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Development of lock-in based overtone Modulated MARY
spectroscopy for detection of weak magnetic field effects†

Marcin Konowalczyk,a,b,‡ Olivia Foster Vander Elstb and Jonathan G. Storeyb

Modulated magnetically altered reaction yield (ModMARY) spectroscopy is a derivative variant of fluorescence

detected magnetic field effect measurement, where the applied magnetic field has both a constant and a

modulated component. As in many derivative spectroscopy techniques, the signal to noise ratio scales with the

magnitude of the modulation. High modulation amplitudes, however, distort the signal and can obscure small

features of the measured spectrum. In order to detect weak magnetic field effects (including the low field effect)

a balance of the two has to be found. In this work we look in depth at the origin of the distortion of the MARY

signal by field modulation. We then present an overtone detection scheme, as well as a data analysis method

which allows for correct fitting of both harmonic and overtone signals of the modulation broadened MARY data.

This allows us to robustly reconstruct the underlying MARY curve at different modulation depths. To illustrate the

usefulness of the technique, we show measurements and analysis of a well known magnetosensitive system

of pyrene / 1,3-dicyanobenzene (Py/DCB). The measurements of first (h1) and second (h 2) harmonic spectra

are performed at different modulation depths for both natural isotopic abundance (PyH10), and perdeuterated

(PyD10) pyrene samples.

1 Introduction

Many chemical systems exhibit sensitivity to comparatively weak
magnetic fields2,3 by a variety of mechanisms.4–6 The most preva-
lent of mechanisms giving rise to a magnetic field effect (MFE) is
the radical pair mechanism.5 This mechanism typically relies on
photoinduced creation of a radical pair (RP) and the magnetically
alerted reaction yield (MARY) of its products. Briefly, the singlet
RP can recombine to the ground state through a non-radiative
pathway, return to a higher energy singlet state and fluoresce, or
interconvert with the triplet RP state. The rate of this interconver-
sion is altered by the magnetic field, as the triplet states of the RP
possess a magnetic moment which can interact with an externally
applied magnetic field (the Zeeman effect). The triplet RP has a
more limited range of spin-allowed reactions. Notably, the non-
radiative recombination of the triplet RP to the ground state is
usually spin-forbidden. Hence, the singlet-triplet interconversion
alters the quantum yield of different products downstream from
the RP. The resulting magnetically-induced changes in the popu-
lation of these products accumulate over the course of multiple
turnovers of the photocycle. This alters the fraction of species in
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the ground state and consequently gives rise to a magnetic-field
induced change in the observed fluorescence intensity.

Of particular interest for avian magnetoreception research7 is
the low-field effect (LFE). The LFE is a high contrast in the mag-
netochemistry between zero and low field (∼1 G) conditions.8

There exist additional coherences between the interconverting
spin states of the radical pairs which are unlocked at low, as op-
posed to zero external magnetic field.9 This usually leads to a
magnetic response of the chemical system which, at low fields, is
inverted with respect to that at higher fields. The plot of a magnet-
ically altered property of a sample (e.g. the fluorescence intensity)
as a function of applied magnetic field b is referred to as a MARY
curve. An example of a MARY curve can be seen in Figs. 1b and 5.
The LFE feature can be seen on the insert of Fig. 5.

Modulated MARY (ModMARY) spectroscopy is a variant of fluo-
rescence spectroscopy used for detection of magnetic field effects
where the applied magnetic-field has both a static and a modu-
lated component. A sample of interest is placed in an oscillating
magnetic field (frequency fm , amplitude bm ) and is continuously
excited with an appropriate wavelength light in order to establish
an oscillatory steady state fluorescence (see Fig. 1a). The magne-
tosensitive components of the fluorescence will then oscillate at
the frequency (and overtones) of fm . The amplitude of this oscil-
lation is measured as a function of a static offset field (bo ). This
could be done simply by notch filtering of a Fourier transform of
the digitised signal. However, much narrower bandwidths, and
thus better noise rejection, are usually achieved with lock-in de-
tection.10–13 The lock-in amplifiers (LIAs) are, therefore, the most
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common way of demodulating the fluorescence signal in Mod-
MARY experiments.14–17 The fm component of the total applied
magnetic field (b ) is usually small and thus the signal detected is
proportional to the derivative of the measured MARY curve (see
Fig. 1b). However, in order to achieve the high signal to noise
ratio required to measure small field effects, a much higher mod-
ulation amplitude is often necessary, which can in turn distort the
signal.

ModMARY spectroscopy is most commonly employed for mea-
surements of fluorescence MFEs on exciplex15 and solid-state
systems.18 Due to the field-modulation employed, the signal de-
tected is related to the derivative of the MARY curve. One of
the utilities of ModMARY is therefore its ability to determine the
width of the MARY curve with high accuracy and precision. This
has been widely employed in studies of self-exchange in magne-
tosensitive systems based in both homogenous19 and micellar so-
lutions,16 and to investigate RP-sovent interactions.17 Since Mod-
MARY can easily determine the presence of a low-field effect it
has also been used in exploratory studies of new polyarene-based
compass chemical systems,18 and in experimental investigations
of the effects of the hyperfine coupling on the LFE.20

There are other, related, techniques which make use of the
field-modulation and derivative detection. In recent years, field-
modulation technique has been combined with laser scanning
to yield both fluorescence21 and absorption-based ModMARY
imaging22,23 (referred to as magneto-fluorescence imaging (MFI)
and magnetic intensity modulation (MIM) imaging respectively).
The general technique of stimulus-modulation can be seen in
many fields of spectroscopy, most notably optical spectroscopy,
for example in frequency (wavelength) modulation using tunable
light sources, cavity spectroscopy and electron paramagnetic res-
onance (EPR).

