

Reforming of methane with carbon dioxide over cerium oxide promoted nickel nanoparticles deposited on 4-channel hollow fibers by atomic layer deposition

Journal:	Catalysis Science & Technology
Manuscript ID	CY-ART-01-2020-000039.R1
Article Type:	Paper
Date Submitted by the Author:	22-Feb-2020
Complete List of Authors:	Jin, Baitang; Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering Shang, Zeyu; Missouri University of Science and Technology, Chemical and Biochemical Engineering Li, Shiguang; Gas Technology Institute, Jiang, Yingbing; University of New Mexico, E & PS; Center for Micro Engineered Materials Gu, Xuehong; Nanjing Tech University, Liang, Xinhua; Missouri University of Science and Technology, Chemical and Biochemical Engineering

Reforming of methane with carbon dioxide over cerium oxide promoted nickel nanoparticles deposited on 4-channel hollow fibers by atomic layer deposition

Baitang Jin^a, Zeyu Shang^a, Shiguang Li^b, Ying-Bing Jiang^c, Xuehong Gu^d, and Xinhua Liang^{a,*} ^a Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States

^b Gas Technology Institute, 1700 South Mount Prospect Road, Des Plaines, Illinois 60018, United States

^c TEM Laboratory, University of New Mexico, Albuquerque, New Mexico 87131, United States ^d State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, P.R. China

* Corresponding author. Email: liangxin@mst.edu

Abstract

Ni nanoparticles were deposited on four-channel structured α -Al₂O₃ hollow fibers by atomic layer deposition (ALD). CeO₂ was loaded by a liquid phase incipient wetness method to promote Ni catalysts for dry reforming of methane. For Ni/Al₂O₃ prepared by ALD, inactive NiAl₂O₄ that originated from the Ni ALD process was incompletely reduced. The introduced CeO₂ was found to weaken the NiO-Al₂O₃ interaction, free NiO from NiO-Al₂O₃ or NiAl₂O₄, and improve the reducibility of NiO. The higher reducibility of NiAl₂O₄, tuned by CeO₂, further activated the catalyst during DRM, because a larger proportion of NiAl₂O₄ was gradually reduced to metallic nickel by the reaction products. The optimal catalytic performance reached a methane reforming rate of 2,410 $Lh^{-1}g_{Ni}^{-1}$ at 850 °C. The CeO₂ promoted catalyst also exhibited an excellent performance after regeneration. In addition, the inhibition effect of CeO₂ on coke formation was observed, due to the enhanced CO₂ dissociative adsorption by CeO₂.

Keywords: dry reforming of methane; CeO₂; metal-support interaction; atomic layer deposition (ALD)

1. Introduction

Recently, considerable attention has been paid to the catalytic process of dry reforming of methane (DRM), converting greenhouse gases (e.g., methane and carbon dioxide) into valuable syngas (i.e., carbon monoxide and hydrogen). Via chemical recycling of CO_2 , this DRM reaction exhibits a significant environmental impact on the utilization of CO_2 or CO_2 -rich natural gas and the control of greenhouse gas emission. In addition, the H₂/CO molar ratio of the generated syngas is less than 1, due to the accompanying reverse water-gas shift reaction, which is beneficial in producing valuable C_{5+} liquid hydrocarbons via Fischer-Tropsch synthesis (FTS).^{1, 2} Different metal-based catalysts, such as noble metals (e.g., Rh,³ Pt,⁴ Pd,⁵ and Ru⁶) and Ni⁷ catalysts, have been studied for DRM reactions. Considering economics and catalytic activity, nickel-based catalysts are the most widely investigated catalysts in the methane reforming field. However, the proneness to sintering and coking at high temperatures remain as a challenge.^{8, 9}

In terms of nickel-based catalysts, Al_2O_3 is the most commonly used support. The metal-support interaction of the Ni/Al₂O₃ catalyst plays an important role, as the nickel atoms may diffuse into Al_2O_3 to some extent,¹⁰ depending on factors, such as nickel loading,¹¹ synthesis parameters,^{10, 12-} ¹⁴ temperature of heat treatment,¹⁵ and promoters.¹⁶ For example, Zhou et al. prepared a Ni/NiAl₂O₄/Al₂O₃/alloy catalyst for steam reforming of methane and found the interfacial NiAl₂O₄ layer could anchor the metallic nickel nanoparticles and effectively suppress sintering.¹³ In our previous work, ¹² Ni/ γ -Al₂O₃ catalysts were prepared by the atomic layer deposition (ALD) method and they exhibited a stronger NiO-Al₂O₃ interaction than that of catalysts prepared by the conventional incipient wetness (IW) method. The NiAl₂O₄ spinel is important for stabilizing metallic nickel nanoparticles, although it has no intrinsic activity for the DRM reaction.^{15, 17} Jiménez-González et al. successfully synthesized nickel catalysts with high dispersion and small size by reducing NiAl₂O₄ or NiAl₂O₄/Al₂O₃ at high temperatures.¹⁸ Recently, our group found that the mixture of H₂ and CO, as a product of DRM, could gradually reduce NiAl₂O₄ to Ni at 850 °C.¹² The gradual reduction of NiAl₂O₄, during the DRM reaction, resulted in an activation phenomenon and, thereby, a higher activity.^{12, 17, 19, 20} Since there was a significant amount of NiAl₂O₄ component in the Ni/Al₂O₃ catalysts prepared by ALD, and this NiAl₂O₄ component cannot be completely reduced but remains inactive in the catalyst, it would be important to tune the reducibility of NiAl₂O₄ to generate more metallic Ni to have a higher catalytic activity.

Adding promotors (e.g., Co,²¹ ZrO₂,²² CeO₂,²³ MgO,²⁴ and CaO²⁵) to nickel-based catalysts is an effective and conceivable way to promote the Ni/Al₂O₃ catalysts. CeO₂ could modify the metalsupport interaction of Ni catalysts, which could improve the reducibility of Ni/Al₂O₃ catalysts.^{16,} ²⁶⁻²⁸ In addition, CeO₂ contains a high concentration of highly mobile oxygen that acts as an oxygen source for the reactions carried out on its surface,²³ which is helpful in reducing coke formation on the catalyst surface. In our previous study, a novel 4-channel structured α -Al₂O₃ hollow fiber,²⁹ with a surface area to volume ratio as high as 3,000 m²/m³, was used as catalyst support where small Ni nanoparticles were deposited by ALD, and exhibited an excellent performance in a DRM reaction.³⁰ To further enhance the catalytic performance of the nickelbased hollow fiber catalysts, the addition of CeO₂ onto ALD-prepared Ni/Al₂O₃ hollow fibers could be a promising strategy. In this work, Ni nanoparticles were deposited on the 4-channel α -Al₂O₃ hollow fibers by ALD and different amounts of CeO₂ were introduced to the catalyst. The catalysts were systematically characterized and the catalytic performance was studied at atmospheric pressure in a temperature range of 700-850 °C.

