators to invest in the integrated
system of CO2 capture and renewable energy in a scenario with
a high price on carbon emissions and low renewable energy cost,
as compared to replacing the coal-fired unit with a NGCC plant to
obtain reduced emissions.

On the other hand, natural gas is also used to provide energy
for carbon capture installation in coal plants, a well-known ex-
ample of which is the Petra Nova CO2 capture facility. Although a
natural gas system requires less investment cost and is more reli-
able as compared to renewables, it adds to the overall CO2 emis-
sions and undermines the benefits obtained from CO2 capture.
For instance, during the period of January 2017 to May 2018,
Petra Nova reportedly captured 1.7 million ton of CO2. How-
ever, emissions from the co-located natural gas unit amounted to
nearly 450,000 ton, reducing the net CO2 captured to 1.25 mil-
lion ton.74 To further demonstrate the benefits of our integrated
system, we compare the cost and emission intensity of such a nat-
ural gas-fired capture unit with the solar-powered CO2 capture
retrofit.

For this analysis, we assume that the existing coal power plant
is retrofitted with a CO2 capture system and a co-located NGCC
plant, in place of the co-located solar PV field. We restrict this
analysis to the 102 power plants for the nationwide case where
solar PV is selected. Furthermore, we assume that the total power
output of the natural gas plant over a year is the same as the total
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(c) Reduction of emission intensity versus solar farm size.

Fig. 10 Integrated system cost and emission intensity for the future cost
scenario. The LCOE from integrating the coal plant with solar-assisted
CO2 capture is lower and the emission reduction obtained is higher as
compared to the case where the coal plant is replaced with a new NGCC
plant. The capital cost, CO2 tax and CO2 transportation cost of the inte-
grated system increase with the base-case emission intensity. This high
cost is offset by the revenue generated from the carbon market through
the utilization of captured CO2.

solar output at each location:

∑
ω∈Ω

tω Pout
ng,ω

∗
= ∑

ω∈Ω

tω Pout
sp,ω

∗ (14)
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Fig. 11 Comparison of the emission intensity and LCOE of solar-powered CO2 capture with NGCC-powered CO2 capture integration in coal plants
for the future cost scenario. Both the emission intensity and LCOE for the integrated system with NGCC-powered capture is observed to be higher
than with solar-powered capture. The LCOE decreases with emission intensity due to the higher revenue obtained from the carbon market at higher
emission intensities. The outlier point with an emission intensity of 0.183 ton MWh−1 and LCOE of $53 per MWh is for the power plant with the
co-located solar PV field size 95% of coal nameplate capacity. Replacing such a large solar field with an NGCC plant of the same power output results
in a large amount of natural gas-based emissions and a high LCOE due to CO2 tax.

Considering a levelized cost LCOEng of $40 per MWh for the
NGCC plant with a CO2 emission intensity Eng of 0.5 ton
MWh−1,73 the total levelized cost LCOE ′ of the coal-CO2 capture-
NGCC integrated system is given by:

LCOE ′ = LCOE−
COsp szsp

∗

DF ∑
ω∈Ω

tω Pin
g,ω
∗ +

LCOEngDF ∑
ω∈Ω

tω Pout
ng,ω

∗

DF ∑
ω∈Ω

tω Pin
g,ω
∗

+

CemEngDF ∑
ω∈Ω

tω Pout
ng,ω

∗

DF ∑
ω∈Ω

tω Pin
g,ω
∗ ,

(15)
where LCOE is the levelized cost of the coal-capture-solar PV inte-
grated system given by Eq. 12 and Cem is the CO2 emission tax of
$80 per ton. To obtain the levelized cost of the coal-CO2 capture-
NGCC integrated system, we first subtract the solar PV capital cost
portion from the levelized cost of the coal-CO2 capture-solar PV
system. The capital and operating costs of the NGCC plant as well
as the tax paid on natural gas emissions are added, as given by
the third and fourth terms of Eq. 15.

Figure 11 depicts the variation of emission intensity and LCOE
for the solar-powered and natural gas-powered CO2 capture for
the 102 plants studied. We observe that the CO2 emission inten-
sity of the integrated system with NGCC is higher than that with
solar integration. On an average, we obtain 3.1% lower emission
intensity reduction of the coal plant from natural gas-fired cap-
ture as compared to solar-powered capture retrofit. Although the
levelized capital cost of the co-located NGCC plant alone is com-
parable to the future cost of solar PV, the total levelized cost of
the integrated system is on an average 8.6% higher with NGCC
due to the carbon footprint of natural gas-based generation and
the associated carbon tax.