The simplest method of analysing a derivative signal is to ig-
nore the influence of the modulation on the signal shape and treat
it as an exact derivative, albeit with additive noise. However, stim-
ulus modulation distorts (broadens) the observed shape of the
underlying signal. This modulation broadening can be accounted
for as part of the convolution with the (usually) Gaussian kernel
describing the linewidth of the underlying spectral features. This
is sufficient at low modulation depths, but does not correctly de-
scribe the shape of the signal when the modulation broadening
is the dominant in determining the shape of the signal. The de-
tailed effect of stimulus modulation on the resulting signal will
be explored in the next section.

2 Theory

In this section we will derive a convolutional representation of the
effects of the modulation on the measured signal, ultimately arriv-
ing at Equations 36 and 37. The derivation is presented in great
detail, with the intention of highlighting all of the techniques and
assumptions involved, and in such a way as to allow its adaptation
for other settings. All the symbols used are defined throughout the
text, but a glossary is also provided at the end of the main text.
The reader is encouraged to pay particular attention to Sec. 2.3
which explores the relation between a series expansion of a trans-
fer function and the harmonic distortion it causes. Although pre-

Fig. 1 a) Schematic of the ModMARY experimental apparatus. The sample is ex-
cited by a collimated LED and its fluorescence is measured by a photomultiplier tube
(PMT) after passing through an excitation filter. The sample is contained within 2 par-
allel sets of magnetic field coils which produce the offset bo and the modulated bm

magnetic field components. The LIA and the bm power supply share a common
frequency reference. b) Representation of the MARY curve acting as a transfer
function M from magnetic field (abscissa) to fluorescence intensity (ordinate). The
magnitude of the modulated fluorescence signal I shown is approximately propor-
tional to the derivative of M in the modulation region. However, I can undergo
harmonic distortion due to the nonlinearity of M. This comparison is easier to see
in the power spectral density spectra of the (artificial) input field (top) and I (bottom)
were one can see overtones of the fundamental frequency f .

sented in the context of ModMARY spectroscopy, this is the core
idea behind any kind of overtone spectroscopy technique.

2.1 Lock-in detection

In order to understand the effect of modulation on the signal, we
need a model of the detector. The lock-in amplifier (LIA) mea-
sures the amplitude of an oscillation component of the input volt-
age I , which is both frequency and phase coherent with the refer-
ence oscillation R , in this case the reference voltage for the modu-
lation coils power supply. This is achieved by direct multiplication
of I and R in the time domain (mixing). This corresponds to con-
volution in the frequency domain and is also referred to as demod-
ulation. The zero frequency (DC) component of the mixer output
is the root-mean-square amplitude of I . It can be recovered with
the use of a low-pass (LP) filter24 to give the output voltage S . A
characteristic setting of a LIA is its time constant τ, effectively its
averaging time. The quantity 1/τ is the width of the correspond-
ing LP filter applied to the demodulated signal. The action of a
simple resistor-capacitor (RC) LP filter can be represented by the
integral:25

y =
1

τ

0
∫

−∞

e t /τx (t )dt (1)

where y is the filtered version of input signal x (t ) with LP filter
of width 1/τ. In order to account for a possible phase difference
between I and R , most LIAs implement a quadrature detection
scheme whereby the input signal is split into two identical paths.
One path mixes I with R , and the other with R delayed by quarter
of an oscillation of fm . The in-phase signal can be reconstructed
from the resulting measurement (see Sec. 3.2). R can therefore
be represented as a complex exponential where the real and imag-
inary components correspond to the quadrature channels of the
LIA:

R (t ) = cos(hωt )+i sin(hωt ) = exp
�

i
hη

τ
t
�

(2)
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It will prove convenient to work with the “wavenumber” η, a
proxy for the number of radians of oscillation of R in a time con-
stant τ defined as τω= η. We have also introduced an integer
harmonic number h which, for the time being, should be consid-
ered to be equal to 1 and will be useful later. The output of a LIA
can be modelled by the following integral:

Sh (bo ) =

0
∫

−∞

Dh (t ) I (bo ,t )dt (3)

where Dh is defined as:

Dh (t ) =

p
2

τ
exp

�

1+i hη

τ
t
�

(4)

Both of the quadrature components of the reference waveform,
the normalisation constant, and the exponential detection win-
dow of the LP filter have been combined in a single exponential
term – the detection kernel Dh . The factor of

p
2 accounts for the

fact that the output of the LIA is proportional to the root-mean-
square amplitude of the input signal.13

The case of η� 1 and h > 0 corresponds to the period of the
reference oscillation (R) being much shorter than the LP filter
averaging time τ. Then, Dh by itself integrates to 0:

0
∫

−∞

Dh dt =

(p
2 h =1

0 otherwise
(5)

h = 0 can be thought of as the special case of direct signal de-
tection with no modulation (DC). D is represented pictorially in
Fig. 3.

2.2 Single tone input

It will prove useful to understand how the LIA output, defined in
Eq. 3, behaves as a function of a single tone, 1 V root-mean-square
(rms), input:

I (t ) =
p

2cos(ωI t +θ ) =
p

2cos(ηI t /τ+θ ) (6)

where ωI and ηI are the (angular) frequency, and wavenumber
of the input tone. For η�1, Eq. 3 integrates to:

S = e −iθ 1−i (η−ηI )
1+(η−ηI )2

(7)

which is a Lorentzian lineshape with height 1, centered at ηI . The
phase (θ ) of the input rotates between the real and imaginary
components of the Lorentzian. The real part corresponds to the
the absorptive and the imaginary to the dispersive components of
the Lorentzian.26 The above equation can be simplified if we take
the square modulus to obtain the power, as opposed to the mag-
nitude, of the signal. The phase dependence of the quadrature
channels vanishes, and Eq. 7 simplifies to:

|S |2 =
1

1+(η−ηI )2
(8)

which is the response of the LIA to a unit rms amplitude, high
frequency (η�1) tone with wavenumber ηI as a function of the

wavenumber of the reference waveform η. This is a notch with the
magnitude of the rms of the input centered at ηI . The width of |S |2

at half-magnitude (−3dB) is one wavenumber. This corresponds
to the width of an RC filter with width 1/τ.