2. Experimental

2.1. Catalyst preparation

4-channel α -Al₂O₃ hollow fibers²⁹ were used as catalyst support. Ni nanoparticles were deposited on the hollow fibers by ALD using bis(cyclopentadienyl)nickel (NiCp₂, Alfa Aesar) and hydrogen as precursors at 300 °C in a viscous flow reactor, as described in our previous work.³⁰ The hollow fibers were hung in the ALD reactor and heated at 150 °C, with 6 mL/min N₂ flow, overnight to remove adsorbed moisture (pressure about 300 Pa). The NiCp₂ was heated at 85 °C to provide the precursor vapor and carried by 6 mL/min N₂ to dose into the reactor for 300 s. Then, 6 mL/min N₂ were used to flush the sample to remove the unreacted precursor and any byproducts for 600 s and, then, the system was evacuated by vacuum pump for 10 s. Pure H₂ was then used as a precursor to dose into the reactor for 300 s. The same procedures were conducted, including a N₂ purge for 600 s and vacuum evacuation for 10 s. During the dosing and flushing process, the pressures were about 320 Pa and 300 Pa, respectively; the pressure during evacuation was about 10 Pa. Five cycles of Ni ALD including pulse of NiCp₂ and H₂ were applied onto the hollow fibers, and the catalyst was labeled as Ni/Al₂O₃HF-ALD. CeO₂ was introduced into the synthesized catalyst by an incipient wetness (IW) method, using Ce(NO₃)₃·6H₂O (cerium nitrate hexahydrate, Alfa Aesar, 99.99%) as a precursor. The synthesized Ni/Al₂O₃HF-ALD catalyst was added into an aqueous solution containing cerium nitrate hexahydrate (1.0 g hollow fiber sample with 1.5 mL solution) and dried at 100 °C, with continuous stirring, followed by calcination in air at 500 °C for 3 h. Different amounts of CeO₂ (with a molar ratio of Ce/Ni = 0.25, 0.42, and 0.75) were added onto the Ni/Al₂O₃HF-ALD sample, labeled as 0.25CeNi/Al₂O₃HF-ALD, 0.42CeNi/Al₂O₃HF-ALD, and 0.75CeNi/Al₂O₃HF-ALD, respectively.

For ease of characterization, ALD-synthesized Ni catalysts on α -Al₂O₃ nanoparticles (Alfa Aser, 99+%, 80 nm, US3008) were prepared to investigate the promotional effect of CeO₂. The Ni ALD process was carried out in a fluidized bed reactor, as reported in our previous work.³⁰ The α -Al₂O₃ nanoparticles were put in the fluidized ALD reactor and heated at 150 °C, with 10 mL/min N₂ flow overnight, to remove adsorbed moisture. Then similar procedures, including a precursor dose for 180 s, N₂ purge for 300 s, and evacuation for 10 s, were conducted for five cycles to prepare the catalyst, which was labeled as Ni/Al₂O₃NP-ALD.

For comparison, Ni nanoparticles on α -Al₂O₃ nanoparticles were synthesized by an incipient wetness method, labeled as Ni/ α -Al₂O₃NP-IW. The same α -Al₂O₃ nanoparticles were impregnated in an aqueous solution (1.0 g α -Al₂O₃ nanoparticles sample with 0.7 mL solution) containing nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, Alfa Aesar, 98.0%), dried at 100 °C, followed by calcination in air at 500 °C for 3 h. In addition, CeO₂ was introduced onto the

Ni/Al₂O₃NP-ALD and Ni/Al₂O₃NP-IW samples with a Ce/Ni molar ratio of 0.42 (the optimal ratio for hollow fiber catalysts that we found in this study), using the same incipient wetness method (1.0 g α -Al₂O₃ nanoparticle sample with 0.7 mL solution) as above, labeled as CeNi/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-IW, respectively.

2.2. Dry reforming of methane

Catalysts were loaded in a vertical quartz tube reactor (inner diameter=10 mm) for DRM reactions and inert quartz wool was employed to support the catalysts. The hollow fiber catalysts were cut into short pieces (~0.8 cm long) and packed parallel in the reactor tube; for the nanoparticle catalysts, the catalysts (without being diluted) were put on the quartz wool in the reactor. A tube furnace was employed to heat up the reactor. Gas flow rates were monitored and controlled by MKS[®] mass flow controllers and the reaction temperatures were measured using a K-type thermocouple inside the reactor. An online gas chromatograph (SRI 8610C), equipped with a 6-foot Hayesep D column, a 6-foot molecular sieve 13X column, and a thermal conductivity detector (TCD), was employed to analyze the reaction products.

Before the DRM reaction, the catalysts were reduced at 700 °C, for 1 h, in 100 mL/min 20vol.%H₂/80vol.%Ar. After reduction, the flow of H₂ was stopped and the reactor temperature was elevated to 850 °C with an increase rate of 10 °C/min. In a typical DRM reaction, a gas mixture of CH₄ (99.9%) and CO₂ (99%) (CH₄/CO₂ = 1 molar ratio, with a total flow rate of 60 mL/min) was introduced into the reactor. The reaction was first carried out at 850 °C for a certain time and, then, the reaction temperature was decreased to 800 °C. After running the reaction for a certain time of stream, the catalysts were regenerated and applied for the DRM

Catalysis Science & Technology

reaction again. The regeneration process consisted of oxidation at 700 °C for 1 h in 100 mL/min 20vol.%O₂/80vol.%Ar, returning to an ambient temperature in 60 mL/min Ar and reduction in 100 mL/min 20vol.%H₂/80vol.%Ar for 1 h at 700 °C.

2.3. Catalyst characterization

The contents of Ni and Ce on the catalysts were investigated by inductively coupled plasmaoptical emission spectroscopy (ICP-OES), using a 2000D Perkin Elmer, and the samples were dissolved by a mixture of H₂O₂, H₂SO₄, and H₃PO₄. The surface area of samples was tested using Brunner-Emmet-Teller (BET) measurements, with Quantachrome Autosorb-1. The morphology of supported Ni catalysts was observed by transmission electron microscopy (TEM), with a FEI Tecnai F20 TEM. X-ray diffraction spectra were collected using a Philips X-Pert Multi-purpose Diffractometer, with Cu K α 1 radiation (λ =0.15416 nm). The samples were reduced at 700 °C in 100 mL/min 20vol.%H₂/80vol.%Ar flow for XRD test. X-ray photoelectron spectroscopy (XPS) spectra were recorded using a Kratos Axis 165 X-ray photoelectron spectrometer. A monochromatic Al K α radiation (hv = 1486.6 eV) was used as the radiation source, and the takeoff angle was 0°. H₂-temperature programmed reduction (H₂-TPR) was conducted on a Micromeritics AutoChem II 2920 instrument. A certain amount of catalyst powder (~ 150 mg) was placed in a U-shape quartz tube. The temperature program contained a preheat treatment at 500 °C in Ar flow, returning to ambient temperature in Ar flow and temperature ramping of 30-1,000 °C at a rate of 10 °C /min in 10vol.%H₂/90vol.% Ar flow. Sequential CH₄-TPSR (temperature-programmed surface reaction)/CO₂-TPO (temperatureprogrammed oxidation)/O₂-TPO was conducted using 200 mg catalyst in the same reactor as the dry reforming test. The procedures consisted of reduction in 20vol.%H₂/80vol.%Ar at 700 °C,

returning to ambient temperature, reaction in 30 mL/min 20vol.%CH₄/80vol.%Ar flow (200-900 °C, 10 °C/min), returning to ambient temperature, reaction in 30 mL/min 20vol.%CO₂/80vol.%Ar flow (200-900 °C, 10 °C/min), returning to ambient temperature and reaction in 30 mL/min 20vol.%O₂/80vol.%Ar flow (200-900 °C, 10 °C/min). The outlet gas was detected by mass spectrum (QMS200 Gas Analyzer, Stanford Research System). The valves of m/e at 2, 16, 28, 32, 40, and 44 were identified as H₂, CH₄, CO, O₂, Ar, and CO₂, respectively. O₂-TPO for spent catalysts was conducted using the same equipment. 30 mg spent nanoparticle catalysts were tested in the quartz tube from 100-850 °C, with a temperature ramping rate of 5 °C/min in 20 mL/min 10vol.%O₂/90vol.%Ar flow. The CO₂ signal with m/e=44 was plotted as a function of temperature and little change was observed for a signal with m/e=28 for CO. CO₂-TPD was conducted using the same instrument with ~ 100 mg catalyst powder in a quartz tube. The temperature program contained a preheat treatment at 500 °C in Ar flow, returning to ambient temperature in Ar flow, adsorption in 10vol.%CO₂/90vol.%Ar at ambient temperature, flush in Ar flow at 80 °C for 1 h, and temperature ramping of 80-800 °C at a rate of 10 °C /min in Ar flow. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS, Philips MPD) was employed to study the carbon deposition of spent catalysts.

