
Character Angle Effects on Dissociated Dislocation Core 
Energy in Aluminum

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-10-2020-005333.R1

Article Type: Paper

Date Submitted by the 
Author: 16-Dec-2020

Complete List of Authors: Zhou, Xiao Wang; Sandia National Laboratories, 
Foster, Michael; Sandia National Laboratories, Materials Chemistry

 

Physical Chemistry Chemical Physics



1

Character Angle Effects on Dissociated Dislocation 

Core Energy in Aluminum 

X. W. Zhou, and M. E. Foster

Mechanics of Materials Department, Sandia National Laboratories, Livermore, 

California 94550, USA, Email: xzhou@sandia.gov

ABSTRACT

Dislocation core energy is an important property in materials mechanics but can only be 

obtained from atomistic simulations. Periodic boundary conditions are ideally suited for 

atomistic calculations of dislocation energies but have faced two major challenges. First, viable 

methods to extract core energies from atomistic data of total energies have been developed only 

for non-dissociated dislocations whereas realistic dislocations are often dissociated into partials. 

Second, core energy is a function of dislocation character angle. This functional dependence can 

only be revealed through calculations at a variety of character angles. This requires both 

additional computational resources and a robust method to implement arbitrary character angles. 

Here a new procedure has been developed to overcome both challenges. By applying this 

approach, we have calculated 22 core energies of dissociated dislocations in aluminium over the 

entire character angle range between 0o and 90o. In addition to the discrete core energy data for 

dissociated dislocations, we found that core energy can be approximated by a continuous 

function of character angle. Specifically, our dissociated dislocation core energies have been well 

fitted to a polynomial Sinoidal function of character angle. We have also discovered that there 

exists a critical system dimension below which dislocation core energies cannot be calculated 

due to dislocation transformation. 
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I. INTRODUCTION

All sophisticated plastic deformation and fracture behaviour of materials can ultimately be 

attributed to dislocation migration. As a result, dislocation core energy Ec is an important input 

parameter for studying mechanical performance of materials using mesoscale modelling methods 

such as dislocation dynamics [1]. This is because Ec contributes to the dislocation line tension, 

which determines the behaviour of dislocation lines as they bow out to bypass obstacles and 

react to form junctions. Because dislocation cores cannot be described by linear elasticity theory, 

Ec must be calculated from atomistic simulations. 

To incorporate the long-range elastic field of dislocations in bulk materials, atomistic 

calculations of dislocation core energies usually use either continuum [2,3,4,5,6] or periodic 

[1,7,8,9,10,11,12,13,14] boundary conditions. Under the continuum boundary conditions, only a 

region close to the dislocation core is treated with atomistic simulations whereas atoms far away 

from the core are fixed at the locations determined from continuum solution of the dislocation 

strain field. This method necessarily involves approximations. For example, continuum solution 

of dislocation strain field must assume a dislocation type whereas relaxed dislocations are always 

composed of partial dislocations separated by stacking faults whose configurations are unknown 

a priori. Furthermore, the fixed region must be simulated at zero temperature. Of course, the 

definition and dimension of the core and boundary regions incur additional subjective choices. 

On top of these challenges, the continuum boundary method is not easy to apply because the 

continuum solution of dislocation elastic strain field requires the use of an anisotropic elastic 

theory where a full set of elastic constants defined by the same interatomic potential need to be 
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used as inputs. These elastic constants can only be obtained through independent set of atomistic 

simulations.

Simulations with periodic boundary conditions do not involve the approximations 

described above. For example, periodic boundary conditions allow dislocation cores to self-

consistently evolve during the simulation. Although the periodic boundary conditions cause “a” 

dislocation to become a dislocation array, this does not affect the result because the core energy 

of a given dislocation type can be treated as a constant that is independent of the number of 

dislocations considered.

Past calculations of dislocation core energies using the periodic boundary conditions have 

faced two major challenges. First, dislocation energy can be easily calculated as the energy 

difference between systems with and without dislocations under the condition that both systems 

have the same number of atoms. The total dislocation energy, however, needs to be fit to a linear 

elastic continuum model to extract the core energy. Such a continuum model has only been 

developed for non-dissociated dislocations [15,16] whereas in reality dislocations are most likely 

dissociated into partials. Resolving partial dislocations in mesoscale models is needed to 

understand the effects of stacking fault width which seems to impact deformation behavior of 

some materials (e.g., austenitic stainless steels [17]). Second, dislocation core energy Ec changes 

with the character angle  formed between the dislocation line and the Burgers vector. To 

identify the relationship between Ec and , the atomistic simulation method used to calculate 

dislocation energies must be applied to a variety of character angles spanning the entire range 

between 0o and 90o. In addition, the calculated results must have negligible errors for large 

systems. These requirements impose some difficulties to the atomistic calculations.
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The objective of the present work is fourfold. First, we give a brief overview of the 

literature periodic methods. Next, we develop a new periodic method that can be easily applied 

to arbitrary character angles. We then demonstrate a new procedure that enable atomistic 

simulation results to be fit to a linear elastic theory with dissociated dislocations. Finally, we 

explore effects of system dimensions on calculated dislocation core energies. As an example, we 

will look at face-centred-cubic (fcc) aluminum using the Al-Cu bond order potential (BOP) [18], 

where core energies have already been calculated for non-dissociated dislocations [15].