2.3 Transfer function

Having described the action of the LIA, we shall now consider the
ModMARY experiment. The total magnetic field experienced by
the sample is the sum of the static and oscillating magnetic fields:

b (t ) = bo +bm cos(ωt +θ ) (9)

The oscillating input of the LIA in the ModMARY experiment
arises due to the MARY curve acting akin to a transfer function M

from field to fluorescence intensity (Fig. 1). In Sec. 3.2 (data
analysis), M will modelled by a (scaled and shifted) Lorentzian,
or double Lorentzian lineshape (see Eq. 39). The derivation pre-
sented in here will, however, make only the most basic assump-
tions about M – that it is a smooth, continuous function, well-
defined over the entire domain of interest. Furthermore, the
shape of M will be assumed to be time invariant. This last as-
sumption could be relaxed in more detailed analysis.

If M is the exact shape of the MARY curve, then the LIA input
can be expressed as:

I (b ) = I0+M(b ) = I0+M (bo +bm cos(ωt +θ )) (10)

where I0 is the baseline fluorescence component which has not
been magnetically altered. The MARY curve, M, can be approxi-
mated locally by using a Taylor expansion of M(b ) about point bo .
This can be done for sufficiently small bm , such that b ≈ bo (see
Eq. 9). Substituting this Taylor expansion of M, up to the 1st order
term, into Eq. 10, gives:

I (bo ,t ) = I0+M (bo )+M′(bo )
�

b −bo
�

+O
�

Mn ′(bo )
�

n>1

≈
�

I0+M (bo )
�

+M′(bo )bm cos(ωt +θ )
(11)

where ′ indicates a derivative with respect to magnitude of the
magnetic field applied b , and O is the order function signify-
ing higher order terms. This signal consists of the DC compo-
nent I0+M(bo ) and the AC component which, in this case, is a
single tone at ω. This is an approximation of the input into the
LIA. The corresponding output can be found by applying the LP
filter equation. Substituting Eq. 11 into Eq. 3, and setting h = 1

gives:

S (bo ) =
�

I0+M (bo )
�

0
∫

−∞

D1 dt +M′(bo )bm

0
∫

−∞

D1 cos(ωt +θ )dt

= e −iθ

p
2

2
bm M′(bo )

(12)

The DC component of I has been filtered out, and the detected
signal is therefore the magnitude of the input signal – the deriva-
tive of the MARY curve M′ scaled by the modulation ampli-
tude

p
2bm/2 and phased between the detection channels by an-

gle θ .

The higher the magnitude of bm , the higher the signal, but
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also the more we depart from the regime where we can truncate
higher order terms of the expansion in Eq. 10. This approximation
fails even for small bm at, and close to, turning points where M′ is
by definition small, but M′′ is large. This can be seen by plotting
the accuracy of the local Taylor approximation of a Lorentzian
lineshape with truncations at progressively higher terms. The log
of local error of the expansion up to the n th term (LLEn ) has

been plotted in Fig. 2. It can be seen that when LLE1 is highest,
LLE2 is lowest. The successive even terms of the Taylor expansion
contribute the most where the preceding odd one contributes the
least, and vice versa. We can mitigate the problem of inaccurate
representation of I by leaving one more term in the expansion,
giving:

I (bo ,t ) = I0 +M (bo ) +M′(bo )
�

b −bo
�

+
1

2
M′′(bo )

�

b −bo
�2 +On>2

�

Mn (bo )
�

≈
�

I0+M (bo )+
M′′(bo )

4
bm

2

�

+M′(bo )bm cos(ωt +θ ) +
M′′(bo )

4
bm

2 cos
�

2(ωt +θ )
�

(13)

There are now two tones, one at ω with phase θ , and one at
2ω with phase 2θ . The main component of an n th harmonic of
ω is the n th derivative of M. The magnitude of the n th harmonic
also scales as O (bm

n ), although this does not necessarily translate
into signal magnitude. This is because the magnitude of higher
derivatives of physically useful M’s tend to vanish as n increases,
since such M’s tend to be bounded and limited to a certain region
(e.g. electron paramagnetic resonance spectra, spectral extinction
coefficients, emission profiles). Note also that M′′ contributes to
the DC component but will, as previously, be discarded by LP fil-
tering.

Substituting Eq. 13 into Eq. 3 gives:

Sh (bo ) = M′(bo )bm

0
∫

−∞

Dh cos(ωt +θ )dt

+
M′′(bo )

4
b 2

m

0
∫

−∞

Dh cos(2ωt +2θ )dt

(14)

We can now use the previously introduced harmonic number h

to tune into either of the two tones, since first or second integral
can be set to 0 by setting h =2 or h =1 respectively. The first and
second harmonic signals are therefore given by:

S1(bo ) = e −iθ

p
2

2
bm M′(bo ) (15a)

S2(bo ) = e −i 2θ

p
2

8
b 2

m M′′(bo ) (15b)

As discussed above, the first harmonic signal is proportional to the
first derivative. The second harmonic signal (or first overtone) is
proportional to the second derivative. It can therefore be used to
reconstruct the MARY curve in regions where M′ is small.

In principle, the greater the value of bm , the greater the non-
linearity of M in the region swept by the modulation (bo −bm to
bo +bm ). This means that higher order expansions are needed to
approximate M correctly, and therefore higher overtone signals
are detectable from the experiment.

