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ABSTRACT
Ligand-protected metal nanoclusters (NCs) are organic-inorganic nanostructures, exhibiting high stability 
at specific “magic size” compositions and tunable properties that make them promising candidates for a 
wide range of nanotechnology-based applications. Synthesis and characterization of these nanostructures 
has been achieved with atomic precision, offering great opportunities to study the origin of new 
physicochemical property emergence at the nanoscale using theory and computation. In this Frontiers 
article, we highlight the recent advances in the field of ligand-protected metal NCs, focusing on stability 
theories on monometallic and heterometal doped NCs, and NC structure prediction. Furthermore, we 
discuss current challenges on predicting previously undiscovered NCs and propose future steps to advance 
the field through applying first principles calculations, machine learning, and data-science-based 
approaches.
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INTRODUCTION
Ligand-protected metal nanoclusters (NCs) are a unique class of small (tens to a few hundred 
metal atoms), atomically precise nanomaterials that have attracted tremendous interest in 
recent years.1 Due to their size regime, NCs can exhibit molecular-like photophysical2, 3 and 
solubility4 properties, which differentiate them from larger metal nanoparticles.5 Furthermore, 
with a number of promising physicochemical properties, NCs have found use in many applications 
over a broad range of fields. For instance, the luminescent properties of NCs have opened 
avenues for their use in detecting biomolecules6, as well as imaging cancer cells7, 8 and bacteria.9 
Additionally, NCs have emerged as efficient and selective catalysts owing to their high surface-
to-volume ratio and discrete electronic states (i.e. molecular-like highest occupied – lowest 
unoccupied molecular orbital (HOMO-LUMO) gap rather than metallic character).10 NCs can 
catalyze a variety of reactions, including among others the hydrogenation of 
nitrobenzaldehyde,11 photocatalytic degradation of organic pollutants,12 and the electrocatalytic 
reduction of CO2.13-16 With the ever-growing possibilities for practical nanotechnological 
applications, research interest for NCs will continue to expand.

Figure 1. Timeline scheme of the first thiolate-protected Au NC structures determined experimentally.  Both the 
anionic (q = -1) and neutral (q = 0) Au25(SC2H4)18 structures were determined in 2008. Gold and yellow balls 
represent Au and S atoms, respectively. Red, gray, and light gray sticks represent O, C, and H atoms of the organic 
ligands, respectively.

One of the most popular synthesis methods of ligand-protected NCs was introduced by Brust et 
al. in 1994, where Au salts were reduced in the presence of organic thiols and a strong reducing 
agent (NaBH4).17 The synthesis of thiolate-protected Au nanoparticles was achieved exhibiting a 
distribution of diameters ranging 1-3 nm, but structural characterization with atomic precision 
was still lacking. Over the next decade, improvements were made to the synthesis process such 
that Au NCs with exact molecular weights were discovered using separation methods and mass 
spectrometry.18-20 True atomic precision, however, was not achieved until 2007, where Jadzinsky 
and Calero et al. were able to characterize the exact atomic positions of Au102(p-MBA)44 (p-MBA 
= para-mercaptobenzoic acid) within an unprecedented 1.1 Å resolution through single crystal X-
ray diffraction.21 With this pioneering work, the discovery of additional NC structures followed 
soon after, including both the anionic22, 23 and neutral24 Au25(SC2H4Ph)18 in 2008, the 
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Au38(SC2H4Ph)24 in 2010,25 and the Au36(SPh-tBu)24 in 2012 (Figure 1).26 Today, the number of 
known experimentally determined Au NCs has exploded.27 

Ligand-protected NCs are also referred to as “magic size” NCs, since they exhibit high stability at 
specific compositions (i.e. at specific n and m of Aun(SR)m structures).28 This emergence of magic 
sizes was primarily due to the development of a size focusing synthesis method.29 According to 
the size focusing method, after the initial formation of polydisperse Au NCs, the solution is 
exposed to “harsh” conditions, such as excess thiol concentration and elevated  temperatures. 
This leads to only the most stable NC surviving in a monodisperse environment, thus, “focusing” 
the NC distribution to a single NC structure. Additional methods to synthesize new magic sizes 
have also been developed. These include ligand-based approaches to control NC size30 and NC-
NC transformations through ligand exchange.31, 32 Furthermore, significant research has been 
done to introduce heterometals into Au NCs, forming a new class of alloy NC derivatives with 
distinct properties.33 34 Alloy NCs can be synthesized by heterometal doping Au NCs to form 
analogues of their monometallic counterparts,35-37 or even entirely new structures.38-40 With the 
continuous advancement of synthesis and post-synthetic manipulation methods, there is 
practically no end in sight to the discovery of new, atomically precise, ligand-protected NCs.