4.4 To what extent can renewables reduce the cost of CO2
capture? Can CO2 capture effectively counter renewable
intermittency?

Figure 12 shows the optimal operational profiles of the coal
power plant with the highest nameplate capacity and integrated
solar farm size in the future cost scenario. The profiles shown are
for a representative day in summer, corresponding to the max-
imum power output of the solar PV farm. It can be seen from
Figure 12a that during periods with low electricity price and ex-
cess solar energy availability, a major portion of the solar output
is directed to the CO2 capture system. In the absence of an elec-
tric boiler to convert solar-generated electricity to steam for use
in the desorption unit of the capture system, the solar energy is
used to meet the auxiliary energy requirement of CO2 capture.
This auxiliary requirement stems from the electricity requirement
of the CO2 absorption and compression units. Figure 12b de-
picts the distribution of coal power generated among the various
energy sinks. We observe that the coal power plant operates at
maximum capacity almost throughout the day, especially during
periods with low solar energy production. The coal power in ex-
cess of the contract power requirement is used to meet the energy
requirement of CO2 capture during periods of low prices, primar-
ily in the desorption unit.

Figure 12c shows the schedule of capture system operation, i.e.
the variation of ra,ω and rd,ω . It can be seen that the capture
system operates at its maximum rate during periods of excess
energy availability and low electricity prices. The capture sys-
tem operation is turned down to provide more energy to the grid
when electricity prices are high and solar power is scarce. For
instance, due to the decrease in available solar power which sup-
plies part of the energy required for CO2 compression, and the
high electricity price between hours 16-19, the rate of CO2 des-
orption and compression decreases during these hours. Taking
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advantage of the drop in electricity price at hour 20, the system
ramps up the energy-intensive CO2 desorption and compression
process. As there is no solar power available at hour 21 and due to
the spike in price, the desorption/compression rate drops to zero.
Thus, the capture system and renewable energy system operate
synergistically to attain reduced emissions: the excess renewable
energy can be used to meet the high energy requirement of CO2
capture, and the capture system acts in the form of an energy
‘storage’ medium to counter renewable intermittency.

Figure 13 shows the distribution of energy between the solar
energy farm and CO2 capture unit for plants where both systems
are selected in the future cost scenario. From Figure 13a, we can
observe that the amount of the total solar power output delivered
to the grid is greater as compared to that used in CO2 capture.
This is because the reboiler power, which constitutes a majority
of the capture system power requirement is derived from the coal
power plant in the absence of an electric boiler. The nationwide
average of the fraction of solar output used in capture is around
36.5%. On the other hand, Figure 13b shows the reduction in
CO2 capture energy intensity and thereby the capture cost result-
ing from the use of solar energy directed to the capture system.
Here, we observe the overall capture system cost reduction us-
ing solar power falls between 4%-14%, with the average being
around 8.9%.

The ratio of solar PV farm size to the coal power plant name-
plate capacity in Figure 13 shows little spread around the average
value of 25.8%. This can be explained from the result shown in
Figure 9a, where the optimal solar farm size linearly increases
with the power plant nameplate capacity at the nationwide scale,
with the average size being 25.8% of the coal capacity. Despite
the little spread of this ratio, it is an important output that influ-
ences both the percentage of solar energy used in CO2 capture
as well as the CO2 capture cost reduction using solar energy. As
shown by Figure 13a, the fraction of solar output directed to CO2
capture shows a strong negative correlation to the ratio of PV size
to the coal nameplate capacity, with a Pearson correlation coeffi-
cient of -0.53. Conversely, from Figure 13b, we observe that the
fraction of total capture cost reduced using solar energy increases
with the relative size of the solar farm as compared to the coal
plant, with the computed correlation coefficient being 0.39, indi-
cating moderate correlation.

To further quantify the value of CO2 capture in addressing re-
newable intermittency in the future cost scenario, we evaluate
the additional capital cost required if the excess solar energy is
stored in a battery in place of its use in CO2 capture. We as-
sume that the excess solar power charged to the battery during
the peak solar hours is discharged during the end of the day when
limited solar power is available. The battery is thereby assumed
to be completely empty during the beginning and the end of a
day, making each day independent. Figure 14a displays the an-
nual variation of excess solar energy charged to the battery in a
day for the largest solar farm of 1440 MW capacity. The battery
size is post-calculated from the optimization results based on the
maximum daily excess solar energy which would otherwise be
used in CO2 capture. For the 1440 MW solar farm, this repre-
sents the point with around 3917 MWh of excess solar energy in
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(a) Solar power output distribution.
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(b) Coal power output distribution.
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(c) CO2 capture rate.