As all the harmonics scale with powers of bm , they become
larger and easier to detect as bm increases. However, it becomes
much more problematic to interpret the data for high bm . Just

lo
g 

lo
ca

l e
rr

o
r 

(L
LE

)

1/(1+x2)

0 4 8-4-8
x

0

-5

-10

n=1

2

3

4

Fig. 2 Log local error (LLE) in the successive Taylor expansions of a Lorentzian
lineshape L (x ) =1/(1−x 2) (dashed black line). In this context, LLEn is defined as
log(max(|L−Ln |)), where Ln is the Taylor expansion of L up to and including the
n th derivative term in the region x ±0.1 (see supplementary information for details).
LLEn can be treated as inversely proportional to the information about the original
function L , carried by the n th term (and, by extension, the n th harmonic) of the
expansion. The region where the first local Taylor approximation of L commits the
largest error (peak in LLE1 at |x |≈1) is the region of high curvature of L . This region
is, in turn, best approximated by the second local Taylor expansion (dip in LLE2 at
|x | ≈1). It shows how the second harmonic detection helps with reconstruction of
the high curvature (i.e. high 2nd derivative) regions of M.

as the 2nd order expansion had an effect on the 0th order term
(DC), the 3rd order expansion will have an effect on the 1st or-
der term S1. In general, each n th order term contributes to the
harmonics n ,n−2,n−4,... etc.27 This results in broadening of the
corresponding signals as bm sweeps over larger and larger regions
(see Fig. 4).

2.4 Periodic split

To proceed with the derivation, we need to split the integral in
Eq. 3 into a sum of integrals over the units of a full period of ω,
the fundamental reference frequency (see Fig. 3). Furthermore,
we change the variable of integration from t to t=ωt /2π, effec-
tively time in units of one full period of ω. The split integral can
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be written as:

Sh =

0
∫

−∞

Dh I dt =
−∞
∑

j=0

jπ
ω
∫

( j−1)π
ω

Dh I dt

=
2
p

2π

η

−∞
∑

j=0

j
∫

j−1

exp
�

2π

η
t

�

exp
�

2πi ht
�

I dt

(16)

where the explicit dependence of Sh on bo has been dropped to
simplify notation.

For each individual period, the exponential envelope term
exp

�

2π
η t
�

can be expressed as a product of the average height of
the envelope, its shape:

exp
�

2π

η
t

�

j th period
−→ exp

�

2π

η

�

j −1/2
�

�

× exp
�

2π

η

�

t+1/2
�

�

(17)

The first term is the height of exp
�

2π
η t
�

half way through j th pe-
riod:

J ( j ,η) = exp
�

2π

η

�

j −1/2
�

�

(18)

and the second is the exponential envelope shape:

E (t,η) = exp
�

2π

η

�

t+1/2
�

�

η�1
= 1 (19)

J is independent of t, and so can be taken out of the integral as
a constant. The entire integrand is now independent of j and so
the entire integral, in turn, can be taken out of the summation.
Inserting the definitions from Eq. 18 and 19 into Eq. 16, and rear-
ranging as described, yields:

Sh =
2
p

2π

η

−∞
∑

j=0

¦

J ( j ,η)
©

0
∫

−1

E (t,η)exp
�

2πi ht
�

I dt (20)

The limits of the integral have been changed accordingly, as the
period-wise shift back in time ( j ) is fully accounted for by J . This
can be done since, be definition, the integrand is periodic in t

with a period of 1. The sum over J is bound and evaluates to a
hyperbolic cosecant:

−∞
∑

j=0

J ( j ,η) =
−∞
∑

j=0

exp
�

2π

η

�

j −1/2
�

�

=
1

2
csch

�

π

η

�

(21)

Eq. 20, therefore, becomes:

Sh = k (η)

0
∫

−1

E (t,η) exp
�

2πi ht
�

I dt (22)

where k is the scaling constant:

k (η) =

p
2π

η
csch

�

π

η

�

η�1
=
p

2 (23)

Fig. 3 a) Pictorial representation of the components of the detection kernel (D ,
Eq. 4), shown as a function of relative time t. The purple line represents the integra-
tor window component of the detection kernel (D) – exponential with time constant
τ. The dashed purple line corresponds to the average height of this window in
each period of the modulation (J , Eq. 18). The solid purple line is obtained by
multiplying J with the exponential envelope (E , Eq. 19) within each period. Real
(green) and imaginary (pink) quadrature components of the reference waveform
are also shown. The arrows demonstrate the splitting of the integral from Eq. 16
into an infinite sum, Σ, of integrals over full periods of the reference,

∫

p. b) The
first three modulation kernels Kh , sampled with 10 points and scaled to conserve
signal magnitude under convolution. Only the 8 middle samples are shown, since
the edge samples evaluate to 0. K2 is acting akin to the differentiation kernel used
in finite-difference numerical differentiation, combined with moving-average smooth-
ing. Correspondingly, K3 is the second derivative. Note that these kernels operate
on the derivative of M.