The experimental discovery of ligand-protected NCs and determination of their structure with 
atomic precision has undoubtedly generated tremendous interest in the field and as such, a 
number of important questions emerge: What makes ligand-protected NCs stable at very 
specific, magic sizes? How does heterometal doping affect overall NC stability? How can we 
predict mono- and bimetallic NCs of magic size that have yet been experimentally determined? 
Herein, we summarize the current state of NC research on understanding NC stability, as well as 
expanding NC materials space through heterometal doping. We also focus on the current 
progress and challenges of NC structure prediction and propose potential future steps.

UNDERSTANDING THE ORIGIN OF MAGIC SIZE STABILITY
Experimental advances in NC synthesis and characterization have provided nanostructures with 
atomic level precision to theory. In addition, developments in theory and increase in 
computational power have enabled the investigation of large systems, such as ligand-protected 
NCs, with accurate, first principles methods.4, 41 As a result, the combination of both ends has led 
to the detailed elucidation of NC properties, such as stability. Many metal NC structural rules and 
stability theories have been developed due to the expanding number of experimentally 
synthesized NCs. However, the first structural rule came as a prediction that was later confirmed 
through the determination of the Au102(p-MBA)44. The “divide and protect” theory,42 first 
introduced by Häkkinen et al. in 2006, states that the NC structure consists of two distinct 
sections: i) a highly symmetric core made solely of metal atoms, which is protected by ii) a shell 
of ligand-metal motifs. For thiolate-protected NCs, the protecting groups form as L-(M-L)x units 
(M = metal, L =  thiolate ligand).42 These units range in sizes, known as different x-Mers,5 and 
include x = 0 (i.e. a bridging thiol43 or a µ3-coordinated sulfide group44-46). Additionally, protecting 
ring motifs have been observed (e.g. octameric ring in the Au20(SPh-tBu)16

47) where metal-ligand 
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units form a complete loop around the NC core. It should be noted that (M-L)x ring structures can 
form as prenucleation species during NC48 and nanoparticle49 synthesis and their presence may 
affect particle dispersity.50 These L-(M-L)x protecting groups became known as “staple” motifs 
due to the staple-like appearance of dimers (L-(M-L)2) around the core of the first determined 
NC, the Au102(p-MBA)44.21, 51 As an example of the divide and protect theory, Figure 2 
demonstrates how the Au25(SR)18 NC can be deconstructed into a 13-atom icosahedron core and 
a protecting shell of six dimeric staple motifs. Remarkably, this simple yet powerful theory 
universally captures the structural makeup of all thiolate-protected Au NCs.

Figure 2. Illustration of the divide and protect theory42 using the Au25(SC2H4Ph)18 structure24 (top). The NC can 
be decomposed into a Au13 icosahedron core (left) protected by a shell of six dimeric staple motifs, RS-Au-SR-Au-
SR (right). Gold and yellow balls correspond to Au and S atoms, respectively. R groups (C and H atoms, 
represented as sticks) are faded in the shell image for clarity.

A second structure-based rule, developed by Dass in 2012, captures the composition constraints 
of magic size NCs.52 The “nano-scaling law” describes the number of metal atoms and number of 
ligands as analogues to the volume (V) and surface area (SA) of NCs, respectively. Through 
analysis of the known magic sizes, the NCs were found to follow the relationship  (  𝑆𝐴 ∝ 𝑎𝑉2/3 𝑎
= scaling factor), which is a known scaling law of primitive geometric shapes. In other words, 
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Aun(SR)m NCs follow , which rationalizes the specific n and m pairs that emerge in the 𝑛 ∝ 𝑎𝑚2/3

magic sizes. Subsequent work revealed that the law holds across the entire size regime of NCs 
and that the type of ligand affects the scaling factor.53-55