II. OVERVIEW OF THE PERIODIC BOUNDARY METHOD

Historically, the periodic boundary method was implemented using a so-called quadruple 

dislocation configuration [10] as shown in Figs. 1(a) and 1(b). Here, positive and negative 

dislocations (lying in z) alternate in sign in both x and y directions, so that a negative dislocation 

can recover the crystal periodicity destroyed by the preceding positive dislocation. The initial 

implementation of the quadruple dislocation configuration requires four dislocations per 

orthogonal computational cell. This is shown in Fig. 1(a) where the red dash frame shows a 

computational cell with all dislocations at the cell boundaries to reveal the periodicity; and the 

red solid frame shows the translated cell with all the dislocations inside the cell. A potential issue 

with this implementation is that, the positive and negative dislocations are on the same slip plane 

(x-z), so they can glide and annihilate. The quadruple model has been widely used as shown by 

its extensive citation including references [11,12]. It is interesting to note that the quadruple 

configuration can be replicated with a non-orthogonal cell containing only two dislocations [10]. 

This is illustrated in Fig. 1(b) where similar dash and solid frames again reveal the periodicity 

and number of dislocations per cell respectively. Interestingly, literature attributes the advantage 

of this non-orthogonal cell to its improved computational efficiency due to the 50% reduction in 
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the total number of atoms [10]. However, it is worth noting that in Fig. 1(b), the two positive (or 

equivalently negative) dislocations along the tilted y direction are the same image dislocation so 

that the glide of the positive and negative dislocations along the x direction is constrained, 

making them more difficult to migrate towards each other and annihilate. For instance, the 

easiest annihilation mechanism in Fig. 1(a) is that a vertical dipole approaches its neighbouring 

vertical dipole. In Fig. 1(b), however, a vertical dipole can never approach its periodic image.

Fig. 1. Schematic of dislocation configurations: (a) quadruple dislocations using an orthogonal 
cell; (b) quadruple dislocations using an oblique cell; and (c) dipole dislocations using 
an orthogonal cell.

The quadruple approach was primarily used in early days for computational efficiency 

reasons. On the other hand, seriously oblique computational cells can result in slightly increased 

computations because atom’s neighbours in oblique cells can be located many periodic images 

away. To eliminate the use of an oblique computational cell and to completely prevent the 

annihilation of positive and negative dislocations along the x direction, the alternation of 

dislocation sign in the x direction under the periodic boundary condition can be removed, leaving 

only one periodic dislocation dipole in the y direction as illustrated in Fig. 1(c). As will be shown 

below, the correct periodic boundary conditions for mixed dislocations can be rigorously 

generated for this configuration.
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Cai et al [7,8,9] have developed an approach to use non-orthogonal cell to create a general 

dislocation dipole under periodic boundary conditions. As pointed out above, the total 

dislocation energies obtained from atomistic simulations need to be fitted to a continuum 

prediction of the same energies using the same geometry to extract the core energy. Cai et al 

found that in the geometry they used, such a continuum prediction could not be expressed 

analytically due to a conditional divergence problem [7,19]. Regardless, the numerous successful 

dislocation core energy calculations reported by Cai et al are encouraging.

It is interesting to point out that the atomistic simulations cited above primarily use 

molecular statics (MS) energy minimization. When systems contain dislocations, MS simulations 

may converge to an unintended local energy minimum state, resulting in error in the calculated 

dislocation energies [20]. Contrary to intuition, such an error can be unacceptably large for large 

systems, which has been explicitly demonstrated for an exemplar zinc-blende model compound 

CdS [21]. This problem is mitigated when relatively small system sizes are used.

Recently, we reported calculations of dislocation core energies in aluminium at some 

selected character angles [15,16]. Our work distinguished from earlier literature calculations in 

several ways. First, we used orthogonal computational cell where the periodic boundary 

conditions were ensured by increasing the number of dislocations per cell albeit with the same 

dislocation array as shown in Fig. 1(c). Second, we derived an analytical expression for non-

dissociated dislocation energies from continuum theory. This enabled the dislocation core energy 

to be extracted by direct fitting to the atomistic dislocation energies. Importantly, we used time-

averaged molecular dynamics (MD) instead of MS to calculate the energies, which virtually 

removed the error in the calculations regardless of system size (this seems to be counterintuitive 

because a snapshot of an MD result, taken at any given time, does involve significant thermal 
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noise). However, our previous method is associated with a technical difficulty: for the non-

regular character angles that we studied, such as  = 10.89o, 19.11o, 40.89o, 49.11o, 70.89o, 

79.11o, we had to use 56 dislocations per cell to ensure the periodicity. Other non-regular 

character angles may easily require far more dislocations. This effectively limited our 

calculations of dislocation core energies to only 10 different dislocation character angles with 

~10o interval for the entire character angle range (0o - 90o), which may not be sufficient to 

determine confidently the continuity of the Ec vs.  function. It is also difficult for other 

researchers to follow our method. In addition, our previous approach is only valid at d = Ly/2 

[15], where d and Ly are dipole distance and system dimension in y respectively, as marked in 

Fig. 2. For a given dislocation type, the core energy is a constant whereas the dislocation elastic 

energy outside of the core depends on both vertical and horizontal dislocation spacings d and S 

