Physical Chemistry Chemical Physics

PCCP

Electron Confinement Meet Electron Delocalization: Non-Additivity and Finite-Size Effects in the Polarizabilities and Dispersion Coefficients of the Fullerenes

Journal:	Physical Chemistry Chemical Physics			
Manuscript ID	CP-ART-10-2020-005638.R1			
Article Type:	Paper			
Date Submitted by the Author:	07-Jan-2021			
Complete List of Authors:	Lao, Ka Un; Cornell University Yang, Yan; Cornell University DiStasio Jr., Robert; Cornell University			

SCHOLARONE[™] Manuscripts

Electron Confinement Meet Electron Delocalization: Non-Additivity and Finite-Size Effects in the Polarizabilities and Dispersion Coefficients of the Fullerenes

Ka Un Lao,^{1,*} Yan Yang,^{1,*} and Robert A. DiStasio Jr.^{1,†}

¹Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA

(Dated: January 14, 2021)

In this work, we used finite-field derivative techniques and density functional theory (DFT) to compute the static isotropic polarizability series (α_{ℓ} with $\ell = 1, 2, 3$) for the C₆₀-C₈₄ fullerenes and quantitatively assess the intrinsic non-additivity in these fundamental response properties. By comparing against classical models of the fullerenes as conducting spherical shells (or solid spheres) of uniform electron density, a detailed critical analysis of the derived effective scaling laws ($\alpha_1 \sim N^{1.2}$) $\alpha_2 \sim N^{2.0}, \alpha_3 \sim N^{2.7}$) demonstrates that the electronic structure of finite-sized fullerenes—a unique dichotomy of electron confinement and delocalization effects due to their quasi-spherical cage-like structures and encapsulated void spaces—simultaneously limits and enhances their quantum mechanical response to electric field perturbations. Corresponding frequency-dependent polarizabilities were obtained by inputting the α_{ℓ} series into the hollow sphere model (within the modified single frequency approximation), and used to compute the molecular dispersion coefficients (C_n with n = 6, 8, 9, 10 needed to describe the non-trivial van der Waals (vdW) interactions in fullerenebased systems. Using first-order perturbation theory in conjunction with >140,000 DFT calculations, we also computed the non-negligible zero-point vibrational contributions to α_1 in C₆₀ and C_{70} , thereby enabling a more accurate and direct comparison between theory and experiment for these quintessential nanostructures.

INTRODUCTION

The molecular polarizability (α_{ℓ}) describes the tendency of a molecule to form an induced multipole moment in the presence of an electric field (α_1 , dipole polarizability), field gradient (α_2 , quadrupole polarizability), field Laplacian (α_3 , octupole polarizability), and/or higher field derivatives.¹⁻⁴ Knowledge of the α_{ℓ} series is crucial when describing induction and dispersion/vdW interactions,^{4–6} predicting/understanding the spectroscopic signatures (*i.e.*, Raman, sum-frequency generation) of molecules and condensed matter,^{7,8} as well as developing next-generation polarizable force fields and machinelearning based intra-/inter-molecular potentials. As quantum mechanical response properties, the α_{ℓ} series is governed by complex many-body interactions (e.g., electron correlation, charge delocalization, secondary polarization), and tends to become more non-additive with increasing order and molecular size/complexity.^{1-4,9-13} From a theoretical point of view, an accurate and reliable description of α_{ℓ} can be quite demanding, and often requires sophisticated treatment of electron correlation in conjunction with large (and diffuse) basis sets.^{14–19} Experimental α_{ℓ} measurements are also challenging and susceptible to (zero-point) vibrational contributions, thermal effects, as well as origin and orientational dependencies.²⁰⁻²²

Through the Casimir-Polder (CP) relationship,²³ the non-additivity in α_{ℓ} is also reflected in the dispersion coefficients (C_n) , which govern the strength of the vdW

forces between molecules and materials. Since even slight variations in the (effective) vdW power laws can impact the structure, stability, and properties of a system,^{24–26} knowledge of how α_{ℓ} scales with system size is fundamental to understanding these ubiquitous non-bonded interactions. At the nanoscale, non-additivity in C_n is particularly important, as vdW forces are largely responsible for directing self-assembly and the energetic contributions from higher-order terms can be 50% of the leading-order C_6 component.^{27–29} Given that fullerenes, nanotubes, and multi-layer graphene already exhibit unusual scaling behavior^{24–26,30–36} at the C_6 level, enhanced non-additivity in the higher-order C_n is expected to have an even more profound effect on such nanostructures.

Of specific interest here are the fullerenes, which are characterized by quasi-spherical cage-like structures, encapsulated void spaces, and nearly uniform surface electron densities, thereby making them unique systems for studying non-additivity in the α_{ℓ} and C_n scaling land-scapes.^{24,37–40} For the popular fullerenes (*e.g.*, C₆₀ and C₇₀), α_1 and C_6 have been well-investigated by the-ory^{24,38,41-47} and experiment,^{22,48-53} with most studies reporting qualitatively similar values for these leadingorder terms (although direct comparison between theory and experiment has been difficult due to vibrational and thermal effects.^{20–22,45,54–56}) Theoretical studies^{24,38,40} have also shown that α_1 and C_6 exhibit strong non-additivity with increasing fullerene size as well as non-trivial quantum- and finite-size effects.^{39,57} However, there has been little work dedicated to the higher-order α_{ℓ} and C_n in the fullerenes, and many existing classical models^{37,58–64} for these quantities—which have largely been popularized by Tao, Perdew, and co-workers-have

^{*} These authors contributed equally to this work.

 $^{^{\}dagger}$ distasio@cornell.edu

yet to be validated using quantum mechanics and still rely on accurate α_1 (or even α_ℓ) values as input.

