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How well do self-interaction corrections repair the over-
estimation of static polarizabilities in density functional
calculations?

Sharmin Akter,a Jorge A. Vargas,b Kamal Sharkas,c Juan E. Peralta,c Koblar A. Jackson,c∗

Tunna Baruah,ad and Rajendra R. Zopead∗

We examine the effect of removing self-interaction error (SIE) on the calculation of molecular
polarizabilities in the local spin density (LSDA) and generalized gradient approximations (GGA).
To this end, we utilize a database of 132 molecules taken from a recent benchmark study [Hait
and Head-Gordon, Phys. Chem. Chem. Phys. 2018, 20, 19800 ] to assess the influence of SIE
on polarizabilities by comparing results with accurate reference data. Our results confirm that the
general overestimation of molecular polarizabilities by these density functional approximations can be
attributed to SIE. However, removing SIE using the Perdew-Zunger self-interaction-correction (PZ-
SIC) method, implemented using the Fermi-Löwdin Orbital SIC approach, leads to an underestimation
of molecular polarizabilities, showing that PZ-SIC overcorrects when combined with LSDA or GGA.
Application of a recently proposed locally scaled SIC [Zope et al., J. Chem. Phys. 2019, 151,
214108 ] is found to provide more accurate polarizabilities. We attribute this to the ability of the
local scaling scheme to selectively correct for SIE in the regions of space where the correction is
needed most.

1 Introduction

Correctly modeling the behavior of molecular complexes requires
an electronic structure method that accurately describes the in-
teraction of a molecule with an external electric field. This is
necessary, for example, to properly describe the response1,2 of a
molecule to the dipole of a second, neighboring molecule. The
static dipole polarizability is therefore a key quantity, since it de-
scribes the response of a molecule’s electron charge distribution to
an applied field1,3. Post-Hartree-Fock wave function approaches,
such as the coupled cluster method with singles, doubles and
perturbative triples, CCSD(T)4, successfully predict polarizabil-
ities close to experimental values for systems with predominantly
single–reference character,5 but can be computationally expen-
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sive for large molecules. Kohn-Sham density functional theory
(DFT)6–8 is a computationally efficient alternative, but the accu-
racy of DFT calculations depends on the density functional ap-
proximation (DFA) used. A number of studies have been carried
out to assess the performance of DFAs for predicting polarizabili-
ties.9–17 Recently, Hait and Head-Gordon5 compared the results
of 60 DFAs for the static polarizabilities of 132 atoms and small
molecules to CCSD(T) reference values. The results show that
the calculated polarizabilities generally improve with the sophis-
tication of the DFAs, from local spin density approximations (LS-
DAs), to generalized gradient approximations (GGAs), to meta-
GGAs, but with a general tendency to overestimate reference val-
ues. Self-interaction error (SIE) is identified in Ref. 5 as the likely
explanation for the overestimation by the DFAs, justified because
partially removing SIE via the use of hybrid DFAs improves the re-
sults. SIE originates from an incomplete cancellation of the self-
Coulomb energy by the self-exchange energy in a DFA, causing
the effective potential seen by an electron in a DFA calculation to
decay exponentially, instead of as −1/r, for a neutral finite sys-
tem. This, in turn, results in valence electrons that are too weakly
bound and polarizabilities that are too large.

The Perdew–Zunger self–interaction correction (PZ–SIC)18 re-
moves the SIE from a DFA on an orbital-by-orbital basis, and it
has been used in numerous studies of the effects of SIE in cal-
culations for atoms, molecules, and solids.19–71 The failure of
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density functional approximations (DFAs) in the prediction of
dipole and higher-order polarizabilities, especially, for molecu-
lar chains and polymers has been discussed extensively by several
groups.50,64,72–90