(see Fig. 2). This means that the elastic energy outside of the core can be more accurately 

identified by fitting dislocation energies at various d and S rather than dislocation energies at 

various S only. In fact, the dependence of dislocation energy on the vertical spacing d is more 

interesting than on the horizontal spacing S. First, increasing S means increasing system 

dimension and hence the computational cost, whereas increasing d under fixed Ly does not 

change system dimension. Second, the elastic energy of the dislocation is more sensitive to d 

than to S. Specifically, as will be shown below, dislocation energy is a symmetric function of d, 

with the maximum energy occurring at d = Ly/2, and near zero energy occurring at d  0 or d  

Ly. This provides a strong validation of the MD results. Hence, the inability of the previous 

method to address different vertical spacings is undesired. Finally, because we introduced 28 

dipoles (56 dislocations), the dislocation spacing, S, can become small (although because our 

system dimensions Lx and Ly are extremely large, our dislocation spacing S = Lx/28 may still be 
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above many literature calculations). In the next section, we develop a new approach that ensures 

periodicity with only one dislocation dipole per cell, and yet allows any values of character angle 

 > 0o and vertical spacing d. Our method is general as we focus on the periodicity of the discrete 

nature of the lattice. Note that our method differs from the one used by Cai et al [7,8,9]; they 

introduce a dislocation dipole by displacing atoms according to continuum displacement fields. 

Fig. 2. Schematic of computational cell with the x-axis parallel to the Burgers vector , the z-b


axis parallel to dislocation line vector , and the y-axis perpendicular to both x and z.


III. NEW PERIODIC BOUNDARY METHOD
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The concept of our atomistic method is general and can be applied to many different 

dislocations including those that are not on the slip plane, and many different crystal structures 

including fcc, body-centred-cubic (bcc), and hexagonally-closely packed (hcp) structures. A 

schematic of our computational cell is shown in Fig. 2. The key to ensure the periodic boundary 

conditions after adding only one dislocation dipole with any arbitrary character angle  is to use 

a computational cell where the two axes (x and z) on the dislocation slip plane are not orthogonal 

but rather form the dislocation character angle ;  the third axis (y) is still orthogonal to the slip 

plane. This allows the Burgers vector  to be aligned with one of the slip plane axes (e.g., x), b


and dislocation line vector  with the other slip plane axis (z). To add a dislocation dipole, a 


layer of material with a thickness of b is removed as shown in Fig. 2, where b is the magnitude 

of the edge component of the Burgers vector. If b is the magnitude of the total Burgers vector, b 

= b sin. The atoms near the removed atoms are then dilated towards the gap by ±b/2 along the 

Burgers vector direction  (i.e., the x-axis) so that the gap is closed. This process creates a b


dislocation dipole with a character angle  but makes no changes to the stacking of atoms on the 

boundaries of the computational cell. As a result, the periodic boundary conditions remain intact. 

In the geometry shown in Fig. 2, we assume that the system has dimensions of Lx, Ly, and Lz, the 

dislocation spacing S on the slip plane equals Lx sin, and the dislocation spacing d along the y 

direction equals the height of the missing planes.

This process is applicable for any character angle  except for screw dislocation where  = 

0o. This is acceptable because screw dislocation can be easily modelled using the previous 

method [15]. However, for any non-screw dislocation with  → 0o, the computational cell is 

extremely oblique. As discussed above, this is not desired for computational efficiency. It should 

also be recognized that the dynamic response of the barostatting algorithms used in MD 
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simulations are affected by the skewness of the computational cell. As a result, we use three 

approaches to improve the orthogonality of the cell.

First, assume that we have an oblique cell as indicated by the thick dash lines in Fig. 3(a). 

Without affecting the periodic boundary conditions, we can reduce the obliqueness by translating 

one edge of the cell along the z-axis an integer number of times of the periodic length Lz, as 

indicated sequentially by thin red, thin blue, thin green, and thick black lines. The thick black 

cell has the minimum obliqueness because further translating the cell will start to increase the 

obliqueness. This minimum obliqueness is quantified by the distance xz in Fig. 3(a), which 

measures the deviation of the cell from an orthogonal reference.

Fig. 3. Schematic of procedures to reduce cell obliqueness: (a) effects of translating the cell edge 
in the z direction; (b) effects of increasing the length in the x direction.
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Second, it can be seen from Fig. 3(a) that a smaller xz is likely to be obtained if the 

periodic cell dimension Lz is smaller. Hence, we always use the smallest Lz possible with the 

crystal periodicity to create an initial crystal cell, recognizing that when the near-orthogonal cell 

as shown by the thick black frame in Fig. 3(a) is finalized, Lz can be periodically expanded to 

approach a desired value.

Third, we can further reduce the obliqueness of the cell by increasing the length along the 

x-axis as shown in Fig. 3(b). Assume that the original x-axis is notated as x0 and periodic length 

along x0 is Lx0, the periodic boundary conditions will remain intact if the length increase is a 

multiple of Lx0. Once the length in x0 is appropriately increased, subsequent translation in z using 

the approach described in Fig. 3(a) can give any desired small obliqueness for the transformed x-

axis. Fig. 3(b) compares the final obliqueness, xz, with the obliqueness, xz0, prior to the increase 

of the x dimension. The increased x dimension is now denoted as Lx.

Trial-and-error was used to decide our system dimensions that give a small obliqueness. 