In this work, we address these limitations by computing ab initio values for the α_{ℓ} series ($\ell = 1, 2, 3$) in the C_{60} - C_{84} fullerenes using DFT and finite-field derivative techniques. With these values in hand, we obtain the molecular dispersion coefficients (C_n with n = 6, 8, 9, 10), quantitatively ascertain the intrinsic non-additivity in the α_{ℓ} (and C_n) series, and derive the corresponding effective scaling laws as a function of fullerene size. Detailed analysis of the *ab initio* data with respect to classical models that treat the fullerenes as conducting spherical shells or solid spheres demonstrates how the unique electronic structure of single-walled fullerenes—a complex dichotomy between electron confinement and delocalization effects-simultaneously limits and enhances their response to electric field perturbations. Analogous to the deviations from asymptotic vdW scaling laws observed at finite (nanoscale) distances, this analysis also demonstrates how quantum- and finite-size effects markedly alter the α_{ℓ} (and C_n) scaling landscapes in these quintessential nanostructures. We conclude this work by computing the non-negligible ($\approx 1-2\%$) zeropoint vibrational corrections^{20,65–67} to α_1 for C₆₀ and C_{70} , enabling a more accurate and direct comparison between experiment and theory for this fundamental response property.

RESULTS AND DISCUSSION

To begin, we computed static isotropic (electronic) polarizabilities (α_{ℓ} with $\ell = 1, 2, 3$) for the lowest-energy isomers of the C_{60} , C_{70} , C_{76} , C_{78} , and C_{84} fullerenes using finite-field derivatives at the SCAN0/Sadlej//SCAN0/6-31G(d) level (see the *Electronic Supplementary Informa*tion (ESI) for computational details, Table S1 for isomer comparisons, and Tables S7-S11 for optimized structures). Since the SCAN0⁶⁸ hybrid functional, which admixes 25% exact exchange into the SCAN⁶⁹ meta-GGA functional, combined with the Sadlej¹⁴ triple- ζ basis set, which has been optimized for molecular properties such as moments/polarizabilities, furnishes α_{ℓ} values to $\approx 1\%$ of benchmark quantum chemical methods for C_{20} (the smallest cage-like fullerene⁷⁰), this level of theory was used for the larger fullerenes in this work (see Table S2). Corresponding frequency-dependent polarizabilities $(\alpha_{\ell}(iu))$ were obtained within the modified singlefrequency approximation (MSFA)⁶³ by inputting α_{ℓ} into the hollow sphere (HS) model of Tao and Perdew,⁶¹ and used to compute C_n (n = 6, 8, 9, 10) via the CP integral.²³ All calculations were performed using $Q-Chem^{71}$ and FHI-aims.⁷²

The computed α_{ℓ} (and C_n) are plotted in Fig. 1 and summarized in Table I. For α_1 and C_6 , our values are in excellent agreement with the available theoretical data for the fullerenes (see Table S6). In particular, we

FIG. 1. Multipole polarizabilities (α_{ℓ} with $\ell = 1, 2, 3$) and homo-molecular dispersion coefficients (C_n with n = 6, 8, 10) plotted as a function of system size in the C₆₀– C₈₄ fullerenes. Quantities for the larger fullerenes (C_N with N = 70, 76, 78, 84) are plotted relative to the corresponding C₆₀ values. Also plotted are the effective scaling laws for α_{ℓ} (solid lines) and C_n (dashed lines), which were derived from fitting the data to a power law (aN^b) ansatz and depict the increasing non-additivity in the higher-order quantities.

find that the SCAN0/Sadlej α_1 value for C₆₀ (536.8 au) is significantly closer to the LR-CCSD/Zm3PolC value (555.3 au, with an error of 3.3%)⁴² than the LR-CC2/aug-cc-pVDZ value (623.7 au).⁴⁷ Since the LR-CCSD/Zm3PolC value⁴² is arguably the most accurate quantum mechanical calculation of this quantity available in the literature to date, this provides further evidence (in addition to our comparative study on C₂₀ in the ESI) that SCAN0/Sadlej will offer an acceptable compromise between accuracy and feasibility when computing the higher-order multipole polarizabilities in the

TABLE I. Values (in au) for the multipole polarizabilities (α_{ℓ} with $\ell = 1, 2, 3$; computed at the SCAN0/Sadlej//SCAN0/6-31G(d) level) and homo-molecular dispersion coefficients (C_n with n = 6, 8, 10; computed by inputting α_{ℓ} into the HS/MSFA model) in the C₆₀–C₈₄ fullerenes. Also provided are the effective scaling law parameters (and R^2 values) resulting from non-linear fits to power law (aN^b) ansätze (see Fig. 1). Higher-precision values for α_{ℓ} and all homo-/hetero-molecular C_n (n = 6, 8, 9, 10) can be found in Tables S3–S5.

		Ab Initia)	Ab Initio + HS/MSFA		
Molecule	$\alpha_{1}/10^{2}$	$\alpha_{2}/10^{4}$	$\alpha_{3}/10^{6}$	$C_{6}/10^{5}$	$C_8/10^7$	$C_{10}/10^9$
$C_{60}(I_h)$	5.368	4.281	3.319	0.990	4.207	14.620
$C_{70}(D_{5h})$	6.638	5.800	5.150	1.462	6.891	26.963
$\mathcal{C}_{76}(D_2)$	7.248	6.871	6.539	1.735	8.861	37.417
$C_{78}(C_{2v})$	7.542	7.217	6.910	1.863	9.639	41.138
$C_{84}(D_{2d})$	8.086	8.301	8.336	2.143	11.872	53.827
a	3.903	13.487	54.633	10.328	168.062	2505.686
b	1.206	1.970	2.696	2.246	3.041	3.812
R^2	0.994	1.000	0.998	0.996	0.999	0.999