Recent calculations showed that the use of PZ-SIC led to im-
proved polarizabilities for atoms from H to Ar88 and for water
clusters from monomer to hexamers89. Removing SIE tended to
decrease the DFA polarizabilities toward accurate reference val-
ues, but in a majority of cases resulted in over-correction, yield-
ing polarizabilities that are too small. A similar over-correction
has been found for properties such as bond lengths and atomiza-
tion energies, prompting attempts to scale down the magnitude
of the SIC terms in PZ-SIC.47,48,91 Santra and Perdew recently
provided insight into the over-correction problem, demonstrat-
ing that removing self-interaction from standard DFAs using the
PZ approach results in incorrect exchange-correlation energies
in the limit of uniform densities where the DFAs are correct by
construction92. Zope et al.93 recently proposed a locally scaled
self-interaction correction (LSIC), where the SIC energy density
is scaled at each point in space depending on the nature of the
density at that point. The scaling parameter was chosen to elim-
inate the SIC for uniform densities, while applying full SIC when
the density is one-electron-like. The result is a method that, like
PZ-SIC, is exact for any one-electron density, but unlike PZ-SIC, is
also exact for uniform densities. LSIC, when combined with the
PW92 LSDA functional94 (LSIC-LSDA), provides93 results that
are comparable to PZ-SIC-LSDA for properties like chemical reac-
tion barriers that are strongly impacted by SIE, while also yielding
significantly better atomization energies than those of LSDA and
PZ-SIC-LSDA, with results comparable to, or better than, those
obtained using the Perdew, Burke, and Ernzerhof (PBE) GGA95.

The purpose of the present work is to assess how removing SIE
affects the performance of DFAs in predicting the static dipole
polarizabilities of molecules using both PZ-SIC and LSIC. To this
end, we employ an implementation of both approaches within the
Fermi-Löwdin orbital (FLO)-SIC framework,96,97 and we evaluate
the static dipole polarizabilities of the atoms and molecules in the
benchmark set of Hait and Head-Gordon5 using LSDA and PBE
and their PZ-SIC and LSIC counterparts, and compare the results
with the CCSD(T) values of Ref. 5.

2 Methods and computational details
In PZ-SIC, the exchange-correlation (XC) energy is given by

ESIC−DFA
XC [ρ↑,ρ↓] = EDFA

XC [ρ↑,ρ↓]−
Nσ

∑
i,σ
{U [ρiσ ]+EDFA

XC [ρiσ ,0]}, (1)

where i runs over the Nσ occupied orbitals of spin σ , and ρiσ is the
ith orbital density. The terms U [ρiσ ] and EDFA

XC [ρiσ ,0] are the ex-
act self-Coulomb and approximate self-exchange-correlation en-
ergies, respectively. ESIC−DFA

XC is orbital-dependent; its value de-
pends on the choice of the orbitals used to compute it. Because
of the self-Coulomb term in Eq. 1, the energy-minimizing orbitals
tend to be localized. Determining these orbitals in the variational
implementation of PZ-SIC requires satisfying a set of conditions
known as the localization equations98 (LE), in addition to finding

the self-consistent total electron density. There are O(N2) of these
equations for N occupied orbitals and satisfying them is compu-
tationally expensive.

Pederson and coworkers96 recently proposed using FLOs99–101

as the localized orbitals in the PZ-SIC scheme. In the FLO-SIC
method,96 optimizing the FLOs replaces satisfying the LE as the
means to minimize the PZ-SIC energy. The FLOs are derived from
the Kohn-Sham orbitals ψ jσ as

φ
FO
iσ (r) =

∑ j ψ∗jσ (aiσ )ψ jσ (r)√
∑ j |ψ jσ (aiσ )|2

=
ρ̃σ (aiσ ,r)√

ρσ (aiσ )
≡∑

j
T σ

i j ψ jσ (r), (2)

where ρ̃σ is the single-particle Kohn-Sham density matrix, and aiσ

are points in real space called Fermi orbital descriptors, or FODs.
Any set of orbitals spanning the same occupied space leads to the
same Fermi orbitals (FO), making the FLO-SIC method unitarily
invariant. The FO are normalized, but not orthonormal, so they
are then orthogonalized using the Löwdin symmetric orthogonal-
ization scheme102, yielding the orthonormal FLOs that are used
to evaluate the SIC energy (Eq. 1). Since different FOD positions
yield different FLOs, and therefore different total energies, min-
imizing the total energy in FLO-SIC implies finding optimal FOD
positions. Gradients of the SIC energy with respect to the FODs
can be computed103,104, allowing the FOD positions to be opti-
mized using standard gradient optimizers. While using the FLOs
results in slightly higher total energies compared to PZ-SIC calcu-
lations in which the LE are satisfied, physical properties computed
using the two approaches are virtually the same.61