Fig. 12 Operational profiles of the integrated system for a summer day
for the future cost scenario. Majority of the solar output is delivered to the
grid, with excess solar output utilized to provide energy for the CO2 ab-
sorption and compression processes in the capture system. The coal
plant operates at maximum output when there is little/no solar power
available. During periods of low electricity price, it utilizes excess en-
ergy predominantly for CO2 desorption. The CO2 capture system ramps
up its output during periods of excess solar energy availability and low
electricity price.

a day in the month of May. The maximum excess energy is se-
lected to give the most conservative estimates of battery size and
associated capital cost. Figure 14b represents the variation of the
calculated battery size and associated capital cost with the solar
PV farm size. It can be seen that there is a strong linear relation-
ship between the equivalent battery cost and the solar field size.
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(b) Reduction of CO2 capture system cost using solar energy.

Fig. 13 Distribution of energy between the solar farm and CO2 capture system for the future cost scenario. In the absence of an electric boiler to
utilize solar power to meet the steam requirement of CO2 capture, majority of the solar output is delivered to the grid. On an average, 36.5% of the
total solar output is utilized for CO2 capture and 8.9% of the capture system cost is reduced through solar power. The outliers on the top left of (a) are
for locations with average solar capacity factors in the bottom 10% of the nationwide values, resulting in solar PV farm sizes approximately 7% of the
coal plant nameplate capacity. Such small farms do not aid much in the supply of power to the grid and the solar output is used almost entirely for CO2
capture. The outlier on the bottom right of (a) is for the plant with solar average capacity factor in the top 10%, but base-case emissions in the bottom
10% of the nationwide values. This results in the selection of a large solar farm, which delivers a significant amount of its power output to the grid.
However, the fraction of reduction in CO2 capture costs using solar energy for this plant lies close to the nationwide average as shown in (b). The data
point for this plant in (b) is displaced horizontally due to the large PV farm size.
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(b) Required battery size and capital cost.

Fig. 14 Equivalent battery size required to store excess solar energy for the future cost scenario. To counter renewable intermittency in the absence
of the synergistic integration with CO2 capture, energy storage in the form of a battery would be required to store the surplus solar power. Variation
of excess solar energy charged to the battery over a day for a representative solar PV farm is shown in (a). The battery is sized on the basis of the
maximum daily excess solar energy. Considering the Li-ion battery type, this translates to a battery capital cost which increases with the solar farm
size. The average battery capital cost is 4.4 times the solar farm size. The integrated system thereby avoids this huge investment in battery storage by
use of the flexible CO2 capture process as an indirect energy storage mechanism.

Considering the high-efficiency Li-ion battery type with a 2025
predicted total project cost of $362 per kWh,75 we obtain the av-
erage battery capital cost to be 4.4 times the co-located solar PV
farm size. The CO2 capture system thereby avoids this huge in-
vestment while addressing renewable intermittency and directly
reducing the CO2 emissions of the coal power plant.

5 Regional or statewide integration

The focus of the statewide case study is on coal power plants in
the state of Texas. Texas is an important state in terms of en-
ergy production in the US, being the largest electricity producer
and consumer. Additionally, the state has abundant renewable
resources and leads the country in wind-powered electricity gen-
eration. It also ranked sixth in solar power generation in 2019.76
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(a) Average wind turbine capacity factor.
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(b) Average solar PV capacity factor.

Fig. 15 Statewide variation of renewable capacity factors and power plant data. Weather data for 61 TMY3 sites across the state is displayed using
Voronoi polygons. The highest average wind turbine capacity factors are observed in north Texas and the Panhandle region. On the other hand, solar
PV has the highest capacity factors in the western region. The discrete points on the plot represent the 14 power plants with operational coal-fired
generators, with the point size proportional to the plant nameplate capacity. Majority of the plants have nameplate capacity below 1500 MW.