FIG. 2. Top: System-size dependence of the semi-classical ℓ -dependent fullerene radii (obtained using quantum mechanical α_{ℓ} in the classical conducting spherical shell/solid sphere model formula, $R_{\ell} = \alpha_{\ell}^{1/(2\ell+1)}$) in the C₆₀-C₈₄ fullerenes. Also depicted are the corresponding estimated physical radii $(\langle R \rangle)$.⁷⁴ Bottom: Percent errors when predicting the higherorder α_{ℓ} and C_n under the classical assumption of a single radius $(R = R_1)$ per fullerene.

fullerenes. For the higher-order terms, α_2 and α_3 in Fig. 1 and Table I are the only *ab initio* values available to date. In previous studies,^{37,40,60–64} these quantities have been estimated using a classical formula derived by Tao, Perdew, and co-workers by considering a conducting spherical shell (or solid sphere) of uniform electron density with outer radius R and thickness t, namely,^{37,73}

$$\alpha_{\ell} \approx \alpha_{\ell}^{\text{model}} = R^{2\ell+1} \qquad 0 < t \le R. \tag{1}$$

Since these are among the simplest physically sound models for the fullerenes,^{37,57} we first discuss the models assumption that α_{ℓ} can be derived using a single radius per fullerene by inverting this formula to obtain an ℓ -dependent radius, *i.e.*, $R_{\ell} = \alpha_{\ell}^{1/(2\ell+1)}$. These R_{ℓ} values—along with the estimated (outer) physical radius of each fullerene $\langle R \rangle^{74}$ —are plotted against N in Fig. 2. From this figure, one can see that $R_1 \approx R_2 \approx R_3 \approx \langle R \rangle$ for C_{60} - C_{84} ; with mean signed deviations of -2.9% (R_1), +0.2% (R_2), and +1.5% (R_3), each R_ℓ agrees fairly well with $\langle R \rangle$, and the emerging picture is, as expected, qualitatively consistent with these classical models. In the same data, we also observe a weak (but still increasing) dependence of R_{ℓ} on ℓ as $R_3 \gtrsim R_2 \gtrsim R_1$ for each fullerene. Here, we argue that both of these observations can be rationalized by considering the unique electronic structure of the fullerenes, whose quasi-spherical cagelike structures and encapsulated void spaces lead to an essentially metallic electron density that is delocalized across the entire fullerene surface, yet largely confined to a thin surrounding shell. Unlike the classical spherical shell and solid sphere models—in which the density is confined to an infinitesimally thin shell surrounding the conductor³⁷—surface electrons on the fullerenes still

retain some degree of radial flexibility, which serves to enhance their (relative) response to electric field perturbations. This property manifests itself in the (albeit weak) growth of R_{ℓ} with ℓ observed above, which indicates enhanced non-additivity in the fullerenes beyond that due to the increasingly higher-order powers in the classical α_{ℓ} formula. In the same breath, the fact that the electrons on the fullerene surface are largely confined to a surrounding thin shell also simultaneously *limits* the radial extent of their quantum mechanical response to external electric fields. Evidence of this is seen in the qualitatively similar R_ℓ values in Fig. 2 that only weakly depend on ℓ ; although higher-order α_{ℓ} data is scarce, the dependence of R_{ℓ} on ℓ seems to be stronger for extended molecular systems like n-alkanes,⁷⁵ and is expected to be even more pronounced in conjugated systems like s-trans alkenes and polyacenes.⁷⁶

Although the differences among R_ℓ seem small, the errors made when predicting α_{ℓ} (and C_n) under the classical assumption of a single radius per fullerene can be substantial and warrant further discussion. Since an accurate determination of α_1 is most straightforward among the α_{ℓ} series, we first set $R = R_1 = \alpha_1^{1/3}$ for each fullerene (following previous work in Refs. $^{40,60,62-64,73}$) and re-compute α_2 and α_3 via the classical formula, $\alpha_{\ell} \approx \alpha_{\ell}^{\text{model}} = R^{2\ell+1}$. The corresponding errors, $\epsilon_{\alpha_{\ell}} \equiv$ $(\alpha_{\ell}^{\text{model}} - \alpha_{\ell})/\alpha_{\ell}$, are also plotted in Fig. 2, from which one can immediately see that these higher-order properties are substantially underestimated in C_{60} - C_{84} . With mean deviations of $14.8 \pm 1.5\%$ (α_2) and $26.9 \pm 1.6\%$ (α_3) , these errors are significant in magnitude and increase with ℓ ; such discrepancies can be traced back to the variability in R_{ℓ} (e.g., $R_3 \gtrsim R_2 \gtrsim R_1$), which becomes amplified by the increasingly higher-order powers in the classical formula. Also depicted are the errors which propagate into C_8 and C_{10} when inputting these α_ℓ values into the HS/MSFA model; with mean deviations of $13.0\pm 1.3\%$ (C₈) and $24.4\pm 2.0\%$ (C₁₀), the non-additivity in these quantities is also substantially underestimated, rendering them unsuitable for describing the non-trivial vdW interactions between fullerenes. Here, the errors in C_8 and C_{10} are quite similar to those in α_2 and α_3 , which follows from factoring α_{ℓ} out of the CP integral (which yields $C_8 \propto \alpha_1 \alpha_2$ and $C_{10} \propto \alpha_1 \alpha_3 + \alpha_2 \alpha_2$).^{40,61} We further note that the R values used to generate the error profile in Fig. 2 are not unique. Setting $R = \langle R \rangle$ is also physically justifiable, and overestimates α_1 by 9.4% and underestimates α_2 and α_3 by 1.0% and 9.9%, respectively;⁷⁷ since $\langle R \rangle \approx R_2$, the error is still substantial and simply redistributed onto α_1 and α_3 . Another logical choice for R arises from treating each fullerene as a spherical dielectric shell 78 with ε derived from the HOMO-LUMO gap.^{57,79} For C_{60} , this yields an R that is only 1.5% larger than R_1 and hence a similar error profile to that in Fig. 2; this also demonstrates that the models' assumption that each fullerene is metallic is far less

4

important than the classical single-radius approximation. Connections to modern vdW radii theory^{80,81} might also be interesting to consider here.