In the LSIC method,93 an iso-orbital indicator is used to iden-
tify the one-electron regions. In this work we use zσ (~r) =

τW
σ (~r)/τσ (~r), where τW

σ and τσ are the von Weizsacker and total
positive-definite kinetic energy densities of spin σ , respectively.
This iso-orbital indicator is used to locally scale down the SIC en-
ergy density:

ELSIC−DFA
XC = EDFA

XC [ρ↑,ρ↓]−
occ

∑
i,σ
{ULSIC[ρiσ ]+ELSIC

XC [ρiσ ,0]} , (3)

where

ULSIC[ρiσ ] =
1
2

∫
d~r zσ (~r)ρiσ(~r)

∫
d~r′

ρiσ (~r′)

|~r−~r′|
, (4)

and
ELSIC

XC [ρiσ ,0] =
∫

d~r zσ (~r)ρiσ(~r) ε
DFA
XC [ρiσ ,0]. (5)

zσ is bound between 0 and 1, with 0 corresponding to the uni-
form electron density limit where the DFAs are exact by construc-
tion, and 1 to the one-electron density limit where the full PZ-SIC
correction yields exact results. In this work, the SIC potential is
scaled down using the same scaling factor, resulting in the follow-
ing Hamiltonian105,
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H j = −1
2

∇
2 + v(~r)+

∫
ρ(~r′)

|~r−~r′|
d~r′+ vDFA

XC ([ρ])

−zσ (~r)

(∫
ρ j(~r′)

|~r−~r′|
d~r′+ vDFA

XC ([ρ j])

)
. (6)

In this Hamiltonian, terms related to the variation of the en-
ergy with respect to the scaling factor are neglected. How-
ever, using the Hamiltonian in Eq. 6 self-consistently is expected
to capture the most important changes to the density brought
about by the scaling. Alternatively, Eq. 6 can be viewed as a
model Hamiltonian analogous to other approaches designed to
provide improved results for polarizabilities and related proper-
ties.13,106–110 Self-consistent FLO-SIC densities are used as start-
ing densities (initial guesses) for LSIC calculations using the
above Hamiltonian.

The static dipole polarizability tensor αi j is defined from the ex-
pansion of the total energy E in terms of an applied static electric
field ~F:

E(~F) = E(0)+ ∑
i

∂E
∂Fi

Fi +
1
2 ∑

i j

∂ 2E
∂Fi∂Fj

FiFj + · · · (7)

= E(0)−∑
i

µiFi−
1
2 ∑

i j
αi jFiFj + · · · , (8)

where E(0) is the energy at zero electric field and µi and Fi are the
ith component of the dipole moment and the applied electric field,
respectively. We compute the components of the polarizability
tensor using finite differences of the dipole moment obtained in
the presence of different applied fields,

αi j =
∂ µi

∂Fj

∣∣∣∣
Fj=0

= lim
Fj→0

µi(Fj)−µi(−Fj)

2Fj
. (9)

Electric fields were applied in the ±x, ±y, and ±z directions to
determine the components of the polarizability tensor for each
molecule. We discuss the values of the field strengths used in
Sec. III below. The isotropic polarizability αiso is calculated from
the trace of the polarizability tensor

αiso =
1
3

3

∑
i

αii (10)

and used for comparisons with reference values.5

All calculations reported in this work were carried out using
the FLOSIC code,111 based on the Gaussian-orbital-based NRL-
MOL code.112–114 NRLMOL uses Cartesian Gaussian basis sets115

that were variationally optimized for the PBE functional. To the
default basis functions, we added one diffuse single Gaussian or-
bital of s, p, and d-type to ensure converged polarizabilities. The
exponent for these additional functions was obtained from the
relation β (N +1) = β (N)2/β (N−1), where β (N) is the exponent
of the Nth Gaussian in the basis for a given atom. Additional in-
formation about the adequacy of these basis sets is given in the
next paragraph. In all calculations we employ NRLMOL’s adap-