3. Results and Discussion

3.1. Characterization of fresh catalysts

Ni content was 0.11 wt. % for a Ni/Al₂O₃HF-ALD catalyst, 1.49 wt. % for Ni/Al₂O₃NP-ALD, and 1.50 wt. % for Ni/Al₂O₃NP-IW, based on ICP-OES analysis. From the BET test, the Ni/Al₂O₃NP-ALD had a surface area of about 11.2 m²/g whereas, after CeO₂ introduction, the surface area changed to 10.7 m²/g, which indicated that the introduction of CeO₂ had little effect

on the surface and porous structure of the support. In addition, XRD (in Figure S1) verified the peaks for Ni and CeO₂ of CeNi/Al₂O₃NP-ALD. TEM was employed on the Ni/Al₂O₃NP-ALD and Ni/Al₂O₃HF-ALD samples. As shown in Figure 1a, the black spots were deposited Ni nanoparticles; the Ni nanoparticles, with an average particle size of 3.1 ± 0.7 nm, were highly dispersed on the support. After CeO₂ was introduced onto the Ni/Al₂O₃NP-ALD sample, the average Ni particle size was 3.3 ± 1.0 nm (Figure 1b), therefore, the Ni nanoparticles prepared by ALD were stable enough to undergo the calcination process during the CeO₂ addition by the IW method. For Ni/Al₂O₃HF-ALD (Figure 1c), well dispersed nickel nanoparticles could be identified as the small white spots. By analyzing the recognizable spots, the average size of Ni deposited on HF was approximately 5.1 ± 1.6 nm.

Figure 1. TEM images of (a) Ni/Al₂O₃NP-ALD, (b) CeNi/Al₂O₃NP-ALD, and STEM image of (c) Ni/Al₂O₃HF-ALD. The inset images show size distributions of Ni nanoparticles.

Figure 2. XPS core levels of Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD: (a) Ni 2p_{3/2} and (b) O 1s.

High resolution XPS of Ni $2p_{3/2}$ and O 1s was conducted for Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD to gain insight into the binding energy between Ni nanoparticles and the support. All XPS samples were calibrated with the C=C peak of the adventitious carbon peak at 284.5 eV in C1s (see Figure S2, Figure S3, and Table S1 for details). As shown in Figure 2a, in terms of Ni species, the peaks could be divided into metallic Ni, NiO, NiAl₂O₄, satellite Ni, and satellite NiO ³¹. For Ni/Al₂O₃NP-ALD, the peak of metallic nickel was observed at 853.2 eV. The peak of NiO at 855.2 eV was higher than that of the bulk NiO, as reported with a binding energy at approximately 854 eV,³² which indicated that Ni (II) was in interaction with the Al₂O₃ support. The shake-up satellite peaks of nickel were at 858.8 eV for metallic Ni (0) and 861.2 eV for Ni (II), respectively. The peak at 856.4 eV was ascribed to the spinel NiAl₂O₄ component. In our previous study of ALD-synthesized Ni on γ -Al₂O₃ support, spinel nickel aluminate was convinced to be generated during the ALD process.¹² Similar to other ALD processes,^{33, 34} the Ni-ALD process would be rationally postulated to be initiated when the O-H bond on Al₂O₃ surface was replaced by O-Ni bond,³⁵ forming Al-O-Ni-Cp or Al-O-Ni-C_xH_y and, in the following step, H₂ would participate in surface reaction and remove the -Cp or -C_xH_y species. Considering the strength of the Al-O-Ni bond, it would be possible that a part of the nickel might still bond with Al₂O₃ during the dose of hydrogen, to form thermal-stable NiAl₂O₄, which would be significant for catalytic performance including catalytic activity and thermal stability.

With the introduction of CeO₂ to Ni/Al₂O₃NP-ALD, the peak of Ni and Ni satellite disappeared because the metallic nickel was oxidized to NiO during the calcination process in air using the IW method. Obviously, the peak of NiO shifted to 854.3 eV, which was close to that of the bulk NiO ³², and the peak of NiAl₂O₄ shifted to 856.0 eV. The decrease in binding energy indicated that the interaction between NiO and Al₂O₃ was inhibited by the introduction of CeO₂, probably due to the diffusion of CeO₂ into the NiO-Al₂O₃ phase.^{11, 26} For the DRM reaction, it was generally believed that metallic nickel was the active site for the reaction. For this work, NiO, with weakened metal-support interaction by the introduction of CeO₂, was supposedly more likely to be reduced to active metallic nickel nanoparticles for the catalytic reaction.

XPS of O 1s was conducted and deconvoluted to determine the chemical state of the oxygen species, as shown in Figure 2b. Three peaks were observed for both catalysts, O_{latt} at 530 eV for lattice oxygen in the metal oxide, O_{surf} at 531 eV for the surface oxygen, including defect oxide and adsorbed oxygen ions, and O_{ads} at 532 eV for the hydroxyl species or adsorbed water species. ^{36, 37} With the introduction of CeO₂, the percentage of O_{surf} , with higher mobility and activity,³⁸⁻⁴⁰ increased from 23.2% to 32.5%. Due to the strong oxygen storage and release capacity of the Ce⁴⁺/Ce³⁺ couple, oxygen defects were generated on the CeO₂ surface,^{26, 37} which could enhance the adsorption and surface reaction, and further improve the catalytic activity of CO₂ and intermediate CH_x.

Figure 3. H₂-TPR profiles of Ni/Al₂O₃NP-ALD, cal-Ni/Al₂O₃NP-ALD, CeNi/Al₂O₃NP-ALD, Ni/Al₂O₃NP-IW, CeNi/Al₂O₃NP-IW, and Ce/Al₂O₃NP.