As the system size increases, the error introduced by using a single radius to predict α_2 and α_3 (or C_8 and C_{10}) is fairly constant and does not increase with N (see Fig. 2). Such system-size-independent deviations are reflected in the relatively small ($\approx 1.5\%$) standard deviations in $\epsilon_{\alpha_{\ell}}$ (and ϵ_{C_n}), and are primarily due to the fact that the variability among R_{ℓ} values also does not increase with N for C_{60} - C_{84} (cf. $R_2/R_1 = 1.04$ (1.03) versus $R_3/R_1 = 1.05 (1.05)$ for $C_{60} (C_{84})$). Physically speaking, this can be attributed to the unique topology of the fullerenes, in which the electron density is largely confined to a thin shell whose thickness does not grow with N;^{40,57,63} as discussed above, this limits the radial extent of the fullerene quantum mechanical response and suppresses the growth of R_{ℓ} with ℓ . Since this salient feature of the fullerenes can be qualitatively captured using a single radius (per fullerene), the classical spherical shell and solid sphere models are able to qualitatively account for the system-size dependence of α_{ℓ} (and C_n) in C₆₀-C₈₄. In the same breath, one can also attribute these system-size-independent deviations to the models' treatment of each fullerene as a single object instead of a collection of atoms;⁶³ in doing so, many-body interactions and electron delocalization effects-both of which are size-dependent, quantum mechanical in nature, and largely responsible for the non-additivity in these quantities—are also partially accounted for by these classical models. Quantitatively speaking, the classical approximation of a *single radius* per fullerene is simply not flexible enough for an accurate prediction of α_{ℓ} and C_n ; when computing C_n (in particular), more sophisticated models that account for the non-trivial ℓ -dependence of R_ℓ (e.g., HS/MSFA^{61,63})—in conjunction with the highquality ab initio α_{ℓ} values provided herein—are crucial for an accurate and reliable description of any vdW interactions involving these quintessential nanostructures.

To further explore how α_{ℓ} (and C_n) scale with fullerene size, we now derive the corresponding effective scaling laws by fitting our data to power law (aN^b) ansätze. The fitted functions are plotted in Fig. 1, and the resulting parameters (and R^2 values) are provided in Table I. With $R^2 > 0.99$ in all cases, these fits accurately describe the system-size dependence in these quantities, yielding negligible fitting errors of -0.04%, -0.02%, -0.22%for $\alpha_1, \alpha_2, \alpha_3$ (-0.21%, -0.22%, -0.38% for C_6, C_8, C_{10}). Here, we find that α_1 , α_2 , and α_3 scale as $\sim N^{1.2}$, $\sim N^{2.0}$, and $\sim N^{2.7}$ for the C₆₀-C₈₄ fullerenes; with exponents that substantially deviate from unity, these quantities are all strongly non-additive and become increasingly more so for larger ℓ . For α_1 , our finding that b = 1.21 is in excellent agreement with the TD-DFT results of Kauczor *et al.* $(b = 1.25)^{38}$ (see Table II); here, we note that the b values obtained from aN^b fits of the TD-HF,

TABLE II. Effective scaling law exponents (b) for the polarizabilities (α_{ℓ}) and dispersion coefficients (C_n) in the fullerenes.

	α_1	α_2	α_3	C_6	C_8	C_{10}
$Ab \ Initio^a$	1.21^{b}	1.97^{b}	2.70^{b}	_	_	_
Ab Initio + $HS/MSFA^a$	_	_	_	2.25^{b}	3.04^{b}	3.81^{b}
$N \propto R^2$ (spherical shell) ^c	1.50^{b}	2.50^{b}	3.50^{b}	2.75^{d}	3.75^{d}	4.75^{d}
$N \propto R^3$ (solid sphere) ^e	1.00^{b}	1.67^{b}	2.33^{b}	2.00^{d}	2.67^d	3.33^{d}
Gobre <i>et al.</i> ^{$24f$}	_	_	_	2.25	_	_
Kauczor <i>et al.</i> ^{38 g}	1.25	_	_	2.19	_	_
Saidi et al. ^{39h}	1.46	_	_	2.80	_	_
Tao et al. ⁴⁰	1.19	1.65	2.11	2.26	2.73	3.20

 $^{a}\mathrm{C}_{60}-\mathrm{C}_{84}.$ $^{b}\mathrm{This}$ work. $^{c}\mathrm{Classical}$ conducting spherical shell model; $R\rightarrow\infty$ limit. $^{d}\mathrm{Ref}^{37}.$ $^{e}\mathrm{Classical}$ conducting solid sphere model; all R values. $^{f}\mathrm{Self-consistent}$ screening (SCS) model; $\mathrm{C}_{20}-\mathrm{C}_{540}.$ $^{g}\mathrm{Time-dependent}$ DFT (B3LYP); N^{b} fit for $\mathrm{C}_{60}-\mathrm{C}_{84}.$ $^{h}\mathrm{Capacitance-polarizability}$ interaction (CPI) model; $\mathrm{C}_{60}-\mathrm{C}_{720}.$ $^{i}\mathrm{Two-point}$ formula $(\alpha_{\ell}^{A}/N_{A}=\alpha_{\ell}^{B}/N_{B}^{b})$ based on approximate α_{ℓ} (and C_{n}) for C_{60} and $\mathrm{C}_{3840}.$