2.5 Change of domain

We have simplified an infinite integral to one over a single period
of the fundamental frequency, and we know how the applied mag-
netic field changes in time. We can therefore use this knowledge
to change the variable of integration from time to magnetic field –
the natural domain of the signal measured. To do this we to start
by defining a modulation parameter m as:

m = cos(2πt+θ ) (24)

where m is the oscillating part of the magnetic field scaled to unit
amplitude, and ωt →2πt. The corresponding equations to change
the variable of integration are:

t =
1

2π
cos−1 (m)−

θ

2π
(25a)

dt = ∓
1

2π
p

1−m2
dm (25b)

where the sign of the derivative changes between the left and
right half-periods ofω. Changing the variable from t to m in Eq. 22
results in:

Sh (bo ) =
k

2π
e −i hθ

∫

period

∓E
exp

�

i h cos−1 (m)
�

p
1−m2

M dm (26)

where the integration range has not been explicitly specified yet
as it needs further careful attention. I (t ) has been replaced by
M(b ) =M(bo +bmm), the shape of the MARY curve in the range
[bo −bm ,bo +bm ]. Since only the integrand is complex, the inte-
gration in Eq. 26 can be carried out separately for the real and
the imaginary components.
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The real part of the integral from Eq. 26 is:

IRe =

∫

period

∓E
cos

�

h cos−1(m)
�

p
1−m2

M dm (27)

The limits of the integral are problematic since the inverse func-
tion of cos(x ) is multivariate. The integral above must therefore
be evaluated piecewise. Doing this for arbitrary η and h for both
real and imaginary parts would give 2(2h+1) integrals. Proceed-
ing with this would allow the derivation of a general solution,
even far from the limit of η�1. This analysis is complicated and
unnecessary for this work. From now on we shall assume η� 1.
In this limit we can use the previously established approximations
E ≈1 over the entire period ω, and k ≈

p
2. Applying these limits

to Eq. 27 yields:

IRe =

−1
∫

1

−Th (m)p
1−m2

M dm +

1
∫

−1

Th (m)p
1−m2

M dm (28)

where Th (m) has been recognised as a Chebyshev polynomial of
the first kind, of order h , over m:

Th (m) = cos
�

h cos−1(m)
�

(29)

For even h , the limits of the integral do not matter as the inte-
grand is symmetric about 0. For odd h the limits of the right inte-
gral can be swapped by changing the sign and so in each case the
two integrals are equal. The real part of the integral from Eq. 26
can therefore be written as:

IRe = 2

1
∫

−1

Th (m)p
1−m2

M dm (30)

A similar argument can be applied to the imaginary part of the
integral. Here, the corresponding term is a Chebyshev polynomial
of the second kind of order h −1, over m, and can be written as:

±Uh−1(m)
p

1−m2 = sin
�

h cos−1(m)
�

(31)

The sign depends on the domain of the cos−1(m) term. It is posi-
tive for cos−1(m)∈ [−π,0] and negative for cos−1(m)∈ [−2π,−π]. This,
conveniently, corresponds to the way we split the integral, and the
additional sign change means the two halves cancel each other
out. The imaginary part of the integral from Eq. 26 is:

IIm =

−1
∫

1

−Uh−1(m)M dm −

1
∫

−1

Uh−1(m)M dm = 0 (32)

Combining both real (Eq. 30) and imaginary (Eq. 32) parts of the
integral, Eq. 26 becomes:

Sh (bo ) =

p
2

π
e −i hθ

1
∫

−1

Th (m)p
1−m2

M(bo +bmm)dm (33)

This integral in the field domain can be interpreted as a convo-
lution of scaled M with a Chebyshev kernel. M is required to be
scaled “horizontally” in the field direction such that bm = 1. This

can always be done without loss of generality.

This form of the expression for the LIA signal can already be
used to obtain the analytical result for the shape of the result-
ing signal. The only remaining problem (at least for numerical
analysis) is that the term Th (m)(1−m2)−1 has an infinite amplitude
as |m|→1. This can be resolved by simplifying the integral from
Eq. 33 using integration by parts. Integrating the Chebyshev term
and differentiating M with respect to b gives:

Sh (bo ) =

p
2

πh

�

M

1
∫

−1

Uh−1(m)
p

1−m2 dm +

1
∫

−1

Uh−1(m)
p

1−m2M′ dm

�

(34)
As the first integral is 0 for h ≥ 1, the above equation can be sim-
plified to:

Sh (bo ) =

1
∫

−1

Kh (m)M
′(bo +bmm)dm (35)

or, more compactly:

Sh (bo ) = Kh ⊗M′ (36)

where ⊗ represents the operation of convolution and Kh is the
convolution kernel:

Kh =

(

exp(−i hθ )
p

2
πh Uh−1(m)

p
1−m2 m∈ [−1,1]

0 otherwise
(37)

It can be seen that the phase of the reference only rotates the
signal between the real and imaginary planes. When considering
a well phased signal (θ = 0), the exponential term is equal to 1

and Kh and Sh are purely real.

M′ is the field derivative of the transfer function which de-
scribes the magnetic field sensitivity of the sample of interest, and
Kh is an analytical modulation kernel (Eq. 37) which encapsu-
lates both the modulation broadening and any further derivative
action (for higher signal overtones). Representative 10-point con-
volution kernels for h from 1 to 3 have been plotted in Fig. 3. The
amplitude of the modulation is used to scale the field axis of M′

such that bm = 1. Equivalently, M′ could be left unchanged and
Kh scaled to go from −bm to +bm . Note that, as long as η�1, Kh

does not depend on modulation frequency fm nor on the LIA time
constant τ.

This formulation of the ModMARY signal, and indeed any
derivative spectroscopy signal, is immensely useful. Not only does
this give us an exact analytical shape of the obtained derivative
signal (including the distortion due to modulation), but even
when that analytical result is hard/impossible to calculate, nu-
merical convolution is fast, even for a very large number of data
points. This allows fitting of any M to the derivative signal as long
as the modulation amplitude is known. Moreover, this formula-
tion allows us to interpret overtone signals easily. As discussed in
Sec. 2.3, higher overtone signals often contain valuable informa-
tion about regions of interest of M which, in the case of this work,
is the LFE region of the MARY curve.

The utility of this method will be demonstrated in the following
section with an experimental study and fitting of a well known
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magnetosensitive model system (Py/DCB) at different modula-
tion amplitudes.