Temperature program reduction (H₂-TPR) was conducted to study the metal-support interaction of supported Ni catalysts, as shown in Figure 3 and Figure S4. As shown in Figure S4, the reduction peaks of the bulk NiO was located at 400 °C, denoted as α-NiO, and the bulk spinel NiAl₂O₄ were located at 835 °C, denoted as γ-NiO. The TPR profiles of catalysts in Figure 3 are definitely not the simple combination of NiO and NiAl₂O₄; the peaks with intermediate reduction temperature range (about 500-700 °C) should be NiO-Al₂O₃ phase with different extent of diffusion (or called non-stoichiometric NiAl_xO_y), denoted as β -NiO in literatures.^{11, 13, 27, 31, 41} In terms of CeO₂ in CeO₂/Al₂O₃, the peak at lower temperature was ascribed to the reduction of reducible surface capping oxygen of CeO₂, whereas the peak at high temperature was ascribed to reduction Ce⁴⁺ to Ce³⁺ in bulk CeO₂.²⁸ For the Ni/Al₂O₃NP-ALD sample in Figure 3, the peaks are mainly NiO-Al₂O₃ (β -NiO) at 590 °C with small amount of NiO (α -NiO) and NiAl₂O₄ (γ -NiO), whereas only NiO (α -NiO) and NiO-Al₂O₃ (β -NiO) peaks were observed for Ni/Al₂O₃NP-IW. The existence of NiAl₂O₄ (γ -NiO) for Ni/Al₂O₃NP-ALD indicated that the NiO-Al₂O₃ interaction of the ALD-prepared catalyst was stronger than that of the IW-prepared catalyst, because of the surface reaction between the nickel precursor and Al₂O₃ support during the ALD process.¹² In addition, a small peak only observed for Ni/Al₂O₃NP-ALD at 200 °C might be the oxygen absorbed on the metallic nickel ^{18, 42} or amorphous surface of NiO.¹⁴

With regard to the Ni/Al₂O₃ system, the interaction between NiO and Al₂O₃ is the key for the stability of catalysts through the prevention of the sintering of Ni nanoparticles.¹³ In this study, the reaction temperature of 850 °C had already exceeded the reduction temperature of NiAl₂O₄, as demonstrated in the H₂-TPR results. This meant that NiAl₂O₄ was not a completely stable

phase and could be gradually reduced in the reductive atmosphere of H₂ and CO, the main products of the DRM reaction. The further reduction of NiAl₂O₄, during the reaction, would generate more nickel for the reaction.^{17, 19, 20} In terms of the high stability of the NiAl₂O₄, there should still be an appreciable amount of NiAl₂O₄ remaining under the DRM condition. Although NiAl₂O₄ could help stabilize the metallic nickel and maintain a high thermal stability of the catalysts, with respect to the utilization of Ni, excessive NiAl₂O₄ would lead to an inevitable latent activity loss,¹⁵ since NiAl₂O₄ was inactive for the reaction. It is important to tune the reducibility of NiAl₂O₄ to retain balanced amounts of Ni and NiAl₂O₄, which are responsible for high catalytic activity and high thermal stability, respectively.

As CeO₂ was introduced to Ni/Al₂O₃NP-ALD, the peaks for NiO, NiO-Al₂O₃, and NiAl₂O₄ were shifted to lower temperatures, as compared to those of the calcined Ni/Al₂O₃NP-ALD in the same condition (noted as cal-Ni/Al₂O₃NP-ALD), indicating that NiO was easier to reduce due to the effect of CeO₂. Especially, the peak for NiAl₂O₄ for CeO₂ promoted Ni/Al₂O₃NP-ALD was shifted to a lower temperature (below 810 °C) and, therefore, the NiAl₂O₄ could be easier to reduce with the effect of CeO₂, which was also confirmed by TPR of the CeO₂-added NiAl₂O₄ (in Figure S4). The improved reducibility of oxidized nickel species might be ascribed to the fact that the introduced CeO₂ might replace Ni²⁺ in the NiO-Al₂O₃ or drive the Ni²⁺ away from the NiO-Al₂O₃ or NiAl₂O₄ phase. As mentioned earlier, the DRM reaction temperature in this study was above the reduction temperature of NiAl₂O₄ and, therefore, a higher reducibility of oxidized nickel tuned by CeO₂ was very important for catalytic performance. The higher reducibility of NiAl₂O₄ could form an additional amount of active metallic Ni during reaction and, to a greater extent, further activate the catalyst for DRM.

To gain a deeper insight into the effect of CeO₂ on catalyst active sites for dry reforming of methane, sequential CH₄-TPSR/CO₂-TPO/O₂-TPO was conducted to exhibit adsorption, surface reaction, and desorption^{11, 14, 43, 44} at catalytic sites for CH₄ and CO₂ separately. The results are shown in Figure 4. In respect of CH₄-TPSR, the CH₄ reaction mainly consisted of adsorption of CH₄ on the metallic nickel, dissociation of the C-H bond,⁴⁵ and formation of hydrogen and residual CH_x species, which still adsorbed on the Ni surface and would terminate surface reactions.⁴⁴ The CH₄ peak for CeNi/Al₂O₃NP-ALD was observed at 597 °C, as compared to 609 °C of Ni/Al₂O₃-ALD. A similar peak shift was also observed for Ni/Al₂O₃NP-IW and CeNi/Al₂O₃NP-IW, which indicated that CeO₂ could enhance the activity of Ni in CH₄ dissociative adsorption.^{22, 28} In terms of CH₄ consumption, the peak area of CeNi/Al₂O₃-ALD was larger than that of Ni/Al₂O₃-ALD. In contrast, there was no difference in the CH₄ peak area for IW-synthesized catalysts, with or without CeO₂. The extra CH₄ consumption could be ascribed to the fact that CeO₂ tuned the reducibility of the NiAl₂O₄ phase in the ALDsynthesized catalyst and led to the formation of more Ni(0) after reduction, whereas there was only a negligible amount of reducible $NiAl_2O_4$ for the IW-synthesized catalyst.

For the following CO₂-TPO, the CO₂ reaction consisted of adsorption of CO₂, dissociation of CO₂, and formation of active oxygen O* and its further reaction with residual CH_x species, to generate CO and H₂. Notably, the more CH₄ consumption for CeNi/Al₂O₃NP-ALD than Ni/Al₂O₃NP-ALD would result in more carbon residence. Larger CO₂ consumption was observed for CeNi/Al₂O₃NP-ALD than that for Ni/Al₂O₃NP-ALD, which indicated that CeO₂ significantly enhanced the CO₂ surface reaction. In addition, there were additional CO₂

consumption peaks, and a CO generation peak appeared at 650 °C for the CeO₂ promoted Ni/Al₂O₃ catalyst. However, there was only one peak at around 800 °C for the as-prepared Ni/Al₂O₃ catalyst, indicating that dissociative adsorption of CO₂ took place with the assistance of CeO₂ in a more efficient pathway than the pristine catalyst. As reported in the literature, CeO₂ has a strong oxygen storage capacity (OSC), due to the Ce⁴⁺/Ce³⁺ couple^{26, 31, 41} and, therefore, it would enhance dissociative adsorption of CO₂ and formation of O*, which is a key intimidation for residual gasification.⁴⁵ The enhanced CO₂ adsorption on CeNi/Al₂O₃NP-ALD was also observed by CO₂-TPD, as shown in Figure S5; the addition of CeO₂ may improve the basic sites^{44, 46} of the catalysts for CO₂ adsorption.

In addition, the following O_2 -TPO exhibited that there was still some carbon residue left in all samples, even after CO_2 -TPO. From the area of O_2 consumption and CO_2 production in the O_2 -TPO, conclusions could be made that there was less CH_x residue left from CH_4 dissociation because the CeO_2 could strongly enhance the CO_2 activity to gasificate the CH_x residence. In this way, the CeO_2 -promoted catalyst would have a better coke inhibition because of higher activity in the CO_2 reaction for gasification of coke, or coke precursor, which was consistent with our experimental results.

Figure 4. Sequential CH₄-TPSR/CO₂-TPO/O₂-TPO profiles of nickel-based nanoparticle catalysts after reduction: a. Ni/Al₂O₃NP-ALD, b. CeNi/Al₂O₃NP-ALD, c. Ni/Al₂O₃NP-IW, and d. CeNi/Al₂O₃NP-IW.