TD-B3LYP, and TD-CAM-B3LYP data in Ref.³⁸ are all within 1%-2% of the SCAN0/Sadlej value, which suggests that the non-additivity in α_1 is largely independent of the underlying exchange-correlation functional. Due to the scarcity of higher-order α_{ℓ} , the b values obtained herein for α_2 and α_3 are the only *ab initio* values available to date. We note in passing that comparisons to the values provided by Saidi et al.³⁹ and Tao et al.⁴⁰ would not be appropriate, as these values correspond to a much wider range of finite-sized fullerenes (e.g., $C_{60}-C_{720}^{39}$ and $C_{60}-C_{3840}^{40}$. Furthermore, we stress that the value of b can largely depend on the choice of ansatz and the fitting procedure, wherein one can expect some variability in the results obtained using the singleparameter N^b ansatz employed by Kauczor *et al.*,³⁸ and significantly larger variability when using the two-point $(\alpha_{\ell}^A/N_A = \alpha_{\ell}^B/N_B^b)$ formula employed by Tao *et al.*⁴⁰

To characterize how finite-size effects influence the α_{ℓ} (and C_n) scaling landscape for C_{60} - C_{84} , we therefore discuss our findings with respect to the formal $(R \to \infty)$ limits of the classical conducting spherical shell and solid sphere models. Since $N \propto R^2$ for a spherical shell (in the $R \to \infty$ limit) and $N \propto R^3$ for a solid sphere (for all R values), these models agree in how α_{ℓ} grows with R, but differ in how α_{ℓ} grows with N, *i.e.*, $\alpha_{\ell} = R^{2\ell+1} =$ $N^{(2\ell+1)/\delta}$ with $\delta = 2$ (spherical shell) and $\delta = 3$ (solid sphere). The corresponding scaling law exponents for α_{ℓ} (and C_n) based on these models are provided in Table II, from which one can see that the growth of α_{ℓ} with N for a classical solid sphere conductor is slower than that in the C_{60} - C_{84} fullerenes, which in turn is markedly slower than that predicted by the $R \to \infty$ limit of the spherical shell model. Again, both of these observations can be rationalized by considering the dichotomous electronic structure of the finite-sized fullerenes, wherein a complex interplay between electron confinement and delocalization governs their quantum mechanical response to electric field perturbations. On one hand, confinement of the electrons to a thin shell unusually far from the fullerene center leads to a substantially more polarizable electron

density than the distribution of the same number of electrons throughout the volume of a solid sphere (with a necessarily smaller R), thereby leading to enhanced α_{ℓ} values compared to the classical solid sphere model. On the other hand, the curvature in the finite-sized fullerenes (due to their encapsulated void spaces) suppresses manybody polarization²⁶ of the electrons across the surface, which limits the extent of the electronic response and leads to reduced α_{ℓ} values compared to the graphene-like $R \to \infty$ limit of the classical spherical shell model. As such, finite-size effects have a marked impact on the growth of α_{ℓ} with N in the C₆₀–C₈₄ fullerenes, and are analogous to the distance-dependent effective vdW power laws observed in both finite and extended systems across the nanoscale.^{25,26,30–36,82}

With α_1 values in hand, finite-size effects in the effective power laws for α_2 and α_3 can be approximately accounted for (to within 1%-2%) by fitting the corresponding semi-classical α_ℓ values ($\alpha_\ell = R^{2\ell+1}$ with $R = R_1 = \alpha_1^{1/3}$) to the aN^b ansatz. As described above, this finding is reflected in the system-size-independent error profile in Fig. 2, and largely follows from the models' holistic treatment of each fullerene as a molecule (instead of a collection of atoms) with a fixed radius. Hence, the rather sizable errors in α_2 and α_3 depicted in Fig. 2 primarily result from a marked ($\approx 20\%-40\%$) difference in the *a* values obtained with *ab initio* and classical treatments of the C₆₀-C₈₄ fullerenes, and are therefore indicative of a substantial quantum-size effect on the power law pre-factor.

For the C_n , we find that C_6 , C_8 , and C_{10} scale as $\sim N^{2.2}, \sim N^{3.0}$, and $\sim N^{3.8}$, which is again indicative of strong non-additivity that increases with ℓ (and n). Since this non-additivity primarily originates from the intrinsic non-additivity in the underlying α_{ℓ} , our discussion of the C_n scaling laws will be brief. For C_6 , our finding that b = 2.25 is in excellent agreement with previous studies employing time-dependent DFT $(b = 2.19)^{38}$ (see Table II); due to the scarcity of higher-order C_n , the b values obtained herein for C_8 and C_{10} in C_{60} - C_{84} are the only ab initio values available to date (and even these values still rely on the HS/MSFA model for the frequency dependence of the underlying polarizabilities). Following the analysis performed above for α_{ℓ} , we again find that our results lie between the $N^{n/3}$ and $N^{(n-1/2)/2}$ dependence of the solid sphere and spherical shell models;³⁷ as such, our data unambiguously confirms that the C_n in C_{60} - C_{84} grow much faster than a pairwise-additive model (like the classical solid sphere model) would suggest.

Returning to the *ab initio* α_{ℓ} provided herein, we conclude this work by investigating the zero-point vibrational contributions (zpvc) to α_1 in the popular C₆₀ and C₇₀ fullerenes, as these often non-negligible contributions enable a more direct comparison between experiment and theory. For a molecule in its ground vibrational state, $\alpha_1^{\rm zpvc}$ can be computed using first-order perturbation the-

ory^{65–67} as $\alpha_1^{\text{zpvc}} = \sum_i \kappa_i$, in which

$$\kappa_i \equiv \frac{1}{4} \left[\left(\frac{\partial^2 \alpha_1}{\partial q_i^2} \right)_0 - \sum_j \frac{\phi_{iij}}{\omega_j} \left(\frac{\partial \alpha_1}{\partial q_j} \right)_0 \right], \qquad (2)$$