tive integration grid116. We used the PW92 LSDA functional94

for the entire test set and the PBE functional95 for a subset of
it. Self-consistent FLO-SIC calculations were performed using the
algorithm of Pederson and coworkers97 and an SCF convergence
criterion of 10−8 Ha. The optimal FOD configuration for each
molecule was obtained by minimizing FOD gradients104 below a
tolerance of 10−4 Ha/Bohr. (See the next section for further dis-
cussion of the FOD optimizations.) For brevity we refer to FLO-
SIC-LSDA/FLO-LSIC-LSDA calculations as SIC-LSDA/LSIC-LSDA.
The optimal FODs obtained from SIC-LSDA and SIC-PBE calcu-
lations are used in subsequent LSIC-LSDA and LSIC-PBE calcula-
tions without further relaxation.

Recently, Brakestad et al. reported117 a careful study of the
effect of using finite basis sets to compute static polarizabili-
ties. They computed polarizabilities for molecules in the Hait and
Head-Gordon benchmark set5 using a multi-wavelet (MW) basis
that can be adjusted to achieve the basis set limit. They report
linear response (LR) PBE polarizabilities for 15 of the molecules.
We repeated these calculations using the NRLMOL basis115 with
an additional exponent as described above, as well as a series of
standard quantum chemistry basis sets. The GAUSSIAN software
package118 was used for the LR calculations, along with Carte-
sian forms of all the basis sets. The root mean square relative
error (RMSRE) for the NRLMOL basis polarizabilities relative to
the basis set limit MW results is 0.13%. The differences between
polarizabilities computed with and without self-interaction cor-
rections discussed below are significantly larger than this. For
comparison, triple-, quadruple-, and quintuple-ζ basis sets have
RMSREs of 4.25%, 1.58%, and 0.66%, respectively, relative to
the MW results (see the supplementary information for more de-
tails). The root mean square (RMS) absolute polarizability error
with the NRLMOL basis is 0.016 Å3, while the triple-, quadruple-,
and quintuple-ζ basis sets give RMS absolute errors of 0.051 Å3,
0.021 Å3, and 0.007 Å3, respectively (see the SI for more details).

3 Results and discussion
The data set of Hait and Head-Gordon5 contains 132 chemical
species (small molecules and a few isolated atoms) of main group
elements up to Cl. These were divided into two groups: the non
spin-polarized (NSP) set with N = 75, and the spin-polarized (SP)
set with N = 57. A subset of the NSP molecules was used to test
the effect on the polarizabilities of different procedures for opti-
mizing the FODs. In one approach, the FODs optimized in zero
applied field were used for all finite field calculations without fur-
ther relaxation; in the second, the zero-field optimized FODs were
used as starting points for independent FOD optimizations in the
finite field calculations. The differences in results between the
two approaches were much smaller than the differences between
PZ-SIC and DFT polarizabilities (see the supplemental informa-
tion for more details). We therefore used the simpler zero-field-
optimized FODs for the finite field calculations. PBE polarizabil-
ities were calculated for the molecules in the NSP subset using
field strengths of 0.01, 0.005, and 0.001 a.u., respectively. Rel-
ative to the results obtained for the smallest field strength, the
results for 0.01 and 0.005 a.u. gave RMS relative differences of
2.09% and 0.48%, respectively, indicating that the results for the
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Fig. 1 Gaussian functions representing the relative errors (RE), with
respect to CCSD(T), for the calculated LSDA (black), SIC–LSDA (red),
and LSIC–LSDA (blue) static polarizabilities of the 132 species (NSP +
SP subsets). The means (µ) and standard deviations (σ) of the Gaussians
are identical to those of the respective RE distributions. The open and
filled circles indicate the REs of the selected species used in Fig. 2 (NSP)
and Fig. 3(SP), respectively. The choice of these “representatives" is
skewed to include more examples from the tails of the distributions in
order to highlight challenging cases.

smallest field are well-converged and that the 0.005 field strength
gives results that are still quite accurate. For the SP subset, we fol-
lowed Hait and Head-Gordon5 and used a field strength of 0.01
a.u., except for a few of the molecules that were sensitive to the
choice of field strength, for which a field strength of 0.001 was
used. We tested the adequacy of the choice 0.01 a.u. for 15 of the
molecules not deemed sensitive by computing PBE polarizabili-
ties using a field strength of 0.001. The mean relative difference
between the results for the two field strength choices is 1.3%.