410 622 721 949 1008 1080 1135 1444 1674 1690 1849 3179 3397 4008
Power plant nameplate capacity (MW)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Ba
se

-c
as

e 
em

iss
io

n 
in

te
ns

ity
 (t

on
/M

W
h)

P1

P2

P3 P4

P5

P6

P7
P8

P9
P10

P11
P12

P13

P14

Fig. 16 Variation of power plant base-case CO2 emission intensity with
nameplate capacity for statewide case. Emission intensity of stand-alone
power plants without CO2 capture system installation is depicted. The
power plants are denoted as P1-P14 in ascending order of their name-
plate capacities.

Majority of the coal power plants in Texas fall under the
purview of the Electric Reliability Council of Texas (ERCOT), the
independent system operator managing about 90% of the state’s
electric load.60 Similar to the nationwide case study, full year of
hourly-discretized wind speed and solar irradiation data is pro-
cured from the NSRDB database for 61 TMY3 sites across the
state. Figure 15 displays the variation of the corresponding an-
nual average capacity factors using Voronoi polygons.

There are about 20 operational power plants with coal-based
generating units in Texas as per eGRID2018v2. However, 6 of
these are in the process of decommissioning their coal generating
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Fig. 17 Co-located solar PV farm size in the state of Texas for the fu-
ture cost scenario. Integration of solar energy is optimal for all but one
power plant (P14) with the lowest solar capacity factor and base-case
CO2 emission intensity. The PV farm size increases with the coal plant
capacity and the total base-case emissions. The average farm size is
25.2% of the coal nameplate capacity.

units or have retired them between the period of 2018-2020 due
to high generation costs and poor operational revenue.77 Among
these, the generation capacity of one 871 MW coal plant will be
replaced with an IGCC plant with CO2 capture, additional renew-
able energy installation and the purchase of an existing natural
gas-fired plant.78 Furthermore, solar-based generation will po-
tentially replace a 470 MW coal plant.79

For the 14 operational plants, the nameplate capacity and base-
case emission intensity are assumed to be that of the entire plant
if coal is the primary generating fuel, similar to the nationwide
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(b) System LCOE and emission intensity.

Fig. 18 Integrated system cost and emission intensity for statewide case in the future cost scenario. Analogous to our observation in the nationwide
case, the capture system size increases with both the power plant size and emission intensity. Solar PV capital cost is nonzero for all power plants,
except for P14 where solar energy integration is not optimal. The integrated system capital cost and carbon tax cost increases with the emission
intensity, but this is again compensated by the increasing carbon market revenue.
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(a) Fraction of solar output used in CO2 capture.
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(b) Reduction of CO2 capture system cost using solar energy.

Fig. 19 Distribution of energy between solar farm and CO2 capture system for statewide case in the future cost scenario. Similar to the nationwide
case, we observe little spread of the ratio of PV farm size to the coal nameplate capacity around its mean value of 25.2%. Nevertheless, it is an
important output, with the percentage of CO2 capture cost reduced using solar energy showing a strong positive correlation to this ratio. On the other
hand, the percentage of annual solar output directed to CO2 capture shows a weak positive correlation to the relative size of solar farm and coal plant.
The statewide average percentage of the solar output used in CO2 capture is 35%, while the percentage of capture cost reduction using solar energy
amounts to 9%.

case. Figure 15 depicts the power plant locations and their name-
plate capacities. Majority of the power plants have capacities in
the range of 1000-2000 MW, and there a couple of large ones with
capacities greater than 3000 MW. Figure 16 displays the variation
of the base-case CO2 emission intensity Ecl with nameplate capac-
ity pmax

cl for the 14 power plants. The CO2 emission intensity falls
in the range of 0.98 to 1.52 ton MWh−1, with the average being
around 1.15 ton MWh−1.

Hourly-discretized data for electricity prices, πs
ω , is procured

from the ERCOT and Southwest Power Pool database60,61 for the
corresponding price hub/load zone the plant falls in based on
its location. Of the 14 power plants, P1 and P2 fall in ERCOT’s
South load zone. Plants P4-P5 and P11-P13 lie in the ERCOT

North zone. Plant P8 falls in the CPS zone, P10 in the LCRA zone
and P14 in the Houston zone. Moreover, 4 plants: P3, P6-P7 and
P9 fall under the purview of Southwest Power Pool’s South hub.
Figure 6 depicts the variation of electricity price in 2017 for the
aforementioned settlement points across the state. The statewide
average annual price is $25.8 per MWh.