3.2. Dry reforming of methane

The ALD-prepared Ni/Al₂O₃HF-ALD catalysts, with and without CeO₂ (with Ce/Ni molar ratio of 0, 0.25, 0.42, and 0.75), were employed to catalyze the DRM reaction. The results are shown in Figure 5 and Figure S6, with equilibrium conversion data in Figure S7. The DRM reactions were carried out at 850 °C, first for 72 h and, then, the reaction temperatures were decreased to 800 °C for 72 h (Figure 5a and Figure S6a). All catalysts showed increasing performances in the first 30 h, which could have been due to the fact that Ni(II) in NiAl₂O₄ was gradually reduced by generated H₂ and CO at a high reaction temperature during the DRM reaction,¹² and then showed a stabilized performance at 850 °C, after a certain length of reaction time. All CeO₂-promoted catalysts had a better performance than that of the pristine catalyst, while the 0.42CeNi/Al₂O₃HF-ALD catalyst showed the best performance with a methane reforming rate as high as 2,410 Lh⁻¹g_{Ni}⁻¹ at 850 °C. The introduction of CeO₂ onto the catalyst significantly increased the catalyst performance, which could be attributed to the fact that CeO_2 could modify the interaction between NiO and Al_2O_3 ,¹¹ increase the reducibility of the NiAl₂O₄ spinal to metallic Ni and, thus, activate the catalyst during the reaction. With the further increase of the CeO_2 contents, the catalyst activity decreased, probably because the excessive CeO_2 would cover some of the Ni reactive sites. After the reaction temperatures were set to 800 °C, the $0.42CeNi/Al_2O_3HF-ALD$ catalyst still showed the best performance among all of the hollow fiber-supported catalysts.

To check the capability of catalyst regeneration, all catalysts were regenerated via a procedure of oxidation, followed by reduction after 144 h of DRM reactions (72 h at 850 °C and 72 h at 800 °C). The regenerated catalysts were applied for a DRM reaction again. As shown in Figure 5b and Figure S6b, after regeneration, all catalysts in the second cycle showed good activity. Here, one cycle means a DRM reaction at different temperatures without regeneration. Among all of the catalysts, the 0.42CeNi/Al₂O₃HF-ALD catalyst still showed the highest activity with a methane reforming rate of 2,460 Lh⁻¹g_{Ni}⁻¹. It should be noted that the regenerated CeNi/Al₂O₃HF-ALD catalysts in the 2nd cycle test achieved a higher activity without activation; the 0.42CeNi/Al₂O₃HF-ALD catalyst showed 86.7% conversion in the 1st cycle and 88.4% conversion in the 2nd cycle, probably due to the removal of carbon deposition during the regeneration process. In contrast, the regenerated Ni/Al₂O₃HF-ALD catalyst had an activity loss (71.8% conversion in the 1st cycle and 69.5% conversion in the 2nd cycle), which might indicate a possible sintering took place for pristine catalyst and the CeO2 could help stabilize the Ni nanoparticles. Therefore, in this study, 0.42:1 was the optimal Ce/Ni molar ratio to enhance the catalyst activity for the ALD-synthesized Ni on hollow fiber catalysts.

Figure 5. Methane conversion of (a) the first cycle and (b) the second cycle of dry reforming of methane reactions catalyzed by Ni/Al₂O₃HF-ALD, 0.25CeNi/Al₂O₃HF-ALD, 0.42CeNi/Al₂O₃HF-ALD, and 0.75CeNi/Al₂O₃HF-ALD. Reaction conditions: catalyst loading of 0.6 g, 0.11 wt.% Ni, reactant composition of $CH_4/CO_2=50/50$ vol. %, and total flow rate of 60 mL/min. Note: Dash lines are equilibrium methane conversion.

To further investigate the effects of CeO₂ introduction on the catalytic performance of the Ni/ α -Al₂O₃ system, both Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD, with higher Ni loadings than the hollow fiber samples, were employed to catalyze the DRM reaction, because a higher Ni loading allowed smaller activity changes. As shown in Figure 6, both catalysts demonstrated a

slow activation process at the initial stage of the reaction at 850 °C. This activation was due to the gradual reduction of the relatively stable NiAl₂O₄ species that formed during the ALD process in a reductive atmosphere (i.e., H₂ and CO generated from DRM) at 850 °C, as reported in our previous work.¹² Obviously, a longer activation time was needed for the CeNi/Al₂O₃NP-ALD catalyst to reach a steady performance. The longer activation time was simply not due to a slower activation rate, since similar activation rates were observed for both catalysts at the initial stage (8.1 Lh⁻¹g_{Ni}⁻¹/h for CeNi/Al₂O₃NP-ALD and 8.6 Lh⁻¹g_{Ni}⁻¹/h for Ni/Al₂O₃NP-ALD). In fact, the longer activation time was due to the fact that the amount of reducible NiAl₂O₄ species increased with changes in reaction conditions, because CeO₂ weakened the NiO-Al₂O₃ interaction and, thus, increased the reducibility of the NiAl₂O₄ species to metallic Ni. Eventually, the Ce Ni/Al₂O₃NP-ALD catalyst reached a reaction rate of 1330 Lh⁻¹g_{Ni}⁻¹, which was about 17% higher than that of Ni/Al₂O₃ (1,100 Lh⁻¹g_{Ni}⁻¹) at 850 °C, and also higher than those of IWprepared catalysts (in Figure S8). The recyclability of the Al₂O₃ nanoparticle supported catalysts (Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD) is shown in Figure S9, and their catalytic performances of the 2nd cycle were similar to those of the 1st cycle test. The performance of our catalysts is superior, compared to those of other reported catalysts, as listed in Table 1. The high activity should be ascribed to the highly dispersed Ni nanoparticles prepared by the ALD synthesis method and the promoting effect of CeO₂. Notably, the reaction rate increased from 780 to 1330 Lh⁻¹g_{Ni}⁻¹ during the activation process for Ce Ni/Al₂O₃NP-ALD catalyst, which indicates the CeO₂ promoting effect could better utilize the nickel by improving the reducibility of NiAl₂O₄.

When the temperature was set lower than 800 °C, both catalysts went through a relatively steady stage with a very slow deactivation. The CeNi/Al₂O₃NP-ALD catalyst showed a much slower deactivation rate, even after a longer reaction time at 850 °C. For instance, the CeNi/Al₂O₃NP-ALD had a deactivation rate of -1.1 Lh⁻¹g_{Ni}⁻¹/h, only 40% of the -2.8 Lh⁻¹g_{Ni}⁻¹/h for Ni/Al₂O₃NP-ALD at 800 °C. The ratio of deactivation rate of Ce-promoted/as-prepared catalysts further decreased to 35% at 750 °C and, then, to 29% at 700 °C. This could be ascribed to the fact that CeO₂ could inhibit coke formation. From the CH₄-TPSR/CO₂-TPO/O₂-TPO results, the mobile oxygen of CeO₂ could enhance the dissociative adsorption and surface reaction of CO₂ with adsorbed CH_x and, therefore, would reduce coke formation during the dry reforming of methane.

Figure 6. Methane reforming rate and conversion of dry reforming of methane reactions catalyzed by (a) CeNi/Al₂O₃NP-ALD and (b) Ni/Al₂O₃NP-ALD. Reaction conditions: catalyst loading of 0.070 g, 1.49 wt.% Ni, reactant composition of CH₄/CO₂=50/50 vol. %, total flow rate of 60 mL/min. Note: Dash lines are equilibrium methane conversion.

Table1. Comparison of methane reforming rates of dry reforming of methane reaction catalyzed by different catalysts in this work and in the literature.