We estimate the overall combined error in our results due to
the use of a finite basis and the choice of finite field strengths to
be less than 2.0%. As will be seen below, this is much smaller
than the effect of self-interaction on the polarizabilities.

The statistical errors for the calculated polarizabilities, αcal,
compared to the CCSD(T) reference values αref,5 are com-
puted using the absolute, δn = αn,cal −αn,ref, and relative (RE),
εn = ((αn,cal − αn,ref)/αn,ref)× 100%, deviations. We define the
mean error, ME = ∑

N
n=1 δn/N, mean absolute error, MAE =

∑
N
n=1 |δn|/N, maximum magnitude error, MAX = max{δn : 1≤ n≤

N}, mean relative error, MRE = ∑
N
n=1 εn/N, mean absolute rela-

tive error, MARE = ∑
N
n=1 |εn|/N, root mean square relative error,

RMSRE =
√

∑
N
n=1 ε2

n/N, and the maximum magnitude relative er-
ror, MAXRE = max{εn : 1≤ n≤ N}.

Table 1 shows the statistical errors for polarizabilities calcu-
lated with the LSDA, SIC–LSDA, and LSIC–LSDA methods for the
total NSP+SP, NSP, and SP test sets, along with the statistical er-
rors of the PBE, SIC–PBE, and LSIC–PBE methods for the NSP test
set. The individual isotropic polarizabilities for the molecules in
both NSP and SP subsets are available in the supplementary in-
formation. To give a visual representation of the RE, we plot nor-
malized Gaussian distributions with mean values and standard
deviations equal to those of the RE results for LSDA, SIC-LSDA,

and LSIC-LSDA, for the entire test set. The open and filled cir-
cles in Fig. 1 indicate the RE of representative molecules from the
NSP (filled) and SP (open) subsets chosen for plotting in Fig. 2
and Fig. 3, respectively. The LSDA RE distribution (black curve)
has a MRE of 8.15% and standard deviation of 7.42%, showing
that LSDA polarizabilities generally overestimate the reference
CCSD(T) values. Much of the width of this distribution results
from the REs of the SP subset. (See the supplementary informa-
tion for separate curves for the NSP and SP subsets.) The RMSRE
for the LSDA results is 11.01%. The corresponding SIC-LSDA RE
distribution (red curve) has a MRE of -10.11%, a standard de-
viation of 4.84%, and an RMSRE of 11.20%. The curve shows
that SIC corrects the LSDA polarizabilities towards the reference
values, on average, but overcorrects. There is significantly less
spread in the SIC–LSDA REs than in the LSDA values. Finally, the
LSIC–LSDA RE distribution (blue curve in Fig. 1) has a MRE of
only -1.49%, a standard deviation of 5.75%, and an RMSRE of
5.92%. The LSIC–LSDA method clearly gives results intermediate
between LSDA and SIC–LSDA on average, resulting in much bet-
ter overall performance compared to reference values. The width
of the LSIC-LSDA distribution is also intermediate between the
widths of the other two.

The LSDA and PBE functionals give very similar results for the
NSP subset of molecules. The ME, MAE, MRE, and MARE values
shown in Table 1 are nearly identical for the two methods. For the
self-interaction corrected results, SIC-PBE performs slightly better
than SIC-LSDA, with, for example, a MRE of -7.45% compared to
-9.82%. The RMSRE for SIC-PBE is 9.06%, compared to 10.79%
for SIC-LSDA. PBE-based calculations were not performed for the
SP subset.