is the contribution from the *i*-th vibrational mode. In this expression, $(\partial^n \alpha_1 / \partial q_i^n)_0$ are the *n*-th partial derivatives of α_1 (evaluated at the equilibrium structure) with respect to (dimensionless) normal mode q_i with frequency ω_j , ϕ_{iij} are the anharmonic (cubic) force constants, and the sum includes all vibrational modes; see ESI and Ref.¹⁸ for more details. To obtain *ab initio* values for these quantities, we performed an extensive series of (>140,000) DFT calculations, and found that $\alpha_1^{\text{zpvc}} = 8.5 \text{ au } (C_{60}) \text{ and } 9.6 \text{ au } (C_{70}); \text{ these vibrational}$ contributions are non-negligible in magnitude and account for $\approx 1.6\%$ and $\approx 1.4\%$ of α_1 . Individual contributions (κ_i) to α_1^{zpvc} from each vibrational mode in C₆₀ are plotted in Fig. 3. Similar to α_1^{zpvc} in water,¹⁸ the primary vibrational contributions are due to high-frequency bondstretching modes;⁸³ (*i.e.*, $\approx 1400-1600 \text{ cm}^{-1}$ largest contribution from the H_u mode at $\omega = 1564 \text{ cm}^{-1}$), and not low-frequency squashing ($\approx 250 \text{ cm}^{-1}$) and/or breathing $(\approx 500 \text{ cm}^{-1})$ modes.^{84–86} From Table III, one can see that our (electronic) α_1 value is slightly smaller than the DOSD estimate^{22,52} for C₆₀, while $\alpha_1^{\text{tot}} = \alpha_1 + \alpha_1^{\text{zpvc}}$ are well within the error bars measured by molecular beam deflection^{48,50} and time-of-flight spectrometry⁴⁹ for C_{60} and C_{70} . While our values are consistently smaller than those obtained using matter-wave interferometry, 51,53 the experimental ratios of $\alpha_1^{\text{tot},C_{70}}/\alpha_1^{\text{tot},C_{60}} = 1.22$ (believed to be more accurate than the absolute α_1 values) using this technique are in excellent agreement with our *ab ini*tio ratio of 1.23. Although not directly comparable to the α_1^{zpvc} values computed herein, we note in passing that previous theoretical estimates (in the double-harmonic approximation) of α_1^v in C₆₀, *i.e.*, the so-called "pure vi-

FIG. 3. Individual mode contributions (κ in au) to α_1^{zpvc} in C₆₀ (computed at the SCAN/tier-1//SCAN/tier-1 level). The corresponding plot for C₇₀ is provided in Fig. S1.

TABLE III. Summary of the *ab initio* electronic (α_1 , computed at the SCAN0/Sadlej//SCAN0/6-31G(d) level), zero-point vibrational (α_1^{zpvc} , computed at the SCAN/tier-1//SCAN/tier-1 level), and total ($\alpha_1^{\text{tot}} \equiv \alpha_1 + \alpha_1^{\text{zpvc}}$) polarizabilities for C₆₀ and C₇₀ along with the available experimental data.

	Theory			Experiment
	α_1	α_1^{zpvc}	$\alpha_1^{\rm tot}$	$\alpha_1^{ m tot}$
C_{60}	536.8	8.5	545.3	$516.2\pm54^{a}, 533.1\pm27^{b}, 599.9\pm41^{c}$
				$558.6 \pm 17^d, 589.8 \pm 20^e$
C_{70}	663.8	9.6	673.4	$688.3 \pm 95^{f}, 732.2 \pm 55^{c}, 718.0 \pm 9^{e}$

 a Molecular beam deflection. 48 b Time-of-flight spectrometry. 49 c Matter-wave interferometry. 51 d Dipole oscillator strength distribution (DOSD) estimate of α_1 . 22,52 e Matter-wave interferometry. 53 f Molecular beam deflection. 50

brational" contribution to α_1 ,^{67,87} ranged from 3.9 au⁵⁶ to 5.3 au;⁴⁵ this higher-order term accounts for vibrational effects beyond α_1^{zpvc} and should be included when comparing to experimental α_1 values determined at finite frequencies. Furthermore, we also note that experimental estimates for the vibrational contributions to α_1 in C₆₀ (*i.e.*, including α_1^{zpvc} and higher-order terms) have been obtained for the C₆₀ molecular crystal and range from 2.5 au and 8.4 au⁵⁴ to 13.5 au.⁵⁵

CONCLUSIONS

In conclusion, the α_{ℓ} (and C_n) provided herein for C₆₀- C_{84} are the most accurate and reliable theoretical values obtained to date, and unequivocally demonstrate that these quantities are strongly non-additive and become increasingly more so for larger ℓ (and n). Derivation of the corresponding effective scaling laws in addition to a critical analysis of the α_{ℓ} and C_n data in the context of the classical spherical shell and solid sphere models provides new insight into how the unique electronic structure of the single-walled fullerenes—a complex interplay between electron confinement effects and charge delocalization due to the structure and topology of these nanosystems—serves to both limit and enhance their response to electric field perturbations. Of particular interest are the quantum- and finite-size effects observed in these scaling laws, which are analogous (and intimately related) to the deviations from asymptotic vdW scaling laws observed in both finite and extended systems at nanoscale distances,^{25,26,30–36,82} and undoubtedly impact the structure, function, and properties of these guintessential nanostructures.