D 0

Catalyst	Methane	Reference			
	850 °C	800 °C	750 °C	700 °C	
CeNi/Al ₂ O ₃ HF-ALD	2410	2000	-	-	This
					work
CeNi/Al ₂ O ₃ NP-ALD	1330	1050	680	380	This
					work
NiCe/Al ₂ O ₃	-	290	250	225	16
Ni/CeO ₂ -γ-Al ₂ O ₃	-	550	430	310	20
Ni/CeO ₂ -Al ₂ O ₃	270	250	200	160	41
Ni-Zr/MCM-41	-	580	560	510	47
Ni/Ce _{0.75} Zr _{0.25} O ₂	270	240	190	150	48
Ni-CaO-ZrO ₂	430	-	350	-	49
Ni/SBA-15	225	210	170	150	50

3.3. Characterization of spent catalysts

To further understand the promotional effects of CeO₂ for the ALD Ni catalysts, the Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD catalysts after 72 h of DRM at 850 °C were characterized using XPS (Figure 7 and Figure S3). As shown in Figure 7, the peaks for Ni, NiO, and NiAl₂O₄ were observed for both catalysts. The NiO was probably due to the inevitable oxidation by oxygen when the catalyst was exposed to air. The existence of NiAl₂O₄ in both catalysts demonstrated that certain amounts of NiAl₂O₄ still remained unreduced, even after reduction before the DRM reaction, and in a highly reductive environment during the DRM reaction (i.e., H₂ and CO reductive atmosphere at 850 °C for 72 h). Here, the ratio of

 $NiAl_2O_4/(Ni+NiO)$ was taken as a reference of the spinel degree. The ratio of $NiAl_2O_4/(Ni+NiO)$ was 0.33 for $Ni/Al_2O_3NP-ALD$, and 0.37 for $CeNi/Al_2O_3NP-ALD$, because the heat treatment during the addition of CeO_2 by the IW method should favor the spinel $NiAl_2O_4$ formation. After reaction, the ratio was 0.31 for spent $Ni/Al_2O_3NP-ALD$ and 0.20 for spent $CeNi/Al_2O_3NP-ALD$, which verified that more $NiAl_2O_4$ became reducible under the same condition. This was consistent with the characterization of fresh catalysts and our DRM reaction results.

Figure 7. XPS core levels of Ni $2p_{3/2}$ of spent Ni/Al₂O₃NP-ALD and spent CeNi/Al₂O₃NP-ALD, after DRM at 850 °C for 72 h.

Figure 8. XPS core levels of Ce3d of fresh CeNi/Al₂O₃NP-ALD and spent CeNi/Al₂O₃NP-ALD, after DRM at 850 °C for 72 h.

In order to investigate the chemical state of the Ce element during the reaction, Ce3d was fitted using the fresh CeNi/Al₂O₃NP-ALD and spent CeNi/Al₂O₃NP-ALD samples, as show in Figure 8. Due to the overlapping of Ni2p and Ce3d, the peaks for Ni2p (the dark grey part) were deducted by applying the signal ratio of Ni2p3/2 to Ni2p1/2 at 2:1. Ascribed to the transition to different final states,⁵¹ the Ce⁴⁺ peaks could be fitted into spin orbit photoelectron Ce 3d5/2 peaks, including v at 881.4 eV, v" at 887.6 eV, v" at 897.4 eV, and corresponding Ce 3d3/2 peaks, including u at 900.0 eV, u" at 906.3 eV, u" at 915.8 eV, $^{31, 51}$ whereas Ce³⁺ had a Ce 3d5/2 peak v' at 884.6 eV and its corresponding Ce 3d3/2 peaks u' at 903 eV.^{31, 51} Herein, for better quantification of the chemical valence change of Ce, the u""% of the Ce 3d was applied to evaluate the content of Ce(IV), and the (v'+u')% was applied to evaluate the content of Ce(III).³¹ The u"% was 11.0% for the fresh CeNi/Al₂O₃NP-ALD, which was close to the 13.4% for CeO₂ as reported;³¹ and the u"'% was 4.8% for the spent CeNi/Al₂O₃NP-ALD. The lower Ce⁴⁺ content for spent CeNi/Al₂O₃NP-ALD was ascribed to the reduction of Ce⁴⁺ to Ce³⁺ during the reduction pretreatment and during the DRM reaction. In addition, the (u'+v')% from 12.8% for fresh CeNi/Al₂O₃NP-ALD, compared to 45.7% for spent CeNi/Al₂O₃NP-ALD, exhibited that there was a significant amount of Ce³⁺ generated from Ce⁴⁺ during the reaction.

The reduction of Ce(IV) to Ce(III) during the reaction probably led to the formation of much more thermally favored CeAlO₃, as compared to Ce₂O₃.^{43, 52, 53} CeAlO₃ was reported to be highly stable for the CeO₂/Al₂O₃ system under a reductive atmosphere at high temperature.⁴³ Therefore, the Ce³⁺ ion reduced from CeO₂ might react with Al₂O₃ to form CeAlO₃ (R1), or probably dope into NiAl₂O₄ to form CeAlO₃ (R2), and drive Ni²⁺ from the NiAl₂O₄ to form NiO, which would be quickly reduced to Ni. As shown in Figure S10, both assumed reactions should be thermodynamically favored under reaction conditions with the Gibbs free energy less than zero, whereas, without the assistance of CeO₂ or H₂, the direct decomposition of NiAl₂O₄ was impossible. To further verify the possibility of CeAlO₃ formation, XRD was conducted on the CeO₂-added NiAl₂O₄ after reduction (similar as the reaction condition), as shown in Figure S11. The XRD result indicated that there was significant formation of CeAlO₃ instead of Ce₂O₃ after high temperature reduction. By forming stable CeAlO₃, NiO might be freed from NiO-Al₂O₃ or NiAl₂O₄, and then be reduced by H₂ with the assistance of Ce⁴⁺/Ce³⁺, which would explain the higher reducibility of NiAl₂O₄, tuned by CeO₂, and longer activation period during the reaction.

 $Ce_2O_3 + Al_2O_3 \rightarrow 2CeAlO_3$ (R1) $Ce_2O_3 + NiAl_2O_4 \rightarrow 2CeAlO_3 + NiO$ (R2)

Figure 9. H₂-TPR profiles of regenerated Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD (after the 1st cycle of dry reforming reaction, followed by oxidation at 700 °C in 100 mL/min 20vol.%O₂/ 80vol.%Ar for 1hr).

In order the investigate the metal-support interaction of the catalysts after reaction and the recyclability of the catalysts, TPR was conducted on the regenerated Al₂O₃ NPs supported

catalysts (after the 1st cycle reaction followed by oxidation at 700 °C in 100 mL/min 20vol.%O₂/ 80vol.% Ar for 1hr). As shown in Figure 9, the predominant nickel oxide components are α -NiO without metal-support interaction (similar to bulk NiO) and β-NiO with slight NiO-Al₂O₃ interaction, and only a small amount of NiAl₂O₄ could be detected. By comparing the fresh (Figure 3) and regenerated (Figure 9) catalysts, we can draw the conclusion that most of NiAl₂O₄ $(\gamma-NiO)$ have been reduced during the activation of the first cycle of DRM and the regenerated samples were easier to be reduced, which can explain that the regenerated catalyst (both hollow fiber and alumina nanoparticle supported catalysts) didn't undergo the gradual reduction of NiAl₂O₄ (activation process) and achieved the high activity directly. However, there was still part of NiAl₂O₄ remained at the interface, as verified by XPS analysis (Figure 7). In terms of the promoting effect of CeO₂, the reduction temperature for regenerated CeNi/Al₂O₃NP-ALD was significantly lower than that of regenerated Ni/Al₂O₃NP-ALD, and this means that the α -NiO (at 410 °C) was predominate for the regenerated CeNi/Al₂O₃NP-ALD catalyst, whereas the β-NiO (at 500 °C) was predominate for the regenerated Ni/Al₂O₃NP-ALD catalyst. In addition, more NiAl₂O₄ was detected in the regenerated Ni/Al₂O₃NP-ALD. It would be rational to postulate that the CeO₂ or CeAlO₃ can reduce the NiO-Al₂O₃ interaction and inhibit the formation of NiAl₂O₄ during the reaction.