As discussed elsewhere,119 using a common local scaling factor
for the self-Coulomb and self-exchange-correlation contributions
to the total energy is formally justified when both are expressed
in a gauge consistent way. This is the case for the LSDA, but not
for PBE or for the strongly constrained and appropriately normed
SCAN meta–GGA.120 However, tests have shown that LSIC–PBE
nonetheless produces good results in many cases119. For the
molecules in the NSP set, Table 1 shows that the errors obtained
using LSIC–PBE are very similar to the corresponding errors with
LSIC–LSDA. In calculations89 of polarizabilities for water clusters
LSIC–PBE results were found to be in very good agreement with
CCSD reference values.

Fig. 2 and Fig. 3 show the RE for 20 individual atoms or
molecules taken from each of the NSP and SP subsets, respec-
tively. In both figures, the species are ordered according to the RE
in LSIC-LSDA, from most negative to most positive. The species
are selected to cover the full range of REs, but those with large
positive and large negative values are over-represented in the
sampling. Outliers with LSIC–LSDA REs larger than +8% or less
than -11% account for roughly one quarter of the cases shown
in the figures, but represent less than 10% of all the cases. Ap-
proximately 80% of all the LSIC–LSDA REs are between -5 to 5%.
The figures show that in nearly all cases SIC–LSDA corrects the
LSDA polarizability toward the reference values, but overcorrects,
resulting in little overall improvement to the MARE. The RE for
the LSIC–LSDA polarizabilities typically lie between the LSDA and
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Table 1 Statistical errors, in Å3 (in % for RE–related errors), for the set of 132 species (NSP+SP) and the SP (N=57) and NSP (N=75) subsets
using CCSD(T)5 polarizabilities as reference. See text for the definition of the acronyms used for the errors. The last column indicates the molecules
corresponding to MAX (MAXRE).

Sets (N) Method ME(MRE) MAE(MARE) RMSRE MAX(MAXRE)
LSDA 0.15 (8.15) 0.40 (8.92) 11.01 -4.25 (57.46) Na2(FH−OH)

NSP+SP SIC-LSDA -0.48 (-10.11) 0.50 (10.37) 11.20 -5.13 (-28.71) Na2(NaH)
LSIC-LSDA 0.01 (-1.49) 0.22 (3.91) 5.92 3.34 (-27.97) Na(NaH)
LSDA 0.30(8.82) 0.30 (8.82) 10.28 1.03 (34.93) NaCl(H)

NSP

SIC-LSDA -0.35 (-9.82) 0.37 (9.93) 10.79 -1.89 (-28.71) NaH(NaH)
LSIC-LSDA -0.05 (-2.40) 0.19 (3.66) 5.65 3.03 (-27.97) Mg2(NaH)
PBE 0.29(8.12) 0.29 (8.12) 9.23 1.67 (25.05) Mg(NaCl)
SIC-PBE -0.23 (-7.45) 0.35 (8.22) 9.06 3.24 (-27.02) Mg2(NaH)
LSIC-PBE -0.03 (-1.84) 0.18 (3.45) 5.59 2.39 (-25.65) Mg(NaH)
LSDA -0.04 (7.28) 0.54 (9.06) 11.90 -4.25 (57.46) Na2(FH−OH)

SP SIC-LSDA -0.65 (-10.49) 0.67 (10.96) 11.71 -5.13 (-24.65) Na2(O3)
LSIC-LSDA 0.09 (-0.29) 0.26 (4.24) 6.26 3.34 (26.22) Na(Be)
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Fig. 2 The relative errors (RE), with respect to CCSD(T), for the cal-
culated static polarizabilities of 20 species taken from the NSP subset.
The REs of these 20 molecules are depicted (open circles) on the cor-
responding Gaussian distribution of Fig. 1. To avoid an expanded scale,
some data points are replaced by the corresponding RE values.

SIC–LSDA REs. This is reasonable, given that LSIC represents a
scaling down of the full SIC, but it is not always the case. In
Fig. 2 there are several examples of LSIC–LSDA REs that are much
closer to the SIC–LSDA values than to the LSDA values. In Fig. 3
there are many examples where the LSIC–LSDA REs are closer to
the LSDA REs. In both figures there are also cases where the LSIC-
LSDA REs do not fall between the LSDA and SIC–LSDA values at
all.