Although structural rules can capture geometric trends in metal NCs, they do not provide a means 
of rationalizing the stability of these nanoscale systems. As a result, all stable NCs generally follow 
the divide and protect theory and nano-scaling law, but a theoretically predicted NC that adheres 
to these rules may not be stable. Thus, there has been extensive work on rationalizing the 
stability of magic size NCs through both their geometric (atomic positions) and electronic 
(electron configuration) structures. The earliest method utilized an electron counting approach. 
Drawing from the jellium model, the superatom theory describes that stable NCs have a closed 
electronic valence shell and a relatively large HOMO-LUMO gap.56, 57 This theory, which was 
introduced in 2008,56 was able to capture the stability of many magic size NCs that were 
experimentally discovered later. However, the continuous synthesis of stable NCs revealed cases 
that the superatom theory could not capture, thus limiting its application as a universal stability 
model.58, 59 Although extensions to the theory have been reported, like the superatom network60 
and united cluster model,59 none of these methods alone can rationalize the entire population of 
magic size NCs.61 Therefore, these theories, although instrumental in introducing fundamental 
concepts to the field, lack universal predictive power of the NC structural and electronic stability.

In 2016, Xu et al. developed the grand unified model, or GUM, which uses two-electron 
elementary blocks, namely the triangular Au3 and tetrahedral Au4, to rationalize the core 
structures in stable Au NCs.62 These blocks are formed from a combination of three different Au 
“flavors” (1e, 0.5e, and 0e valence states) which are determined by core-shell bonding based on 
divide and protect theory.42 GUM revealed that known NC cores can be assembled by combining 
elementary blocks. Moreover, these NC cores follow duet or octet electron counting rules, which 
rationalizes their high stability. Notably, GUM has been applied to 70+ ligand-protected Au NCs 
and can be leveraged as a guide to experimentalists towards new NCs.62, 63 However, similar to 
the superatom theory, GUM does not explicitly capture the complete electronic structure of 
metal NCs, which could allow for “false positive” predictions when exploring new structures (e.g. 
it does not capture subtle ligand effects which can dictate the size of stable NCs30). It is also 
currently constrained to Au systems. Nevertheless, GUM is an important discovery that helps in 
rationalizing stability across the complete Au NC size regime.
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Figure 3. Thermodynamic stability model applied to a sample of thiolate-protected metal NCs. Both core CE and 
shell-to-core CE are calculated with DFT. Solid black line indicates perfect parity. Inlaid structures represent 
[M25SR)18]-, where i) M = Au, ii) M = Cu, and iii) M = Ag. Balls indicate metal atoms and solid lines the ligands. 
Different colored balls indicate metal atoms in the core vs. shell regions of the NC. Adapted with permission from 
ref. 64. Copyright © 2017, Springer Nature.

Recently, Taylor and Mpourmpakis developed the Thermodynamic Stability Model (TSM).64 The 
TSM is the first model that not only captures the complete geometric and electronic NC structure 
(i.e. exact atomic positions and electron configuration, respectively), but also incorporates 
fundamental thermodynamics to rationalize NC stability (see Table 1).64 The model leverages the 
divide and protect theory42 of a core-shell structure and builds on chemical potential 
contributions between the core and the shell region of the NCs. Given the harsh conditions 
undergone during size focusing synthesis, a stable NC achieves chemical equilibrium between its 
core metal kernel and shell of staple motifs. This equilibrium of chemical potentials can be 
approximated by two electronic properties, i.e. the core cohesive energy (CE) and shell-to-core 
binding energy (BE), which can both be calculated using density functional theory (DFT). Core CE 
is the average bond strength between core metal atoms in the presence of the protecting shell 
motifs, whereas shell-to-core BE is the binding strength of the shell motifs to the core. When 
applied to a range of metal NCs (including Au, Ag, and Cu systems), the TSM reveals a fine energy 
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balance between the core CE and the shell-to-core BE for experimentally synthesized (stable) 
NCs, as shown by the parity plot in Figure 3. Importantly, the TSM is not constrained to electron 
counting rules, thus holding predictive power to test on any theoretical candidate structures. For 
example, although the [Cu25(SR)18]- follows the superatom theory, it has not been synthesized 
(due to oxidation affinity of Cu),65 which can be rationalized by its lack of energy balance under 
the TSM. Specifically, the Cu NC is well-below the parity line in Figure 3, indicating that the 
average bond strength of the core Cu atoms is larger than the binding strength of the shell dimer 
motifs onto the core. Due to chemical potential approximation for each energetic property, this 
imbalance can also be described as the core and shell of the NC failing to achieve chemical 
equilibrium, and therefore stability. Another example is the Au36(SR)24 NC, which has been 
experimentally synthesized26 and TSM predicts it to be a stable NC (energy balance in Figure 3), 
but is predicted as an unstable NC by the original superatom theory. Further efforts have revealed 
the TSM’s capability to capture stability across the entire size regime of metal NCs (up to the 
Au279(SR)84).55 Additionally, the TSM has been applied to metal NCs under electrocatalytic 
conditions, where NCs become catalytically active after partial ligand loss.14, 15 Specifically, recent 
results using the TSM revealed the robustness of the [Au25(SR)18]-, which maintains an energy 
balance (i.e. thermodynamic stability) after partial ligand removal.66 It is important to note that 
ligand effects play a large role on NC stability. Some specific examples include interligand 
interactions and their competition with solvent effects, ligand effects on metal-sulfur bonds, and 
steric hindrance between ligands.54 Importantly, the TSM captures ligand effects through its 
calculated energetic properties, including interfacial (core-shell) strain induced from dramatic 
changes in ligand structure. However, subtle ligand effects, caused by weak interactions or slight 
changes in ligand structure (e.g. methyl position in a methylbenzenethiolate ligand) are currently 
not captured by the model. Thus, further work is required to incorporate these subtle ligand 
effects into the TSM to achieve a truly universal prediction framework. In addition, other 
electronic stability criteria have been investigated in literature, including Mulliken 
electronegativity and chemical hardness. Although the TSM is rooted in a derivation from 
chemical equilibrium, more work should be done to investigate the relationships between the 
model and other energetic-based stability criteria. Nevertheless, the promising results with the 
TSM reveals its potential as a general method to both rationalize and predict stability of thiolate-
protected metal NCs.