All our simulations used a y dimension of Ly ~ 407 Å except for the  = 0o case where a large Ly 

~ 1220 Å was used to avoid cross slip that may occur due to the attraction between two opposite 

screw dislocations. Various dimensions corresponding to horizontal dislocation spacing S 

between 43 and 700 Å were used in the x direction, and various dimensions corresponding to 

dislocation line length between 23 and 64 Å were used in the z direction. As an example, some 

calculations for  = 81.052o used large systems (e.g., ~350×407×55 Å3 volume and ~500,000 

atoms). Note that the dislocation line length does not affect the results, and the use of statistically 

different line lengths is only for a sanity check. As will be shown below, the minimum 

dislocation spacing S  43 Å is important as core energies may be incorrect at smaller spacings.

IV. CONTINUUM EXPRESSION OF DISSOCIATED DISLOCTION ENERGY
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Under periodic boundary conditions, dissociated dislocation energy should be a function of 

geometry and property parameters. Geometry parameters include horizontal and vertical periodic 

spacings (S and Ly) between dipoles, dipole distance (d), and stacking fault width (). Property 

parameters include core energy and core radius (Ec and r0), shear modulus and Poisson’s ratio (G 

and ), Burgers magnitude and dislocation character angle (b and ), and stacking fault energy 

(sf). Continuum expression of the energy of dissociated dislocation (sum for both partials) on 

these parameters has only been derived recently from isotropic linear elastic theory [22]:

Γ = {𝐸𝑐 +
𝐺𝑏2𝑠𝑖𝑛2𝛽
4𝜋(1 ― 𝜈)𝑙𝑛

1
𝑟0

+
𝐺𝑏2𝑠𝑖𝑛2𝛽
4𝜋(1 ― 𝜈)

[𝑐𝑢𝑒0(𝑑) + 𝑐𝑢𝑒(𝑑)] +

𝐺𝑏2𝑐𝑜𝑠2𝛽
4𝜋 𝑙𝑛

1
𝑟0

+
𝐺𝑏2𝑐𝑜𝑠2𝛽

4𝜋
[𝑐𝑢𝑠0(𝑑) + 𝑐𝑢𝑠(𝑑)] + Δ𝐸𝑑𝑖𝑠

                                                     (1)

where Ec is the total core energy of the dissociated dislocation (i.e., including two partials), b and 

 take the values of the perfect dislocation, Edis is dissociation energy, and functions cue0(d), 

cus0(d), cue(d), cus(d) are expressed as

                                                     (2)𝑐𝑢𝑒0(𝑑) = 𝑙𝑛 [(𝐿𝑦 ― 𝑑)𝑑
𝐿𝑦 ] ― 𝑙𝑛 [𝐺𝑎(𝐿𝑦 + 𝑑

𝐿𝑦 )] ― 𝑙𝑛 [𝐺𝑎(2 ―
𝑑
𝐿𝑦)]

𝑐𝑢𝑠0(𝑑) = 𝑙𝑛 [(𝐿𝑦 ― 𝑑)𝑑
𝐿𝑦 ] ― 𝑙𝑛 [𝐺𝑎(𝐿𝑦 + 𝑑

𝐿𝑦 )] ― 𝑙𝑛 [𝐺𝑎(2 ―
𝑑
𝐿𝑦)]                                             (3)

𝑐𝑢𝑒(𝑑) =
∞

∑
𝑖 = 1{4𝜋 ⋅ 𝑖 ⋅ 𝑆 ⋅ 𝑐𝑜𝑡ℎ (𝜋 ⋅ 𝑖 ⋅ 𝑆

𝐿𝑦 ) ⋅ 𝑠𝑖𝑛2 (𝜋𝑑
𝐿𝑦 )

𝐿𝑦𝑐𝑜𝑠ℎ (2𝜋 ⋅ 𝑖 ⋅ 𝑆
𝐿𝑦 ) ― 𝐿𝑦 ⋅ 𝑐𝑜𝑠 (2𝜋𝑑

𝐿𝑦 )
+

𝑙𝑛 [𝑐𝑜𝑠2 (𝜋𝑑
𝐿𝑦 ) + 𝑐𝑜𝑡ℎ2 (𝜋 ∙ 𝑖 ∙ 𝑆

𝐿𝑦 ) ⋅ 𝑠𝑖𝑛2 (𝜋𝑑
𝐿𝑦 )]}                                                   (4)

𝑐𝑢𝑠(𝑑) =
∞

∑
𝑖 = 1

𝑙𝑛 [𝑐𝑜𝑠2 (𝜋𝑑
𝐿𝑦 ) + 𝑐𝑜𝑡ℎ2 (𝜋 ⋅ 𝑖 ⋅ 𝑆

𝐿𝑦 ) ⋅ 𝑠𝑖𝑛2 (𝜋𝑑
𝐿𝑦 )]                                                         (5)
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In Eqs. (2) – (5), Ga() is an Euler gamma function, coth() and cosh() are hyperbolic functions. 