3 Experiment and methods

3.1 Experimental apparatus

A schematic of the experiment can be seen in Fig. 1. The sample is
excited by a 365 nm LED (Thorlabs M365L2) which is collimated
into a ∼0.5 cm wide beam and directed onto the 1 cm quartz cu-
vette (Hellma Analytics, 130-10-40, 10 x10 mm) through a reflec-
tive prism. The sample was flowed through the sample cell at
10 µLmin−1 and allowed to reach a steady state before the mea-
surement. The effective radiant power at the sample has been
estimated as ∼100 mW. The fluorescence is collected with a light-
guide and directed to the photocathode of a photomultiplier tube
(PMT, Hamamatsu) through a 455 nm LP filter (Comar optics,
455 GY 25). The PMT has been set in a µ-metal box and placed
far from the magnetic field coils to shield it from the influence
of the magnetic fields. Two sets of magnetic field coils are placed
around the sample, one for the offset and one for the modulated
components of the applied magnetic field. The fields applied by
the coils are parallel to one another and each set has an indepen-
dent power supply (Physical and Theoretical Chemistry Labora-
tory (PTCL), University of Oxford, Electronics workshop).

A hall probe gaussmeter (PTCL electronics) is fixed in the sam-
ple cell holder to monitor the field applied over the course of the
experiment. The probe has been calibrated against a commercial
Gaussmeter (Lakeshore 425 with HST-4 probe), with the probe
placed in the sample cell holder, which also accounts for any field
distortion due to the cell housing.

The PMT outputs up to 15 V DC at maximum light exposure.
The output was kept at ∼10 V by adjusting the gain before start-
ing the experiment. The gain was then kept constant. The signal
from the PMT is split into separate paths by two unity-gain volt-
age buffers (PTCL electronics). One path is AC coupled and de-
modulated by two analog LIAs (Stanford Research Systems 510),
corresponding to two quadrature channels. Both LIAs have been
calibrated in the same way and, except for the π/2 phase shift, are
identical to one another. The other path goes through a calibrated
voltage divider to bring the output of the PMT into the 10 V range.

The (scaled) PMT DC voltage, the analog output of the LIAs,
and the gaussmeter signal are digitised by a data acquisition card
(DAQ, National Instruments, PCIe-6323) at 2 kHz sample rate in
50 ms consecutive snapshots, giving a data acquisition rate of
20 Hz. The PMT voltage was recorded through a voltage divider
to ensure that the DAQ card input was not overloaded. Each snap-
shot of the gaussmeter signal was further processed by convert-
ing the measured voltage to calibrated magnitude of the magnetic
field using a 4th order polynomial, and measuring the detected fm
and bm with the FFT based single tone measurement search algo-
rithm.28 The DAQ card was also used to output an analog ±10 V

signal controlling the offset field power supply. The negative con-
trol voltage corresponding to the opposite current flow and hence
the magnetic field being applied in the opposite direction.

The experiment was controlled by a custom written program
(National Instruments, LabVIEW, 2015b). The magnetic field was

constantly adjusted using a fast Ziegler-Nicolas PID controller to
ensure any effects of magnet hysteresis were negligible.29 More-
over, the field was swept in an up-down-up fashion between ±
maximum field values to ensure symmetrical signal with no ar-
tifacts. At each field point, the experiment paused for at least 3
times the time constant of the LIAs before acquiring the 50 ms

data sample. Each data point consists of the mean and standard
deviation of each of the sample of the LIAs outputs. The PMT
voltage, the gaussmeter reading, measured fm and measured bm

were also recorded.
The offset magnetic field applied to the sample was in the range

of ±40 G, with an accuracy of better than 0.1 G. The average field
settling time following change of field set point in a sweep was
400 ms (see supplementary information). Both the 1st and the 2nd

harmonic (h1 and h2 respectively) signals have been measured for
each dataset shown. The modulation amplitude was always kept
constant throughout the course of the experiment. The achiev-
able range of amplitudes was dependent on fm , due to the coils’
impedance increasing at higher frequency. For all of the following
experiments the modulation frequency was kept at 193 Hz, except
for 20 G modulation depth where is was set to 71 Hz (both prime).
These frequencies were used such that neither the modulated flu-
orescence signal, nor its overtones overlap significantly with elec-
trical interference from power lines (50 Hz fundamental). In prac-
tise this interference was found to be significant only at modu-
lation frequencies close to 50 and 100 Hz. Higher modulation fre-
quencies were not employed since no impedance matching circuit
was used, and so high frequency would limit the achievable mod-
ulation depth range. Note that, by convention, ModMARY spec-
troscopy refers to the “modulation depth” which is twice the mod-
ulation amplitude and corresponds directly to the region swept
by the oscillating component of the magnetic field.

The reference frequency for the LIAs and the power supply of
the modulation coils was provided by an external waveform gen-
erator (Rigol DG1022). The sample cell holder block was temper-
ature controlled by a recirculating chiller (240 W, Grant Instru-
ments, LT ecocool 100). The steady state temperature at the re-
turn of the chiller was just above room temperature (23 ◦C). The
equipment has been checked extensively to ensure that the mag-
netic field does not produce artifacts in the data (see supplemen-
tary information).