Table 1. Comparison of NC stability theories. The “~” symbol indicates the theory partially captures structure and 
electronics through accounting for number of atoms and electron counting rules. (GUM: Grand Unified Model. TSM: 
Thermodynamic Stability Model.

THEORY CAPTURES 
STRUCTURE

CAPTURES 
ELECTRONICS

CAPTURES 
THERMODYNAMICS

SUPERATOM56 ~ ~ No

GUM62 Yes ~ No

TSM64 Yes Yes Yes
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OPENING THE MATERIALS SPACE THROUGH HETEROMETAL DOPING
Since the initial structure determinations of Au NCs, there has been a great deal of interest in 
exploring the synthesis and properties of alloy NCs. Shortly after the structure of 
[Au25(SC2H4Ph)18]- was confirmed, Jiang and Dai conducted a theoretical study on 
M@Au24(SC2H4Ph)18]q NCs using DFT.67 Heteroatoms M were selected based on the superatom 
theory (i.e. structure must maintain an 8e- valence shell closure) as well as limiting the charge of 
the system to -2 ≤ q ≤ +2 (NC charge originates from the presence of counterions during 
synthesis). The study identified sixteen heteroatoms that were suitable candidates to dope the 
NC, as each theoretical structure maintained structural integrity and exhibited a large HOMO-
LUMO gap. Additionally, the work revealed that doping can manipulate the electronic properties 
of the NC (e.g. d-block metal doping led to HOMO-LUMO gaps between 1.0 and 1.5 eV), opening 
avenues to property tuning.67