Figure 17 depicts the optimization results in terms of the vari-
ation of co-located PV farm size. A solar PV farm is selected for
all the power plants in the future cost scenario except for plant
P14 which exhibits the lowest PV capacity factor and CO2 emis-
sion intensity. As noticed in the nationwide case, the renewable
energy selection shows a strong positive correlation to the coal
plant nameplate capacity, with the solar farm sized at 25.2% of
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the coal plant capacity on an average. A divergent observation
for the statewide case is the influence of the base-case emissions
on the PV farm size.

Figure 18a depicts the variation of the total capital cost for the
projected future cost scenario. Similar to the nationwide case,
we observe that a CO2 capture retrofit is selected for all power
plants, with the size of the capture system determined by both the
nameplate capacity of the plant as well as the base-case emission
intensity. Figure 18b shows the corresponding variation of the
integrated system’s LCOE as well as the emission intensity. As
observed in the nationwide case, power plants with higher base-
case emission intensity show a higher levelized capital cost along
with a higher revenue from the sale of captured CO2 in the carbon
market. The LCOE of all the plants is less than that of a new
NGCC plant with an average reduction in the emission intensity
of around 88.4%.

The distribution of energy between the solar farm and CO2 cap-
ture unit for the 14 power plants is depicted in Figure 19. The
statewide average solar power production used in CO2 capture
system is 35%. However, contrary to the nationwide case, no
specific relation is noticed between the fraction of the total solar
output used in CO2 capture and the relative PV farm size or the
annual average capacity factor. Figure 19b displays the variation
of the fraction of CO2 capture cost reduction using solar power
versus the relative farm size and average capacity factor. Here,
we observe that as the size of the solar farm relative to the coal
power plant increases, a higher percentage of the CO2 capture
energy requirement is met using solar energy. Also, higher solar
availability influences the use of higher amounts of solar energy
to reduce capture costs.

6 Conclusions
In this work, we address the challenges of the two pathways for
decarbonization, renewable energy and carbon capture, by ex-
ploring the synergies between the two technologies. We perform
a techno-economic analysis of a power generation system that
integrates a coal power plant, a renewable energy field and a
flexible CO2 capture system. To this end, we develop a mathe-
matical programming-based approach to determine optimal inte-
gration and operational decisions for clean energy. Moreover, we
develop a computationally efficient methodology to solve the re-
sulting large-scale problem by dividing it into two stages. Firstly,
a set of time-aggregated scenarios representing the seasonal and
daily variability in electricity price and renewable availability is
utilized to obtain an optimal system design. Next, keeping the
design decisions fixed, optimal hourly operational variables are
computed for the original scenario set. This two-stage strategy
strikes a balance between computational tractability and solution
accuracy as we decouple the long-term design and the short-term
operating decisions.

We demonstrate the framework through both statewide and na-
tionwide case studies across the US. The results indicate that for
a projected carbon tax above $80 per ton and renewable energy
prices below $300 per kW, it is beneficial to integrate CO2 cap-
ture with all the coal plants. Solar energy shows more promise
than wind, with co-located solar PV farms selected for nearly

one-third of the plants nationwide. Additionally, we observe a
positive linear correlation of the optimal solar farm size with the
nameplate capacity of the coal power plant, with the average size
being around 25.8% of the nameplate capacity. Solar energy re-
duces the CO2 capture cost by 8.9%. On the other hand, the CO2
capture system cost-effectively counters renewable intermittency
by avoiding an equivalent investment in battery storage amount-
ing to 4.4 times the installed cost of the solar PV farm for storing
the excess solar energy. Furthermore, the levelized cost of the
integrated system is less than that of a new NGCC plant with
achieved CO2 emission reduction ranging between 87.5%-91%.
To summarize, in a futuristic scenario with a price on emissions,
coal plant operators should focus their investment efforts on the
CO2 capture-renewable energy hybrid system as compared to re-
placing the coal plant with a relatively cleaner NGCC unit. The
integrated system reduces both the cost of carbon capture and the
intermittency of renewables, facilitating the transition between
the current fossil-based and future renewable-dominant power
sectors.

Future works can study the integration with other fossil-based
systems such as natural gas to reduce emissions. Although wind
energy is not selected, more efficient wind turbines with higher
capacity factors considering the effect of hub height can further
facilitate wind energy integration. In addition, we have referred
to previous works on the use of biomass energy for the integra-
tion in our literature review of Section 2. This work can also be
extended to include such controllable renewable energy sources
of biofuels and geothermal energy for studying the nationwide
integration with coal plants.
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