The dissociation energy is calculated as

Δ𝐸𝑑𝑖𝑠(𝜆)
= ― [𝑤(𝜆) ― 𝑤(𝑟0)]

                                                                                                                   (6)

with the function w(x) defined as

𝑤(𝑥) = 𝑤𝑟𝑜𝑤(𝑥,𝑦 = 0) +
∞

∑
𝑖 = 1

{𝑤𝑐𝑜𝑙[(𝑖 ― 1) ∙ 𝑆 + 𝑆/2,(𝑖 ― 1) ∙ 𝑆 + 𝑥,𝑦 ≠ 0] +

𝑤𝑐𝑜𝑙[ ―𝑖 ∙ 𝑆 +
𝑆
2, ― 𝑖 ∙ 𝑆 + 𝑥,𝑦 ≠ 0] }                   (7)

where

𝑤𝑟𝑜𝑤(𝑥,𝑦 = 0) =
𝐺𝑏2[1 ― 2𝑐𝑜𝑠(2𝛽)]

48𝜋(1 ― 𝜈) c𝑒0(𝑥) +
𝐺𝑏2[1 + 2𝑐𝑜𝑠(2𝛽)]

48𝜋  c𝑠0(𝑥)                             (8)

𝑤𝑐𝑜𝑙(𝑥1,𝑥2,𝑦 ≠ 0) = {𝐺𝑏2[1 ― 2𝑐𝑜𝑠(2𝛽)]
48𝜋(1 ― 𝜈) [c3𝑒,1(𝑥1,𝑥2) + c3𝑒,2(𝑥1,𝑥2)] +

𝐺𝑏2[1 + 2𝑐𝑜𝑠(2𝛽)]
48𝜋  c3𝑠(𝑥1,𝑥2)

                             (9)

In Eqs. (8) and (9), functions ce0(x), cs0(x), c3e,1(x1,x2), c3s(x1,x2), c3e,2(x1,x2) are defined as

c𝑒0(𝑥) = c𝑠0(𝑥) = 2𝑙𝑛
∞

∏
𝑖 = 1

[ (𝑖 ― 1)𝑆 + 𝑥
(𝑖 ― 1)𝑆 + 𝑆/2 ∙

―𝑖 ∙ 𝑆 + 𝑥
―𝑖 ∙ 𝑆 + 𝑆/2] = 𝑙𝑛[𝑠𝑖𝑛2(𝜋𝑥

𝑆 )]                         (10)

c3𝑒,1(𝑥1,𝑥2) = c3𝑠(𝑥1,𝑥2) = 𝑙𝑛(𝑑2 + 𝑥2
1

𝑑2 + 𝑥2
2
) +

𝑙𝑛
∞

∏
𝑖 = 1

[𝑥2
2 + (𝑖 ∙ 𝐿𝑦)2

𝑥2
1 + (𝑖 ∙ 𝐿𝑦)2 ∙

𝑥2
1 + (𝑖 ∙ 𝐿𝑦 ― 𝑑)2

𝑥2
2 + (𝑖 ∙ 𝐿𝑦 ― 𝑑)2 ∙

𝑥2
2 + (𝑖 ∙ 𝐿𝑦)2

𝑥2
1 + (𝑖 ∙ 𝐿𝑦)2 ∙

𝑥2
1 + (𝑖 ∙ 𝐿𝑦 + 𝑑)2

𝑥2
2 + (𝑖 ∙ 𝐿𝑦 + 𝑑)2]                       (11)
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c3𝑒,2(𝑥1,𝑥2) =
2𝑑2

𝑑2 + 𝑥2
1

―
2𝑑2

𝑑2 + 𝑥2
2

+

∞

∑
𝑖 = 1[ ―

4(𝑖 ∙ 𝐿𝑦)2

𝑥2
1 + (𝑖 ∙ 𝐿𝑦)2 +

2(𝑖 ∙ 𝐿𝑦 ― 𝑑)2

𝑥2
1 + (𝑖 ∙ 𝐿𝑦 ― 𝑑)2 +

2(𝑖 ∙ 𝐿𝑦 + 𝑑)2

𝑥2
1 + (𝑖 ∙ 𝐿𝑦 + 𝑑)2 +

4(𝑖 ∙ 𝐿𝑦)2

𝑥2
2 + (𝑖 ∙ 𝐿𝑦)2 ―

2(𝑖 ∙ 𝐿𝑦 ― 𝑑)2

𝑥2
2 + (𝑖 ∙ 𝐿𝑦 ― 𝑑)2 ―

2(𝑖 ∙ 𝐿𝑦 + 𝑑)2

𝑥2
2 + (𝑖 ∙ 𝐿𝑦 + 𝑑)2

]                                             (12)

Although no closed-forms have been found for Eqs. (4), (5), (11) and (12), these equations 

converge rapidly []. In this work, we take 100 terms in the summation so that error is essentially 

zero in our calculations. Note that Eqs. (1) – (12) are only applicable to planar dislocation core 

structures in isotropic systems. For example, they can be used for non-screw dislocations in bcc 

crystals; however, they are not applicable for non-planar screw dislocations typically seen in bcc 

crystals.  

V. VALIDATION OF MD DISLOCATION ENERGIES

Our simulations were performed using the MD code LAMMPS [23,24]. To prevent 

dislocation migration from initial locations, centres of mass for small regions immediately above 

and below the slip plane near the dislocation core are fixed using the “fix … recenter” command 

(note that the “fix … momentum” command is not good enough). Since only centres of mass are 

fixed but atoms are still free to move, this constraint does not impact dislocation core structures 

whose relaxation is symmetric about the core centre. The “error-free”, time-averaged MD 

method was used to calculate dislocation energies [15]. All MD simulations were performed at 

300 K for 4.0 ns using a zero pressure NPT (constant number of atoms, pressure, and 

temperature) ensemble. The first 0.8 ns simulations were discarded to enable the system to reach 

an equilibrium. Time-averaged energies were calculated for the remaining 3.2 ns. These 

averaged energies were used to calculate the dislocation energies.
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22 character angles  = 0.00o, 6.59o, 8.95o, 10.89o, 19.11o, 21.05o, 23.41o, 30.00o, 36.59o, 