Currently, there are many examples reported in literature that successfully convert Au NCs into 
new alloy structures through heterometal doping. For instance, the [Au25(SR)18]-, considered the 
most widely studied NC,68 has been successfully doped with a number of different 
heterometals.36, 38, 69 The metal exchange approach, where a monometallic NC reacts with a 
heterometal-ligand complex to yield an alloy NC, has been applied to many other magic size NCs 
as well.37, 70-72 Additionally, alloy NCs have been created by co-reducing different metal salts 
during initial NC synthesis. Yang et al. co-reduced AgBF4 and ClAuPPh3 to form Au12Ag32(SR)30.73 
Through a similar approach, Song et al. reported a new Au52Cu72(SR)55 nanoalloy74 and Higaki et 
al. successfully synthesized a novel Au130-xAgx(SR)50.75 Incorporating multiple metals provides a 
new parameter, the metal concentration ratio, which can be tuned during NC synthesis. In 2019, 
Kang et al. used both metal exchange and co-reduction to construct a rich library of atomically 
precise M29(SR) 18(PPh3)4 ranging from mono- to tetrametallic systems with M = Ag/Au/Cu/Pt/Pd. 
By adjusting metal ratios, the authors synthesized 21 atomically precise structures which all 
exhibited monodispersity.76 Li et al. showed how tuning the Au/Ag ratio, during co-reduction NC 
synthesis, enables control over the NC structure and dopant concentration. By increasing the 
amount of Ag precursor, a new Au23-xAgx(SR)15 structure was discovered (x = 4, 5.76, and 7.44 
based on the Au/Ag ratio).77 Like many other alloy NCs reported in literature, Li et al. reported 
the amount of doped Ag as an average based on single crystal X-ray diffraction analysis. This is 
due to the distribution of Ag concentrations within the NCs, which reveals the variability of 
heterometal-doped NCs in a given chemical environment. In other words, one environment (i.e. 
a single set of synthesis parameters) can lead to a distribution of product NCs with different 
doping concentrations, thus lacking monodispersity. These results show that further exploration 
of alloy NCs is required to elucidate their vast materials space.
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Figure 4. A) Molecular “surgery” of the [Au23(SR)16]- (R = C6H11) performed by replacing two monomer ligands 
(RS-Au-SR) with (Ph2PCH2PPh2) B) using a two-step heterometal doping approach. Pink and blue represent core 
and shell (staple motif) Au atoms, respectively. Silver, yellow, orange, dark green, and light green represent Ag, 
S, P, C, and Cl, respectively. All other C and H atoms (i.e. R groups) are removed for clarity. Adapted with 
permission from ref. 79. Copyright © 2017, American Association for the Advancement of Science.

Besides forming alloy systems, heterometal doping can also expand the NC domain to new 
monometallic structures of different sizes. In 2017, Li et al. applied molecular “surgery” to the 
[Au23(SR)16]-  (R = cyclo-C6H11) NC, creating a novel 21-gold-atom NC.78 As shown in Figure 4, the 
transformation involved a two-step, site-specific metal exchange approach. First, the NC was 
doped with Ag-SR, forming [Au23-x(SR)16]- (x ≈ 1), with Ag found at two distinct positions on the 
surface of the NC core (based on determination of the structure through single crystal X-ray 
diffraction). Next, the doped-structure was exposed to Au2Cl2(P-C-P) (P-C-P = Ph2PCH2PPh2), 
transforming it to [Au21(SR)12(P-C-P)2)]+. This new NC maintained a similar structure to the original 
Au23 by surgically replacing two monomer staple motifs with (P-C-P) units (Figure 4A). Notably, 
this transformation was not possible without the intermediate heterometal doping step. DFT 
calculations revealed that accessing the Ag-doped structure allowed for a thermodynamically 
downhill process that favors the formation of the novel Au21 NC. Moreover, a stoichiometric 
balance of Ag-SR was needed to maintain the mono-doped NC, as a higher concentration of Ag-
SR would instead transform the system into an alloy structure, the [Au25-xAgx(SR)18]-. These results 
further illustrate the sensitivity and overall complexity of heterometal doping of NCs to convert 
experimentally known NCs into new, previously undiscovered nanostructures. 
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Figure 5. Thermodynamic stability model applied to the monometallic Au18(SC6H11)14, Au24(SCH2-tBu)20, 
[Au25(SC2H4Ph)18]-, and Au38(SC2H4Ph)24 as well as a series of heterometal-doped [Au25-xMx(SC2H4Ph)18]q (x = 1, 2) 
(M = Ag (q = -1), Cd (q = 0), Cu (q = -1), Hg (q = 0), Pd (q = 0), and Pt (q = 0)). Inset image shows the three unique 
doping positions within the [Au25(SC2H4Ph)18]- NC. Core CE and shell-to-core BE were calculated using DFT. 
Adapted with permission from ref. 67. Copyright © 2018, American Chemical Society.