Figure 10. (a) TEM image of spent Ni/Al₂O₃NP-ALD and (b) STEM image of spent CeNi/Al₂O₃NP-ALD after DRM at 850 °C for 72 h; STEM images of (c) spent Ni/Al₂O₃HF-ALD and (d) spent CeNi/Al₂O₃HF-ALD after two cycles of DRM reaction (Note: 72 h at 850 °C and 72 h at 800 °C for one cycle). The inset images show size distributions of Ni nanoparticles.

Morphology of spent nanoparticle and hollow fiber supported catalysts are shown in Figure 10, with the inhibiting effect of the introduction of CeO₂ on the sintering of nickel nanoparticles. The average size of Ni was at 15.0 ± 2.2 nm for spent Ni/Al₂O₃NP-ALD (Figure 10a), and 13.4 ± 2.0 nm for spent CeNi/Al₂O₃NP-ALD (Figure 10b) after 72 h of DRM reaction at 850 °C. Similar results were also observed for spent hollow fiber catalysts. Here, the spent Ni/Al₂O₃HF-ALD and spent CeNi/Al₂O₃HF-ALD (after two cycles of DRM reaction) had an average particle size of

 19.2 ± 5.4 nm and 15.7 ± 3.0 nm, respectively. The inhibiting effect on sintering could be ascribed to the interaction of CeO₂ and NiO-Al₂O₃ during the reaction.

Coking is another cause for deactivation of Ni-based catalysts from a DRM reaction. We believe that the addition of CeO₂, not only improved the reducibility of NiAl₂O₄ to catalytically active Ni, but also inhibited coke formation. To verify this, nickel-based hollow fiber catalysts, with and without CeO₂, were analyzed after two cycles of reaction (one cycle of reaction consisted of 72 h of DRM reaction at 850 °C and 72 h of reaction at 800 °C), using a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDS). As shown in Figure S12, there was less carbon deposition on the surfaces of CeO₂ promoted catalysts. The average surface carbon content of Ni/Al₂O₃HF-ALD, 0.25CeNi/Al₂O₃HF-ALD, 0.42CeNi/Al₂O₃HF-ALD, and 0.75CeNi/Al₂O₃HF-ALD was 7.4 wt.%, 3.6 wt.%, 3.3wt.%, and 2.5 wt.%, respectively, indicating that CeO₂ did inhibit coke formation. The coke inhibiting capacity of CeO₂ could be ascribed to the enhanced dissociative adsorption of CO₂ on CeO₂, as discussed in TPSR.

 O_2 -TPO was conducted to further study of carbon deposition on spent Ni/Al₂O₃NP-ALD and CeNi/Al₂O₃NP-ALD, after dry reforming of methane at 850 °C for 72 h, as shown in in Figure 11. Peaks that appeared below 300 °C for both catalysts could be related to carbidic carbon (C_{α}) on nickel.^{38, 54, 55} The higher temperature of the carbon species could be ascribed to amorphous carbon (C_{β}),^{38, 54, 55} 605 °C for Ni/Al₂O₃NP-ALD, and 565 °C for CeNi/Al₂O₃NP-ALD, respectively. The lower oxidation temperature for CeO₂ promoted catalysts could be due to the oxygen storage and release capacity of CeO₂, which was similar to the CO₂-TPO process discussed earlier. In addition, the notable peak at 660 °C for Ni/Al₂O₃NP-ALD could be ascribed to graphitic carbon (C_{γ}),^{38, 54-56} whereas no C_{γ} peak was detected for CeNi/Al₂O₃NP-ALD. This

meant that CeO_2 could have a strong inhibiting effect on coke formation during reaction, especially the graphitic carbon.⁴³

Figure 11. TPO profiles of spent Ni/Al₂O₃NP-ALD, CeNi/Al₂O₃NP-ALD after 72 h of DRM at 850 °C.

4. Conclusion

In this work, CeO₂ was introduced onto ALD-synthesized nickel nanoparticles on 4-channel structured α -Al₂O₃ hollow fibers and α -Al₂O₃ nanoparticles using an incipient wetness method. Various characterizations (i.e., XRD, XPS, TRP, TPSR, SEM-EDS, and TPO) indicated that the introduced CeO₂ could weakened the NiO-Al₂O₃ interaction and free NiO from NiO-Al₂O₃ or NiAl₂O₄ by the formation of stable CeAlO₃ under a reductive atmosphere, thereby improving the reducibility of NiO species. With the introduction of CeO₂, more NiAl₂O₄ could be gradually reduced to the metallic nickel by the reaction product (i.e., H₂ and CO) during the DRM reaction at 850 °C. In addition, the incompletely-reduced NiAl₂O₄ could stabilize the metallic nickel nanoparticles. Remarkably, CeNi/Al₂O₃NP-ALD had an activation phenomena lasting 360 h, which was 7.5 times longer that of Ni/Al₂O₃NP-ALD. The optimal CeNi/Al₂O₃HF-ALD catalyst, with Ce/Ni=0.42, reached a methane reforming rate of 2,410 Lh⁻¹g_{Ni}⁻¹ at 850 °C. This was 19%

higher than that of the Ni/Al₂O₃HF, and the catalyst exhibited an excellent performance after regeneration. In addition, the strong oxygen storage and release properties of CeO_2 improved the CO_2 dissociative adsorption reaction, and led to less carbon deposition and, thereby, higher stability for nickel-based catalysts.

Acknowledgements

This work was supported by the U.S. Department of Energy (Contract Number DE-FE0029760). We thank DOE/NETL Project Manager, Bruce W. Lani, for his assistance and support.

References:

- W. Zhou, J.-G. Chen, K.-G. Fang and Y.-H. Sun, *Fuel. Process. Technol*, 2006, 87, 609-616.
- D. Tristantini, S. Lögdberg, B. Gevert, Ø. Borg and A. Holmen, *Fuel. Process. Technol*, 2007, 88, 643-649.
- 3. H. Wang and E. Ruckenstein, *Appl. Catal. A: Gen*, 2000, **204**, 143-152.
- A. M. O'Connor, Y. Schuurman, J. R. Ross and C. Mirodatos, *Catal. Today*, 2006, 115, 191-198.
- P. G. Schulz, M. G. Gonzalez, C. E. Quincoces and C. E. Gigola, *Ind. Eng. Chem. Res*, 2005, 44, 9020-9029.
- C. Carrara, J. Munera, E. A. Lombardo and L. M. Cornaglia, *Top. Catal*, 2008, **51**, 98-106.
- M. M. Barroso-Quiroga and A. E. Castro-Luna, *Int. J. Hydrog. Energy*, 2010, 35, 6052-6056.
- Z. Hou, P. Chen, H. Fang, X. Zheng and T. Yashima, *Int. J. Hydrog. Energy*, 2006, **31**, 555-561.
- F. Pompeo, N. N. Nichio, M. G. González and M. Montes, *Catal. Today*, 2005, 107, 856-862.
- 10. G. Li, L. Hu and J. M. Hill, Appl. Catal. A: Gen, 2006, 301, 16-24.