Hait and Head-Gordon5 used the RMSRE to rank the perfor-
mance of various DFA’s.5. For example, for the PW92 and PBE
functionals, they find RMSREs of 11.93% (NSP+SP) and 9.64%
(NSP only). Our corresponding results shown in Table I, 11.01%
and 9.23% (NSP only), are very close to these. The SIC–LSDA
and SIC–PBE RMSREs are 11.20% and 9.06%, scarcely improv-
ing over the uncorrected DFAs. On the other hand, the RMSRE
for LSIC–LSDA is 5.92%, a significant improvement. This per-
formance is better than that of the best GGA included in Ref. 5
and better than most of the meta–GGAs . The LSIC–LSDA re-
sults are competitive with those of SCAN (RMSRE = 5.31%5).
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Fig. 3 The relative errors (RE), with respect to CCSD(T), for the calcu-
lated static polarizabilities of 20 species taken from the SP subset. The
REs of the 20 molecules are depicted (filled circles) on the corresponding
Gaussian distribution of Fig. 1. To avoid an expanded scale, some data
points are replaced by the corresponding RE values.

Many of the hybrid GGA’s and meta–GGAs included in Ref. 5 per-
form better than LSIC–LSDA, although B3LYP, perhaps the most
widely-used hybrid GGA, performs5 somewhat worse (RMSRE =
6.24%). The hybrid functionals partly address SIE by admixing
a fraction of orbital-dependent Hartree-Fock-type exchange into
the DFA.

Nine species were identified in Ref. 5 as the most challenging
for DFAs: Be, H, CN, C2H, H2O−Li, Li2, Na, NaLi, and NaH.
LSIC–LSDA gives good results (errors less than 1.6% relative to
the reference values) for five of these: H, CN, H2O−Li, Li2, and
NaLi. Nevertheless, significant errors remain in the LSIC–LSDA
polarizabilities for the other four molecules.

4 Summary and Conclusions
In this work we analyzed the effect of self-interaction error
on molecular polarizabilities calculated using DFT methods for
a database5 of 132 molecules containing two distinct subsets,
NSP(N = 75) and SP(N = 57). For these test sets, we evaluated
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molecular polarizabilities using LSDA, SIC–LSDA, and a recently
developed approach that scales down the SIC locally, LSIC–LSDA.
For the NSP dataset, we also analyzed results for the PBE func-
tional, SIC–PBE, and LSIC–PBE. We calculated various measures
of the statistical errors using CCSD(T) polarizabilities5 as the ref-
erence. Our results from both NSP and SP sets show that the
plain DFAs (LSDA and PBE) significantly overestimate the polar-
izabilities, in line with the work of Hait and Head-Gordon.5The
MARE is 8.92% for the complete NSP+SP data set with LSDA and
8.12% using PBE for the NSP data set. Removing self-interaction
using PZ-SIC reverses this overestimation, but over corrects, giv-
ing an underestimation of the SIC–LSDA polarizabilities with a
MARE of 10.37% from the CCSD(T) reference values. Use of the
LSIC–LSDA method reduces the MARE to 3.91% and, while there
remain cases where the RE in LSIC-LSDA polarizabilities is large,
as seen in Fig. 2 and Fig. 3, LSIC–LSDA generally brings the polar-
izabilities for the atoms and molecules in the data set much closer
to the reference CCSD(T) values. The LSIC method is designed to
maintain the full PZ-SIC correction in regions in which the density
is one-electron-like, while scaling down the SIC in many-electron
regions, in particular in regions where the density is slowly vary-
ing. The success of LSIC–LSDA compared to SIC–LSDA suggests
that PZ-SIC over-corrects for electron self-interaction in many-
electron regions.

The results presented here indicate that systematic advances
in the development of self-interaction free DFT methods can im-
prove not only thermochemical, but also density-dependent prop-
erties. The point-wise scaling in the LSIC approach represents a
new pathway toward accurate self-interaction free density func-
tional approximations. The LSIC method may be further im-
proved by identifying better iso-orbital indicators121–123 than the
ratio of kinetic energy densities used in this work, or by using the
scaling functions to satisfy additional exact properties of density
functionals. Research along these lines is underway.122,123
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