With the increased structural complexity of alloy NCs, it is essential to rationalize stability at an 
atomic level. Simple electron counting rules could potentially identify types of metal dopants but 
cannot predict the exact dopant location and concentration in the NC. To this end, the 
aforementioned TSM was applied to a series of heterometal-doped thiolate-protected 
[Au25(SC2H4Ph)18]q and Au38(SC2H4Ph)24 NCs.79 First, the model was used to analyze a series of 
Au25-xMx(SC2H4Ph)18]q NCs, where x = 1 or 2, q = -1 or 0 and M = Ag, Cd, Cu, Hg, Pd, or Pt. The 
heterometals were doped in three symmetrically distinct positions: the center and surface of the 
core icosahedron, labelled C and I, respectively, as well as within the dimer staple motifs (shell, 
S). Figure 5 reveals that the TSM accurately captures the majority of the experimentally observed 
doping positions, as these systems fall within (or near) the 95% prediction interval stability 
criterion. For example, Ag has been experimentally determined in the I, and S positions for Au25 
NCs using x-ray diffraction,80, 81 and their stability is captured through the TSM. Furthermore, 
some systems, such as Cu doped in the center position, fail to maintain the fine energy balance 
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criterion of the TSM – thus are predicted to be thermodynamically unstable. This is in stark 
contrast to simple DFT energy comparisons, which would instead indicate Cu doped in the C 
position as the most stable configuration. Importantly, there are cases that fall within the stability 
criterion but have not been experimentally confirmed (e.g. Cd in the S position). These results 
suggest that the NCs in question could be synthetically accessible (under appropriate 
experimental conditions) based on the TSM. It is important to stress that the 95% prediction 
interval is utilized as a metric to roughly distinguish synthetic accessibility for NCs. Due to the 
nature of the energetic approximations for core and shell chemical potentials, the TSM provides 
predictions based on synthetic accessibility rather than a quantitative comparison of stability. 
Furthermore, the TSM must rely on additional metrics at times to rationalize alloy NC stability. 
For example, geometric reconstruction during DFT relaxation can be used as a test of stability for 
alloy NCs.39 Specific cases of Pd (I and S positions) and Pt (S position) are not shown in Figure 5 
due to a large rearrangement in their cores during DFT relaxation,79 suggesting their lack of 
stability. Similar results of agreement with experiment were observed for the case of [Au38-

xAgx(SC2H4Ph)24]q. Thus, the TSM displays its potential as a possible candidate for future alloy NC 
prediction.79

UNDERSTANDING PREDICTION
Due to the delay of experimental structure determination21 compared to the discovery of magic 
sizes,20 predicting NC structures has always been at the forefront of NC research. The earliest 
success of complete structure prediction came from Akola et al. in 2008, who leveraged the 
divide and protect theory along with inspiration from the only known structure at the time, 
Au102(SR)44, to accurately predict the [Au25(SR)18]- NC.82 The work correctly proposed a 13-atom 
Au icosahedron core protected by six dimeric staple motifs (see Figure 2), which the authors 
validated by comparing its simulated X-ray diffraction pattern to experiment. Furthermore, the 
work leveraged DFT calculations to rationalize the high stability of the NC, reporting a large 
HOMO-LUMO gap as well as an eight-electron closed shell of delocalized valence Au electrons. 
This was the basis to the superatom theory of stability, which the authors (along with others) 
introduced later that year.56 Since then, additional efforts have emerged in literature that follow 
a similar computational approach to predict NC structures. These have led to the successful 
prediction of Au38(SR)24,25, 83  Au130(SR)50,84-86 and Au144(SR)60.87, 88 However, plenty of structure 
predictions solely based on a magic size composition have missed the mark when compared to 
the later experimental determinations,89-91 indicating that more information is needed to 
elucidate unknown NC structures.