38.95o, 40.89o, 49.10o, 51o.05o, 53.41o, 60.00o, 66.59o, 68.95o, 70.89o, 79.11o, 81.05o, 83.41o, 

90.00o were considered. For  = 0.00o, the method proposed here cannot be used so we used the 

previous approach [15]. These 22 character angles involve 22 unknown core energies Ec. The 

previous work indicates that the isotropic elastic theory is enough to describe dislocation core 

energy of aluminium [15]. Given the isotropic elastic theory as described by Eq. (1), we have 26 

more unknown parameters that include shear modulus G and Poisson’s ratio , stacking fault 

energy sf, dislocation core radius r0, and 22 stacking fault widths  at the 22 character angles. 

For perfect dislocations, dislocation core radius can be arbitrarily chosen as long as it is 

consistent with the core energy [15]. For dissociated dislocations, a small core radius should be 

used so that the dissociation energy Edis is not digested into the core energy and the model can 

resolve small stacking fault width. Here a small core radius of r0 = 0.2 Å is used to ensure that 

the core radius does not significantly impact stacking fault width, i.e.,    - 2 r0. Stacking fault 

widths are not independent parameters; they can be solved from the minimum energy condition 

/ = 0 using Eq. (1). Independent time-averaged MD simulations were performed to calculate 

the stacking fault energy, and sf = 0.0085 eV/Å2 was obtained at our simulated temperature 300 

K. Hence, we only have 24 independent unknown parameters: 22 core energies plus G and . 

One minimum approach to parameterize these 24 unknowns is to fit three (total) dislocation 

energies at three dislocation spacings for one of the character angles, and one dislocation energy 

for each of the remaining character angles. However, our simulations were significantly more 

extensive than the minimum 24 cases. For each of the character angles   0o, two series of 

dislocation energies were calculated. Referring to Fig. 2, one series explores different vertical 

dislocation spacings d, and the other series explores different horizontal dislocation spacings S. 
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For  = 0o, only one series with respect S was performed because the approach works well only 

for d = Ly/2. This resulted in 184 total dislocation energies. The extensive data sets enable us to 

more accurately fit the elastic contribution as mentioned above and to validate the results. 

Specifically, dislocation energy as a function of the vertical dislocation spacing d is mirror 

symmetric at d = Ly/2. This is because under the periodic boundary conditions, if a dislocation is 

separated from a neighbouring dislocation by d, then it must be separated from an image 

neighbouring dislocation by Ly – d. Equal spacings to these two neighbours occur when d = Ly/2. 

Furthermore, dislocation energies drop to zero when d = 0 or d = Ly where the two opposite 

dislocations annihilate. The relaxation scheme fails if the results do not strictly satisfy this 

symmetric condition. For instance, we found that the results obtained from energy minimization 

not only had large statistical uncertainty margin, but also did not rigorously satisfy the symmetric 

condition.

As one example, energies of dislocations at two character angles of  = 30o and  = 60o 

obtained from simulations are shown using the small blue data points in Fig. 4. Note that our 

time averaged calculations were output 100 times for smaller time segments and our final results 

were further averaged over these 100 values. The reason to get 100 values for smaller time 

segments is to evaluate the standard deviations of our final results as described previously [15], 

and these standard deviations are included in Fig. 4 as the error bars. Here Fig. 4(a) shows the 

effects of the vertical dislocation spacing d at a fixed horizontal spacing, S = Lx ~ 44, Å and a 

fixed y dimension, Ly ~ 407 Å, and Fig. 4(b) illustrates the effects of the horizontal dislocation 

spacing S at a fixed vertical dislocation spacing, d = Ly/2 ~ 203.5 Å. Further, the shaded regions 

in the figure represent the decrease of energy during dislocation dissociation (i.e., Edis). Both 

lines and shaded regions were calculated from continuum expressions [15] to be discussed 
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below. Fig. 4 indicates that all MD error bars are reduced to horizontal lines, meaning that error 

of the MD results is near “zero” on the scale of the figure. This level of accuracy cannot be 

achieved by MS simulations. A result of the near zero error is that all data points fall on smooth 

trends. Here by smooth trends we mean that the data points do not exhibit up-and-down type of 

statistical errors. This does not necessarily mean that the data points fall on the continuum lines, 

although in Fig. 4, there is a good agreement with the continuum lines. Interestingly, Fig. 4(a) 

shows that dislocation line energy is an ideally symmetric function of the vertical dislocation 

spacing, d, strongly validating the results as discussed above. This validation could not be done 

using the previous approach that is constrained at d = Ly/2 [15]. From Fig. 4, we see that 

dislocation dissociation energy Edis is not negligible.

Fig. 4. Energies of  = 30o and  = 60o dislocations as a function of (a) vertical dislocation 
spacing d and (b) horizontal dislocation spacing S. Data points are from MD and curves 
are continuum fits. The horizontal bars of data points indicate negligible errors, and the 
shaded regions denote the decrease of energy due to dislocation dissociation (i.e., Edis). 