- 11. J. Zhang, H. Xu, X. Jin, Q. Ge and W. Li, Appl. Catal. A: Gen, 2005, 290, 87-96.
- 12. Z. Shang, S. Li, L. Li, G. Liu and X. Liang, Appl. Catal. B: Environ, 2017, 201, 302-309.
- L. Zhou, Y. Guo, Q. Zhang, M. Yagi, J. Hatakeyama, H. Li, J. Chen, M. Sakurai and H. Kameyama, *Appl. Catal. A: Gen*, 2008, 347, 200-207.
- Z. Qin, J. Ren, M. Miao, Z. Li, J. Lin and K. Xie, *Appl. Catal. B: Environ*, 2015, 164, 18-30.
- 15. L. Zhou, L. Li, N. Wei, J. Li and J. M. Basset, *ChemCatChem*, 2015, 7, 2508-2516.
- L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding and X. Lu, *RSC Adv*, 2017, 7, 33143-33154.
- 17. P. Littlewood, S. Liu, E. Weitz, T. J. Marks and P. C. Stair, *Catal. Today*, 2019.
- C. Jiménez-González, Z. Boukha, B. de Rivas, J. J. Delgado, M. Á. Cauqui, J. R. González-Velasco, J. I. Gutiérrez-Ortiz and R. López-Fonseca, *Appl. Catal. A: Gen*, 2013, 466, 9-20.
- 19. Y.-g. Chen and J. Ren, *Catalysis Letters*, 1994, **29**, 39-48.
- S. Therdthianwong, N. Summaprasit, N. Junpanichravee and A. Therdthianwong, *Asian J. Energy Environ*, 2002, 3, 1-25.
- 21. S. Sengupta, K. Ray and G. Deo, Int. J. Hydrog. Energy, 2014, 39, 11462-11472.
- S. Therdthianwong, A. Therdthianwong, C. Siangchin and S. Yongprapat, *Int. J. Hydrog. Energy*, 2008, **33**, 991-999.
- N. Laosiripojana, W. Sutthisripok and S. Assabumrungrat, *Chem. Eng. J*, 2005, **112**, 13-22.
- J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong and C. Hu, *Int. J. Hydrog. Energy*, 2011, 36, 7094-7104.
- 25. M. Goula, A. Lemonidou and A. Efstathiou, J. Catal, 1996, 161, 626-640.
- 26. H. Liu, X. Zou, X. Wang, X. Lu and W. Ding, J. Nat. Gas. Chem, 2012, 21, 703-707.
- 27. W. Zheng, J. Zhang, Q. Ge, H. Xu and W. Li, Appl. Catal. B: Environ, 2008, 80, 98-105.
- S. Damyanova, B. Pawelec, R. Palcheva, Y. Karakirova, M. C. Sanchez, G. Tyuliev, E. Gaigneaux and J. Fierro, *Appl. Catal. B: Environ*, 2018, 225, 340-353.
- 29. Z. Shi, Y. Zhang, C. Cai, C. Zhang and X. Gu, Ceram. Int, 2015, 41, 1333-1339.
- 30. Z. Shang, S. Li, Q. Wang, X. Gu and X. Liang, *AIChE J*, 2018, **64**, 2625-2631.

- 31. K. Kamonsuangkasem, S. Therdthianwong, A. Therdthianwong and N. Thammajak, *Appl. Catal. B: Environ*, 2017, **218**, 650-663.
- 32. M. A. Peck and M. A. Langell, *Chem. Mater*, 2012, 24, 4483-4490.
- W. Kessels, H. Knoops, S. Dielissen, A. Mackus and M. Van de Sanden, *Appl. Phys. Lett*, 2009, 95, 013114.
- W. Setthapun, W. D. Williams, S. M. Kim, H. Feng, J. W. Elam, F. A. Rabuffetti, K. R. Poeppelmeier, P. C. Stair, E. A. Stach and F. H. Ribeiro, *J. Phys. Chem. C*, 2010, 114, 9758-9771.
- 35. T. D. Gould, A. M. Lubers, B. T. Neltner, J. V. Carrier, A. W. Weimer, J. L. Falconer and J. W. Medlin, *J. Catal*, 2013, **303**, 9-15.
- 36. S. Chen, L. Zeng, H. Tian, X. Li and J. Gong, ACS Catal, 2017, 7, 3548-3559.
- Y. Liu, Y. Wu, Z. Akhtamberdinova, X. Chen, G. Jiang and D. Liu, *ChemCatChem*, 2018, 10, 4689-4698.
- 38. C. Tang, L. Liping, L. Zhang, L. Tan and L. Dong, *Kinet. Catal*, 2017, **58**, 800-808.
- S. Damyanova, B. Pawelec, K. Arishtirova, M. M. Huerta and J. Fierro, *Appl. Catal. B:* Environ, 2009, 89, 149-159.
- 40. Z. Li and K. Sibudjing, *ChemCatChem*, 2018, **10**, 2994-3001.
- I. Luisetto, S. Tuti, C. Battocchio, S. L. Mastro and A. Sodo, *Appl. Catal. A: Gen*, 2015, 500, 12-22.
- 42. R. K. Singha, S. Das, M. Pandey, S. Kumar, R. Bal and A. Bordoloi, *Catal Sci Technol*, 2016, **6**, 7122-7136.
- 43. W. Chen, G. Zhao, Q. Xue, L. Chen and Y. Lu, *Appl. Catal. B: Environ*, 2013, **136**, 260-268.
- 44. M. Zhang, J. Zhang, Y. Wu, J. Pan, Q. Zhang, Y. Tan and Y. Han, *Appl. Catal. B: Environ*, 2019, **244**, 427-437.
- 45. C. Papadopoulou, H. Matralis and X. Verykios, in *Catalysis for alternative energy generation*, Springer, 2012, pp. 57-127.
- 46. H. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P. Da Costa and M. E. Galvez, *Fuel*, 2016, **182**, 8-16.
- D. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna and Y. Yang, *J. Catal*, 2009, 266, 380-390.

- 48. J. Chen, Q. Wu, J. Zhang and J. Zhang, *Fuel*, 2008, **87**, 2901-2907.
- 49. Q. Chen, J. Zhang, B. Pan, W. Kong, Y. Chen, W. Zhang and Y. Sun, *Chem. Eng. J*, 2017, **320**, 63-73.
- 50. M. Zhang, J. Shengfu, H. Linhua, Y. Fengxiang, L. Chengyue and L. Hui, *Chinese Journal of Catalysis*, 2006, **27**, 777-781.
- G. Pantaleo, V. La Parola, F. Deganello, R. Singha, R. Bal and A. Venezia, *Appl. Catal. B: Environ*, 2016, **189**, 233-241.
- 52. S. Damyanova, C. Perez, M. Schmal and J. M. Bueno, *Appl. Catal. A: Gen*, 2002, **234**, 271-282.
- 53. J. Shyu, W. Weber and H. Gandhi, J. Phys. Chem, 1988, 92, 4964-4970.
- 54. L. Li, S. He, Y. Song, J. Zhao, W. Ji and C.-T. Au, J. Catal, 2012, 288, 54-64.
- 55. L. Chen, Y. Lu, Q. Hong, J. Lin and F. Dautzenberg, *Appl. Catal. A: Gen*, 2005, **292**, 295-304.
- H. Düdder, K. Kähler, B. Krause, K. Mette, S. Kühl, M. Behrens, V. Scherer and M. Muhler, *Catal Sci Technol*, 2014, 4, 3317-3328.