In a similar idea to the inter-NC relationship illustrated by the nano-scaling law,52 some NCs 
protected by the same ligand type are related through consistent metal packing patterns, 
revealing a systematic size evolution.92 By incorporating these “growth series” trends in 
prediction, researchers impose further constraints to identify unknown structures of known 
magic sizes. Arguably the most studied example27, 92 is a set of Aun(SR)m NCs protected by tert-
butylbenzenethiolate (TBBT, R = Ph-tBu), known as the TBBT “magic series”.93 Besides the 
systematic evolution of the structures, the TBBT series also displays correlated properties.94 Its 
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distinctive 1D growth pattern follows Au8n+4(SR)4n+8 for n = 2 – 6.26, 47, 93, 95, 96 In 2013, Pei et al. 
predicted the structure and neutral charge of Au44(SR)28 based on structural patterns in the 
Au28(SR)20 and Au36(SR)24 NCs and DFT calculations.57 However, the first Au44(SR)28 NC was 
originally synthesized with phenylthiolate (SPh) ligands and thought to have a “-2” charge.97 
Eventually, Zeng et al. synthesized98 and determined the structure93 of Au44(SPh-tBu)24, revealing 
that Pei et al. correctly predicted the structure and neutral charge state. Additional predictions 
following TBBT growth patterns have been made as well. These include the Au76(SR)44 following 
the aforementioned 1D growth pattern99 and the Au68(SR)36, which instead is based on a 2D 
growth pattern revealed by select NCs in the TBBT magic series.100 Furthermore, Xu et al. recently 
introduced a framework that dissects the TBBT growth series to interpolate to new magic size 
NCs. By modulating the double-helical cores of known NCs in the TBBT series, the authors 
predicted eleven new structures, including four isomers of the TBBT series that exhibited highly 
stable electronic configurations as shown by DFT calculations.101 The results represent important 
first steps towards structure prediction outside of known magic sizes. However, with the method 
being limited to the TBBT growth series, new approaches are needed to achieve a general NC 
prediction framework that is applicable to any given ligand.
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Figure 6. Schematic of the metal-ligand interface prediction algorithm for metal NCs. (0) Referencing a series of 
known Aun(SR)m NCs, (1) a candidate cluster of Au atoms is created and (2) the possible S-atom positions are 
determined. (3) Next, the algorithm randomly generates a population of NC candidates by adding SR ligands to 
possible positions, and (4) the best model is determined based on structural error of the ligands relative to 
experimentally observed local configurations. Adapted with permission from ref. 102, Copyright © 2019, 
Springer Nature.

Recently, Malola et al. introduced a method to predict the metal-ligand interface of ligand-
protected metal NCs.102 The logic steps of the method are shown in Figure 6, with the developed 
algorithm leveraging experimentally observed local ligand environments by referencing 
previously reported Au NCs. After defining a pure Au cluster, all possible S atom positions are 
calculated. Next, a population of randomly generated Au-S cluster candidates are generated with 
no constraint to the number of S atoms added. These NC models are then ranked by structural 
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error of their local ligand environments, which is based on the selected experimental reference 
NCs. Importantly, the method accounts for the steric effects of ligands when ranking NC 
candidates. Since ligands have been reported to directly affect NC size30 and properties,103, 104 it 
is essential to account for full ligands when predicting new structures. The prediction framework 
was validated by successfully predicting nine known Au NC structures. Additionally, the 
framework achieved the same success when applied to Ag NCs protected by thiolate and 
phosphine ligands, revealing its generalizability to other metal and ligand systems. The method, 
although promising, relies on prior determination of the metal atom positions. Nevertheless, the 
work is an important step towards autonomous exploration of the NC materials space, especially 
NC sizes that have yet to be experimentally synthesized.

NEXT STEPS FOR NC STRUCTURE PREDICTION
Predicting structures based on known magic sizes (i.e. interpolation) has been of great value, but 
how do we predict new alloys or entirely new magic sizes (i.e. extrapolation)? Progress has been 
made leveraging systematic patterns found in the known magic sizes101 and incorporating ligand 
effects,102 but a general structure exploration methodology remains the holy grail of ligand 
protected NCs. A major challenge is overcoming the curse of combinatorics. The vast materials 
space that NCs exhibit is in large part due to the many choices of metals and ligands. Imagine 
transforming from Au25(SR)18 to Ag25(SR)18 by doping one Ag atom at a time, giving only 26 unique 
compositions (including the two monometallic cases). Within this constrained example, there are 
actually 33,554,432 unique structures ( , excluding symmetry) due to the ∑25

𝑖 = 0(25 - 𝑐ℎ𝑜𝑜𝑠𝑒 - 𝑖)
distinct positions that each metal type can take (i.e. different possible chemical orderings105). The 
problem becomes even more challenging if we expand to a trimetallic M25(SR)18 system, which 
has been reported in literature.106 Moreover, removing the structure and single ligand 
constraints further opens the search space of candidate NCs. This ever-expanding materials space 
requires an automated computational framework to drive exploration and guide 
experimentation. Constraining the search to known magic sizes or applying simple electron 
counting rules would prohibit accessing NC materials space that is probably experimentally 
accessible and entails unexplored NCs. The framework must instead encompass automated 
structure generation102 and be guided by physics-based stability metrics screening across NC size, 
ligand, and metal type. To this end, the TSM may act as a thermodynamic stability criterion for 
structure selection.79 By additionally employing structure property relationships,55 we can 
achieve an autonomous structure prediction framework that efficiently samples the materials 
space towards NCs with enhanced properties for specific applications. 