A similar level of accuracy is achieved for all 22 character angles. Instead of showing many 

similar figures as already illustrated in Fig. 4, we compare all 184 MD dislocation energies with 

the continuum fits (to be described below) in Fig. 5. Here, the x-axis is MD dislocation energy 
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and y-axis is the corresponding continuum energy. Strictly speaking, not all data points in Fig. 5 

fall exactly on the y = x line. Nonetheless, this is just a deviation of the continuum model from 

the MD data; and all the  vs. d and  vs. S MD data points (such as those shown in Fig. 4) still 

fall on smooth trends without up-and-down errors as can be seen in the supplemental material 

[25]. Fig. 5 clearly indicates that the deviation from the y = x line is small meaning that MD and 

continuum results are in good agreement. We point out again that the continuum expression can 

only fit 24 MD data points, and the good match for the remaining 160 data points strongly 

validate both the MD results and the continuum expression.

Fig. 5. Comparison of all MD and continuum dislocation energy results.

Quantitatively, the accuracy shown in Figs. 4 and 5 approximately corresponds to 1 eV 

margin in total energy of a million-atom system. This translates to < 0.000001 eV/atom, which 

cannot be achieved by any MS schemes. The error of time-averaged MD simulations, in 

principle, always decreases with time t following approximately the t-1/2 scaling. More 
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interestingly, even numerical truncation errors can be averaged out if we assume that a number 

has an equal probability of being below and above 0.5. 

We also point out that the time-averaged energy obtained from MD accounts for some 

entropy effect and therefore better represents the finite-temperature equilibrium than the global 

minimum energy obtained from MS. First, MD can overcome energy barriers, so it more 

effectively approaches the equilibrium state than MS. The average energy of a vibrational energy 

spectrum for the equilibrium structure is also exactly the energy measured from finite-time 

experiments. Contrarily, the minimum energy state may not occur in reality if it is associated 

with a small entropy. On the other hand, there is really no global energy minimization scheme. If 

such a scheme exists, grain boundaries would disappear after MS simulation which may not be 

desired.

VI. DISLOCATION CORE ENERGY CALCULATIONS

We have generated 184 dislocation energies, using MD, at a variety of dislocation spacings 

d and S and dislocation character angles . By fitting the MD energies to Eqs. (1) – (12), we can 

determine elastic constants G and  as well as 22 core energies Ec at 22 character angles using a 

chosen core radius r0 = 0.2 Å and a stacking fault energy sf = 0.0085 eV/Å2. First, G and  

values are guessed. The stacking fault widths, , are then solved from the minimum energy (or 

equivalent force balance) condition [22]. Based on these , Eq. (1) is fitted to the MD data 

yielding 22 core energies and new G and . The new G and  values are then used to recalculate 

, and Eq. (1) is refitted. This process is iterated until all the fitted parameters no longer change 

with further fitting; the results are summarized in Table I. The continuum lines and shaded 

regions in Fig. 4 and the data in Fig. 5 were obtained using these optimal parameters. These 
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continuum calculations provide quantitative information on the fraction of dissociation energy, 

Edis, over the total dislocation energy as shown in Fig. 4. 

 Table I. Fitted dislocation core energies Ec (eV/Å) for various dislocation character angles  (o) 
at fitted elastic constants G = 0.2085 (eV/Å3),  = 0.289, chosen core radius r0 = 0.2 Å, 
and known stacking fault energy sf = 0.0085 (eV/Å2).

 0.00 6.59 8.95 10.89 19.11 21.05 23.41 30.00 36.59 38.95 40.89
Ec -0.418 -0.268 -0.260 -0.260 -0.250 -0.240 -0.240 -0.230 -0.220 -0.211 -0.215
 49.11 51.05 53.41 60.00 66.59 68.95 70.89 79.11 81.05 83.41 90.00
Ec -0.209 -0.207 -0.209 -0.209 -0.203 -0.210 -0.210 -0.211 -0.221 -0.211 -0.201

To develop an analytical expression for dislocation core energy as a function of character 

angle , we assume that the core energy can be written as a polynomial Sinoidal function:

𝐸𝑐(𝛽) =
5

∑
𝑖 = 0

𝑐𝑖𝑠𝑖𝑛𝑖 𝛽                                                                                                                                (13)

where c0 – c5 are parameters. Fitting the data in Table I to Eq. (13), the parameters c0 – c5 were 

determined as shown in Table II. The dislocation core energies listed in Table I are also shown 

(using blue circles) in Fig. 6, where lines are calculated from Eq. (13). For comparison, the core 

energies were also fitted to Eq. (1) without considering dislocation dissociation (i.e., setting Edis 

= 0). These non-dissociated dislocation core energies are included (using red circles) in Fig. 6. Fig. 

6 reveals that core energy is accurately represented by Eq. (13). An overall trend is that core energy 

increases with character angle, but the increase is most significant between 0o and 10o. 

Table II. Parameters for dislocation core energy (eV/Å).
c0 c1 c2 c3 c4 c5

-0.268979 1.449739 -4.214258 5.158294 -2.247137 -2.247137

We point out that if using the same core radius, the non-dissociated dislocation core 

energies calculated here are very close to those reported in our previous work [15] for regular 

character angles (e.g., 0o, 30o, 60o, and 90o). There are slight differences between our current and 
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previous results for some non-regular character angles. This problem will be further explored 

below.

Fig. 6. Dislocation core energies as a function of dislocation character angle .