3.2 Analysis

The data acquired from each of the quadrature channels of the
LIA Sx and Sy , has been phased by minimizing the magnitude of
the imaginary component with respect to the complex angle or
rotation θ . The result is a phased signal Sp which preserves the
sign of the original data:

θ̄ ← min
θ

∑

Im
��

Sx +iSy
�

×exp(iθ )
�2 (38a)

Sp =
�

Sx +iSy
�

×exp(i θ̄ ) (38b)

In order to reconstruct the underlying MARY curve (the flu-
orescence magnetosensitivity transfer function M) we can fit
the h1 and h2 data to Eq. 36. We can do this by creating a
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Fig. 4 1st and 2nd harmonic data (top and bottom row respectively). All the modulation depths for both harmonics have been fitted simultaneously (see Sec. 3.2), for PyH10

(left column) and PyD10 (right column). The fits are shown as solid lines coloured by modulation depth (see legend), while the data is shown as gray points. The scale bars
drawn on top of the legend on the right hand side correspond to the scale of the abscissa of all of the plots. The inserts in a) and b) show the detail of the LFE region of the
1st harmonic data. The scale bars in the inserts are 2 G wide. Modulation depths of 10 and 20 G have been omitted from the inserts as they would appear as a featureless
vertical line. Note also the change of ordinate scale of b) with respect to a). The 2nd harmonic data in c) and d) has been shifted by progressive integer multiples of 1 mV to
allow for easier comparison. Low modulation depths have been scaled up 10x for 1 and 2 G, and x5 for 3 and 5 G.

parametrized model of M, calculating the appropriate convolu-
tion kernel (Kh ) from the experimental parameters, and perform-
ing a least-squares fit.

We use a sum of two Lorentzian lineshapes of opposite signs to
model M. The model ML is given by:

ML (x |ppp ) = 4x 2

�

p2

p 2
4 +4x 2

−
p1

p 2
3 +4x 2

�

(39)

where ppp is the vector of fit parameters, the two amplitudes are
given by p1 and p2, and the two widths of the high and low field
components of ML by are given by p3 and p4 respectively.

An analytical gradient for ML is easy to calculate, but in the
interest of generality, and to benchmark performance for an arbi-
trary M, a numerical gradient of densely sampled ML was used
instead. ML

′ was convolved with the appropriately sampled and
scaled Kh . The additional scaling was necessary to account for the
discrete sampling of Kh (see supplementary information). Spe-
cial care was taken to sample M over a wide enough region for
the convolution with Kh to be valid. This densely sampled result
was then interpolated onto the data axis, and the mean square
error between the fit and the data was evaluated and optimised
as a function of ppp . For fitting multiple datasets simultaneously,
in order to account for varied signal magnitude between differ-
ent modulation amplitudes and harmonics, the residuals for each

dataset were scaled by their root-mean-square magnitude. The
fitted vector of model (ML ) parameters p̄pp was obtained by:

p̄pp ← min
ppp

h
∑�

Sp −Kh ⊗ML
′(ppp )

�2
÷
∑

Sp
2
i

(40)

The optimisation was performed with a Nelder-Mead search al-
gorithm.30 It is worth noting that an improper implementation
of the convolution can lead to artefacts appearing in the spec-
trum due to zero-padding of the signal beyond its domain. In the
worst case scenario, these artifacts can appear like features of in-
terest, for example the LFE feature. In order to prevent this, M

was always evaluated over the data range extended by ±bm , and
trimmed to size for the purpose of fitting.

We have employed a method of bootstrap resampling of the
residuals and refitting.31–33 This allows the evaluations of “good-
ness of fit”, as well as sampling parameters of interest of the fitted
MARY curves. Briefly, the residuals of the best-fit were sampled
in blocks, with replacement. The autocorrelation function of the
residuals was used to estimate the block size in order to preserve
the non-white nature of the new resampled residuals. These were
then added onto the best-fit line(s) and refitted. This procedure
was repeated 1000 times, and the distribution of the fit values
was analysed. The median, lower and upper standard deviation
equivalence were extracted, giving the fit parameters p̄pp and their
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spread δp̄pp . The bootstrapped parameters of interest were the (x,y)
position of the MARY curve amplitude at half saturation B1/2, as
well as the position of the maximum of the LFE feature.

The fitting was found to take roughly 25 ms for ∼2 k points
dataset on a typical desktop PC (Intel(R) Core(TM) i5-6600 CPU
@ 3.3 GHz, 8 GB RAM). The subsequent 1 k points bootstrap took
correspondingly ∼30 s. The majority of this time was spent on the
convolution, which averaged ∼150 µs per call with ∼2×106 calls.
This analysis was performed in MATLAB 2017a.

3.3 Sample of interest

The investigated sample is a donor/acceptor, mixture of pyrene
(Py) and 1,3-dicyanobenzene (DCB) respectively.34 This system
has been extensively studied and shows a large magnetic field ef-
fect,16,18,35,36 as well as a pronounced low field effect14,19 mak-
ing it a perfect model system for this analysis. Briefly, photoex-
cited S1 pyrene forms an exciplex with DCB. The fluorescence
of the exciplex is distinctly red shifted compared to that of the
ground state.34,37 The exciplex can also dissociate into a magne-
tosensitive radical pair which, due to the high viscosity of the sol-
vent, has a high probability of spin-selective recombination. This
means that a large percentage of the exciplex fluorescence is mag-
netosensitive, leading to large, easily observable MFEs.

Py (98 % Sigma Aldrich 185515) and DCB (98 % Sigma Aldrich
145858) were made up to concentrations of 400 µM and 40 mM

respectively in pre-prepared 9:1 mixture of cyclohexanol (99 %

Sigma Aldrich 105899) and acetonitrile (99.8 % Sigma Aldrich
271004). The concentration of the quencher (DCB) was kept in
excess to suppress pyrene-pyrene excimer formation.38 The sol-
vent mixture was chosen due to its high viscosity, which promotes
the formation of magnetosensitive exciplex species. Its high di-
electric constant also stabilizes charged species, including the ex-
ciplex and the radical pair.15

We have measured both natural abundance PyH10 and fully
perdeuterated PyD10 pyrene samples. Deuteration decreases the
molecular hyperfine coupling constant of the pyrenyl radical
cation in the radical pair, and therefore should strongly affect the
size and shape of the MARY curve.20

4 Results and discussion

We measured both the first (h1) and second (h2) harmonic data
over a range of modulation depths for both PyH10/DCB and
PyD10/DCB samples. For each of the two samples, phased signals
for all of the harmonics and modulation depths were fitted simul-
taneously as described in Sec. 3.2. The results of the fit can be
seen in Fig. 4.