ACKNOWLEDGMENTS

All authors acknowledge helpful scientific discussions with Hsin-Yu Ko, Alexandre Tkatchenko, and Yang Yang. This work was primarily supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1719875). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

- 1 K. D. Bonin and V. V. Kresin, *Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters*, World Scientific, Singapore, 1997.
- 2 G. Maroulis, Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability, World Scientific, Singapore, 2006.
- 3 G. Maroulis, Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, IOS Press, Amsterdam, 2006.
- 4 A. J. Stone, *The Theory of Intermolecular Forces*, Oxford University Press, Oxford, 2nd edn, 2013.
- 5 S. Grimme, A. Hansen, J. G. Brandenburg and C. Bannwarth, *Chem. Rev.*, 2016, **116**, 5105–5154.
- 6 J. Hermann, R. A. DiStasio Jr. and A. Tkatchenko, *Chem. Rev.*, 2017, **117**, 4714–4758.
- 7 S. Luber, M. Iannuzzi and J. Hutter, J. Chem. Phys., 2014, 141, 094503.
- 8 G. R. Medders and F. Paesani, J. Am. Chem. Soc., 2016, 138, 3912–3919.
- 9 H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole and G. Mukhopadhyay, *Phys. Rev. A*, 2005, **72**, 053201.
- 10 H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole and A. A. Lucas, J. Chem. Phys., 2006, **124**, 074504.
- 11 A. Mayer, Phys. Rev. B, 2007, 75, 045407.
- 12 H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole and A. A. Lucas, *Langmuir*, 2007, 23, 1735–1740.
- 13 T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen and K. Ruud, *Chem. Rev.*, 2012, **112**, 543–631.
- 14 A. J. Sadlej, Collect. Czech. Chem. Commun., 1988, 53, 1995–2016.
- 15 D. E. Woon and T. H. Dunning Jr., J. Chem. Phys., 1994, 100, 2975–2988.
- 16 J. R. Hammond, W. A. de Jong and K. Kowalski, J. Chem. Phys., 2008, **128**, 224102.
- 17 J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach and S. S. Xantheas, J. Chem. Phys., 2009, **131**, 214103.
- 18 K. U. Lao, J. Jia, R. Maitra and R. A. DiStasio Jr., J. Chem. Phys., 2018, 149, 204303.
- 19 Y. Yang, K. U. Lao, D. M. Wilkins, A. Grisafi, M. Ceriotti and R. A. DiStasio Jr., *Sci. Data*, 2019, 6, 152.
- 20 D. M. Bishop, Rev. Mod. Phys., 1990, 62, 343-374.
- 21 S. Kümmel, J. Akola and M. Manninen, *Phys. Rev. Lett.*, 2000, 84, 3827–3830.
- 22 U. Hohm, J. Mol. Struct., 2013, 1054, 282-292.
- 23 H. B. G. Casimir and B. Polder, Phys. Rev., 1948, 73, 360–372.
- 24 V. V. Gobre and A. Tkatchenko, Nat. Commun., 2013, 4, 2341.
- 25 A. Ambrosetti, N. Ferri, R. A. DiStasio Jr. and A. Tkatchenko, *Science*, 2016, **351**, 1171–1176.

- 26 Y. Yang, K. U. Lao and R. A. DiStasio Jr., Phys. Rev. Lett., 2019, **122**, 026001.
- 27 E. R. Johnson and A. D. Becke, J. Chem. Phys., 2006, 124, 174104.
- 28 J. Tao, J. P. Perdew and A. Ruzsinszky, *Phys. Rev. B*, 2010, **81**, 233102.
- 29 J. Tao, J. Yang and A. M. Rappe, J. Chem. Phys., 2015, 142, 164302.
- 30 T. Gould, K. Simpkins and J. F. Dobson, *Phys. Rev. B*, 2008, **77**, 165134.
- 31 L. Spanu, S. Sorella and G. Galli, *Phys. Rev. Lett.*, 2009, 103, 196401.
- 32 Y. J. Dappe, J. Ortega and F. Flores, *Phys. Rev. B*, 2009, 79, 165409.
- 33 S. Lebègue, J. Harl, T. Gould, J. G. Ángyán, G. Kresse and J. F. Dobson, *Phys. Rev. Lett.*, 2010, **105**, 196401.
- 34 A. J. Misquitta, J. Spencer, A. J. Stone and A. Alavi, *Phys. Rev. B*, 2010, 82, 075312.
- 35 A. J. Misquitta, R. Maezono, N. D. Drummond, A. J. Stone and R. J. Needs, *Phys. Rev. B*, 2014, **89**, 045140.
- 36 P. S. Venkataram, J. Hermann, A. Tkatchenko and A. W. Rodriguez, *Phys. Rev. Lett.*, 2017, **118**, 266802.
- 37 A. Ruzsinszky, J. P. Perdew, J. Tao, G. I. Csonka and J. M. Pitarke, *Phys. Rev. Lett.*, 2012, **109**, 233203.
- 38 J. Kauczor, P. Norman and W. A. Saidi, J. Chem. Phys., 2013, 138, 114107.
- 39 W. A. Saidi and P. Norman, J. Chem. Phys., 2016, 145, 024311.
- 40 J. Tao, Y. Jiao, Y. Mo, Z. H. Yang, J. X. Zhu, P. Hyldgaard and J. P. Perdew, *Phys. Rev. B*, 2018, 97, 155143.
- 41 A. Jiemchooroj, P. Normana and B. E. Sernelius, J. Chem. Phys., 2005, **123**, 124312.
- 42 K. Kowalski, J. R. Hammond, W. A. de Jong and A. J. Sadlej, J. Chem. Phys., 2008, **129**, 226101.
- 43 D. H. Friese, N. O. C. Winter, P. Balzerowski, R. Schwan and C. Hättig, J. Chem. Phys., 2012, 136, 174106.
- 44 P. Giannozzi and S. Baroni, J. Chem. Phys., 1994, 100, 8537–8539.
- 45 E. A. Perpète, B. Champagne and B. Kirtman, *Phys. Rev. B*, 2000, **61**, 13137–13141.
- 46 K. Ruud, D. Jonsson and P. R. Taylor, J. Chem. Phys., 2001, 114, 4331–4332.
- 47 T. B. Pedersen, A. M. J. Sánchez de Merás and H. Koch, J. Chem. Phys., 2004, **120**, 8887–8897.
- 48 R. Antoine, Ph. Dugourd, D. Rayane, E. Benichou and M. Broyer, J. Chem. Phys., 1999, 110, 9771–9772.
- 49 A. Ballard, K. Bonin and J. Louderback, J. Chem. Phys., 2000, 113, 5732–5735.
- 50 I. Compagnon, R. Antoine, M. Broyer, Ph. Dugourd, J. Lermé and D. Rayane, *Phys. Rev. A*, 2001, **64**, 025201.
- 51 M. Berninger, A. Stefanov, S. Deachapunya and M. Arndt, *Phys. Rev. A*, 2007, **76**, 013607.
- 52 A. Kumar and A. J. Thakkar, Chem. Phys. Lett., 2011, 516, 208–211.
- 53 Y. Y. Fein, P. Geyer, F. Kiałka, S. Gerlich and M. Arndt, *Phys. Rev. Res.*, 2019, 1, 033158.
- 54 G. Gensterblum, Y. Li-Ming, J.-J. Pireaux, P. A. Thiry, R. Caudano, Ph. Lambin, A. A. Lucas, W. Krätschmer and J. E. Fischer, *J. Phys. Chem. Solids*, 1992, **53**, 1427– 1432.
- 55 P. C. Eklund, A. M. Rao, Y. Wang, P. Zhou, K. A. Wang, J. M. Holden, M. S. Dresselhaus and G. Dresselhaus, *Thin Solid Films*, 1995, **257**, 211–232.