VII. VALIDATION OF STACKING FAULT WIDTH

The MD dislocation energies also gave rise to 184 equilibrium stacking fault widths () 

that minimize the energy.  can also be measured from atomic configurations; although, the 

approach to measure the width can be highly subjective. We feel that the least subjective 

approach is to measure the number of (hexagonally-closely-packed) hcp atoms, which was done 

using OVITO visualization software [26,27]. Note, that the stacking fault width linearly 

increases with the number of hcp atoms (Nhcp) between unit length of partial dislocations. The 

Nhcp values obtained were linearly fitted to our calculated ; the fitted results are plotted against 

calculated stacking fault width  in Fig. 7(a). Fig. 7(a) confirms a linear correlation between Nhcp 

and , further validating our MD results and continuum model. 
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To more clearly demonstrate the nature of the correlation shown in Fig. 7(a), we visualize 

two configurations near the slip plane of the dislocations, one with a relatively narrow stacking 

fault width observed from a screw dislocation as shown in Fig. 7(b), and one with a relatively 

wide stacking fault width observed from a 79.11o dislocation as shown in Fig. 7(c). The energy 

minimum stacking fault width is predicted to be  = 4.2 Å for the former case and  = 8.4 Å for 

the latter case. Consistently, Figs. 7(b) and 7(c) show that the stacking fault width in the 79.11o 

dislocation is about twice of that in the screw dislocation case visually, albeit OVITO 

characterizes the dislocation in the screw dislocation case as a [110]/2 perfect dislocation as 

opposed to the two [112]/6 partial dislocation in the 79.11o case. 

Fig. 7. Validation of stacking fault width calculations: (a) correlation between minimum energy 
stacking fault width and number of hcp atoms (Nhcp) between unit length of dislocations, 
(b) an example configuration of a short stacking fault width obtained from a screw 
dislocation (S ~ 94 Å, Ly = 2d ~ 1220 Å), and (c) an example configuration of a long 
stacking fault width obtained from a  = 79.11o dislocation (S ~ 156 Å, Ly = 2d ~ 407 Å). 
The stacking fault width calculated from the minimum energy condition is noted in (b) 
and (c).

VIII. CRITICAL SIZE EFFECT
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As stated above, the core energies derived from the current work are slightly higher than 

the ones obtained previously [15] for non-regular character angles. We note that in the previous 

work, all dislocation spacings S were above 29 Å for the regular angles but some of them fell 

below 20 Å for the non-regular angles. In the present work, all spacing S are above 40 Å. This 

suggests that there might be a critical size which impacts the calculated core energies. To explore 

the size effect, additional MD simulations were performed to calculate the energies for 60o 

dislocations with a fixed vertical dislocation spacing of d = Ly/2 ~ 203.5 Å and various smaller 

horizontal dislocation spacings S. The results, along with those obtained for larger S, are shown 

as the blue circles in Fig. 8(a). It is seen that when S > 25 Å, all data points fall on the continuum 

line despite not including the data for S < 43 Å in the continuum fitting; this strongly validates a 

constant core energy. When S approaches 20 Å, the dislocation energy suddenly drops, 

suggesting that dislocation core energy is altered. To ensure that this is not an artefact of the 

interatomic potential, we repeated the calculations using a literature embedded atom method 

potential for Al [28], and the results are included in Fig. 8(a) using red circles. Similar sudden 

drop of dislocation energy is observed when dislocation spacing S falls below 30 Å. Hence, the 

size-effect is likely a general phenomenon regardless of the potential.

To explore the origin of the sudden drop of energies at small dimensions, we show 

dislocation morphologies (generated using OVITO) for a small (S ~ 20 Å) and a larger (S ~ 43 

Å) size system in Figs. 8(b) and 8(c) respectively. It can be seen that the larges system contains 

two partials; whereas, the smaller system exhibits a complex dislocation network. The formation 

of this network significantly reduces the energy of the system, as seen in Fig. 8(a). This 

observation indicates that opposite dislocations cannot stay intact when they are too close as 

elastic energy will drive a transformation. It also means that core energies can only be correctly 
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calculated when dislocation spacings S are above a threshold. Note, this size-effect was revealed 

using MD simulations; however, it is unclear if this phenomenon can be revealed by using MS 

where the system is more likely to be trapped in a local energy minimum. 

Fig. 8. Size effects on 60o dislocation simulations: (a) dislocation energies in a wide range of 
spacing S, (b) dislocation morphology at a small size S ~ 20 Å, and (c) dislocation 
morphology at a large size S ~ 43 Å.

The finding of a minimum spacing for dislocation core energy calculations is significant 

because most literature calculations employ small dimensions. The use of large system 

dimensions in molecular statics simulations, however, leads to unacceptably large errors [21]. 

This is not an issue for time-averaged MD simulations. 

IX. CONCLUSIONS

A robust MD model has been developed to calculate core energy of dissociated dislocation 

at any character angle and spacing using only one dislocation dipole per computational cell. 

Significant computing resources have been used to achieve numerous physical understandings 

regarding dislocation core energies. First, time-averaged MD simulations can eliminate errors for 
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large computational systems and produce more relevant results to continuum models or 

experimental measurements. Second, the core energy of dissociated dislocations can be well 

descried by a polynomial Sinoidal function of dislocation character angle. Moreover, dislocation 

core energy is found to rapidly increase with character angle from 0o to 10o and then gradually 

increase until 90o. Third, the dissociation energy can be non-negligible for some geometric 

conditions. Finally, there exists a critical dimension below which dislocation core energy cannot 

be correctly calculated due to the formation of a dislocation network.
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