Although challenging, we envision the following steps to achieve such a computational NC 
structure prediction framework. Despite the growing amount of experimental and computational 
studies reported, a complete NC structure, property, and synthesis parameters database is 
missing from literature. A centralized database of all known magic sizes and their doped 
derivatives would accelerate research efforts on NCs, especially the theoretical ones. This idea is 
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supported by the literature, as the majority of structural rules, stability models, and SPRs were 
developed through a collective analysis over many structures.52, 55, 64 Providing a highly accessible 
and rich NC database would enable 1) development of new structure property relationships, 2) 
introduction of improved stability models benchmarked on the entire known NC configuration 
space, 3) rapid prototyping of potential structure prediction frameworks, and 4) new insights and 
relationships between synthesis parameters and final NC morphology.

We note that the aforementioned ideas are not new and they have been applied to other classes 
of nanomaterials. For example, global optimization techniques have been used to successfully 
predict the structure of organic clusters107 as well as bare (unprotected) mono- and polymetallic 
nanoclusters.108-110 Additionally, structure-property relationships have been previously coupled 
with structure exploration frameworks to search for systems with desired properties.110, 111 
Indeed, many materials databases that contain a collection of results currently exist online such 
as bare metal nanoclusters,112 2D materials,113 and 3D crystals.114 Due to the proven success of 
applying these approaches to different material classes, developing similar methodologies for 
ligand-protected nanoclusters is essential to advancing the field.

Machine learning (ML) continues to demand attention for its vast capabilities in structure and 
property prediction of nanomaterials.115-118 ML models are driven by rich datasets, which they 
use to distill patterns and trends within a complicated parameter hyperspace. Currently, ML is 
missing from NC research, with the exception of two recent studies. In 2018, Panapitiya et al. 
trained a ML model (random forest) to predict CO adsorption energies on thiolate-protected 
Au/Ag alloy NCs. The trained model revealed the importance of Ag dopant distance from the CO 
adsorbate.119 More recently, Li et al. trained a deep learning model to predict Au NC 
monodisperse synthesis protocols. To improve interpretability, the authors created synthetic 
data, generated from the trained deep learning model, and subsequently trained a decision tree. 
The new model revealed synthesis criteria (i.e. environmental factors) critical to forming 
monodisperse Au NCs.120

We believe ML has not gained traction in NC research due to the lack of an easily accessible 
database. However, we note that this is not an insurmountable boundary, as the two 
aforementioned works surpassed the problem through in-house data generation119 and data 
extraction from literature.120 Nevertheless, providing an organized NC database will accelerate 
future ML studies on metal NCs. We expect future studies to reveal novel structure property 
relationships and provide further insights towards accelerating and optimizing NC synthesis. The 
latter can be achieved both in terms of providing informed guesses of experimental conditions 
for targeted NC synthesis, as well as NC structures that can be experimentally accessed. Although 
some ML methods are criticized for their lack of interpretability (i.e. “black box” models with no 
understanding of physics), we emphasize that ML can, and should be used in concert with 
previously developed stability theories to form physics-based structure prediction frameworks. 
For example, active learning algorithms117, 121-123 can enable a NC materials space exploration 
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framework that is guided by a general NC stability model and structure property relationships. 
Thus, the ML-aided search does not lose the important fundamental physics that dictate NC 
structure, stability, and resulting properties. It instead leverages this domain knowledge towards 
discovering new, physically and chemically relevant NC structures.

CONCLUSION
In summary, in this Frontiers article we highlighted the recent advances of ligand-protected metal 
NC research, focusing on computational efforts towards understanding the origin of magic size 
stability of monometallic and alloyed NCs, as well as predicting previously undiscovered NCs. We 
highlighted current limitations and proposed next steps to overcome challenges presented in NC 
structure prediction. We hope this perspective motivates the community to promote the 
development of a single, centralized NC database. We are currently working towards this effort 
and we anticipate many other research labs to follow. Compiling results from the many 
revolutionary works reported in ligand-protected NC literature will enable the application of ML 
and other data-science-based approaches. Through these methods, we can accelerate discovery 
and advancement of the field, making a significant step towards complete NC structural control.
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TOC

Developing a centralized database for ligand-protected nanoclusters can fuel machine learning and data-
science-based approaches towards theoretical structure prediction.
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