- 56 M. R. Pederson, T. Baruah, P. B. Allen and C. Schmidt, *J. Chem. Theory Comput.*, 2005, **1**, 590–596.
- 57 G. K. Gueorguiev, J. M. Pacheco and D. Tománek, *Phys. Rev. Lett.*, 2004, **92**, 215501.
- 58 A. A. Lucas, L. Henrard and Ph. Lambin, *Phys. Rev. B*, 1994, **49**, 2888–2896.
- 59 J. Tao, J. P. Perdew and A. Ruzsinszky, Proc. Natl. Acad. Sci. USA, 2012, 109, 18–21.
- 60 J. P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G. I. Csonka and J. M. Pitarke, J. Phys. Condens. Matter, 2012, 24, 424207.
- 61 J. Tao and J. P. Perdew, J. Chem. Phys., 2014, 141, 141101.
- 62 J. Tao, Y. Fang, P. Hao, G. E. Scuseria, A. Ruzsinszky and J. P. Perdew, J. Chem. Phys., 2015, 142, 024312.
- 63 J. Tao, Y. Mo, G. Tian and A. Ruzsinszky, *Phys. Rev. B*, 2016, **94**, 085126.
- 64 J. Tao and A. M. Rappe, J. Chem. Phys., 2016, 144, 031102.
- 65 P. W. Fowler, Mol. Phys., 1981, 43, 591-600.
- 66 P. W. Fowler, Mol. Phys., 1984, 51, 1423-1428.
- 67 A. J. Russell and M. A. Spackman, Mol. Phys., 1995, 84, 1239–1255.
- 68 K. Hui and J.-D. Chai, J. Chem. Phys., 2016, 144, 044114.
- 69 J. Sun, A. Ruzsinszky and J. P. Perdew, *Phys. Rev. Lett.*, 2015, **115**, 036402.
- 70 H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano and B. von Issendorff, *Nature*, 2000, **407**, 60–63.
- 71 Y. Shao et al., Mol. Phys., 2015, **113**, 184–215.
- 72 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, *Comput. Phys. Commun.*, 2009, **180**, 2175–2196.
- 73 J. P. Perdew, A. Ruzsinszky, J. Sun, S. Glindmeyer and G. I. Csonka, *Phys. Rev. A*, 2012, **86**, 062714.
- 74 The outer physical radius was estimated via $\langle R \rangle = \langle r \rangle + t/2$, in which $\langle r \rangle$ is the average distance from each atom to the nuclear center of charge and t = 3.4 Bohr^{57,58}.
- 75 G. F. Thomas, F. Mulder and W. J. Meath, *Chem. Phys.*, 1980, **54**, 45–54.
- 76 D. M. Wilkins, A. Grisafi, Y. Yang, K. U. Lao, R. A. DiStasio Jr. and M. Ceriotti, *Proc. Natl. Acad. Sci. USA*, 2019, **116**, 3401–3406.
- 77 For C_n , the choice of $R = \langle R \rangle$ overestimates C_6 and C_8 by 14.2% and 5.7%, and underestimates C_{10} by 2.4%.
- 78 Ph. Lambin, A. A. Lucas and J.-P. Vigneron, *Phys. Rev. B*, 1992, **46**, 1794–1803.
- 79 D. R. Penn, Phys. Rev., 1962, 128, 2093-2097.
- 80 M. Rahm, R. Hoffmann and N. W. Ashcroft, *Chem. Eur. J.*, 2016, **22**, 14625–14632.
- 81 D. V. Fedorov, M. Sadhukhan, M. Stöhr and A. Tkatchenko, *Phys. Rev. Lett.*, 2018, **121**, 183401.
- 82 K. A. Makhnovets and A. K. Kolezhuk, *Phys. Rev. B*, 2017, **96**, 125427.
- 83 L. T. Chadderton, J. Phys. Chem. Solids, 1993, 54, 1027– 1033.
- 84 H.-J. Eisler, S. Gilb, F. H. Hennrich and M. M. Kappes, J. Phys. Chem. A, 2000, 104, 1762–1768.
- 85 H.-J. Eisler, F. H. Hennrich, S. Gilb and M. M. Kappes, J. Phys. Chem. A, 2000, 104, 1769–1773.
- 86 D. Jing and Z. Pan, Eur. J. Mech. A-Solid, 2009, 28, 948– 954.
- 87 J. Martí and D. M. Bishop, J. Chem. Phys., 1993, 99, 3860–3864.