It was found that the simulation using ML as a model for the
MARY curve can reproduce both the shape and the magnitude of
the signal very well. This is promising, especially since the choice
to use a difference of Lorentzians to model the LFE is somewhat
arbitrary. Special care had to be taken for the signal magnitude
to stay constant over the course of the experiment. Any change in
the signal magnitude for long experiments has been attributed
to 1) sample photodegradation and 2) heating of the modula-
tion coils at very high modulation depths leading to increased
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Fig. 5 Reconstruction of the MARY curves of PyH10 (blue) and PyD10 (red), based
on the fit of the data from Fig. 4. The points of interest, B1/2 and the maximum LFE,
are marked, and the bootstrapped values with prediction bounds are given. The
insert shows details of the LFE region. The scale cross in the insert is 0.5 G wide
and 20 µV high.

impedance.
The sensitive detection of the LFE is one of the main goals of

this work. We will therefore discuss a selection of the apparent
features of the data that relate specifically to it. The LFE gives rise
to a clearly visible feature around 2 G for the harmonic data (see
insert of Fig. 4 a,b). As discussed, however, the information con-
tent of the h1 (∼1st derivative) signal in this region drops quickly
with increasing modulation depth, and the LFE feature can only
be seen clearly for 2×bm in the range of 1–3 G. Conversely, the h2

data shows a discernible LFE feature (dip/inflection in the middle
of the signal) all the way up to 2×bm =10G for both datasets. h2

data also contains information about the shoulders of the MFE
at higher fields, but the signal quickly vanishes at higher fields
(compare e.g. signal magnitude for bo = 10G for low modulation
depths). This means that h2 alone is not sufficient for the recon-
struction of M.

Good estimates of the MARY curve could not be obtained from
the 2×bm =20G data. Higher overtones become easier to detect
at higher modulation depths since the magnitude of the signal
scales approximately with powers of 2×bm (see Eq. 13). Hence,
a good fit at 2×bm =20G could succeed if higher overtone data
were measured (at the time this was not possible, see supplemen-
tary information) and incorporated into the fit.27 Interestingly,
the LFE in the h1 data for PyH10 gives rise to a small deflection
in the gradient of the signal close to peak signal at −20G (Fig. 4).
This is predicted exactly by the fit and indeed makes perfect sense
as that is where the oscillating field begins to “see” the LFE. This
apparently visible LFE feature did not, however, improve the qual-
ity of the fit of that data alone, as the information about the LFE
had been distributed too thinly across the signal.

The analysis of the fitted data suggests that measurements of a
magneto-sensitive chemical system at higher modulation depths
– where 2×bm is up to 5 times the expected LFE width, ought
to succeed in reconstructing the underlying MARY curve M with
the correct LFE feature. This can be done by simultaneous fitting
of the h1 and h2 signals (and higher overtones if signal magni-
tude is attainable), since the information about the higher order
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terms in Taylor expansion of the model of M (Fig. 2) is retained
by the higher order harmonics. A subset of reconstructed MARY
curves M from this analysis, as well as the bootstrapped fits33

serving as prediction bounds, can be seen in Fig. 5. It is clear
that the PyD10 sample gives rise to a lower magnitude field ef-
fect, with a narrower LFE feature (see insert of Fig. 5). The boot-
strapped (x,y) coordinates of B1/2 and the maximum LFE point
are shown on the figure. The reported uncertainty is the stan-
dard deviation of the bootstrapped heuristics which were found
to be approximately normally distributed (this was less of the
case for the LFE maximum, as it sits close to the origin, which
is a fixed point of ML ). Compared to the natural isotopic abun-
dance PyH10, the LFE feature of the perdeuterated pyrene shrinks
and the magnitude of the overall field effect decreases. A strong
effect of deuteration on the LFE is expected, since there is approx-
imately 6.5-fold difference in the hyperfine coupling constants of
the deuterons and protons.39 The change in hyperfine MFE mag-
nitude is also pronounced due to the resulting change in singlet
probability. This can be contrasted to works of Richert et al.40,
and Rodgers et al.39, both of whom showed no significant change
in the magnitude of the MFE upon deuteration of pyrene in the
pyrene/dimethylalanine system – a behaviour attributed to de-
generate electron exchange.19 Therefore, the fact that we do ob-
serve such change in our measurements suggests the electron
self-exchange does not play a major role in the Py/DCB system,
and the majority of the reaction proceeds through geminate exci-
plexes.

Although the main result of this work is time-independent
(Eq. 36), its derivation assumes fast modulation (the assumption
of η�1) and, effectively an oscillatory steady-state of the sample
of interest. Hence, although the broadening and harmonic distor-
tion effects are frequency independent, the magnitude of samples’
response (in this case the field effect) might be. In the case of the
chemical response of the sample, as is the case in this work, these
are the reaction rates of the individual reaction steps leading to,
as well as downstream of, the magnetosensitive step.41,42 To per-
form such an experiment on the ModMARY apparatus, the signal
of the sample of interest would have to be acquired at a range of
modulation frequencies ( fm ) straddling the timescale of the slow
MFE component. The prompt MFE is then expected to contribute
to the signal at all fm , while the response the slow component
will be suppressed at high fm , leading to a change in the observed
signal magnitude.

It is important to note that the technique described here is
model-based – the results of a fit are based upon an assump-
tion that the underlying model of M is correct. For an unknown
dataset this may not necessarily be the case and the “best” model
has to be chosen out of a few proposed. There are many ways
of approaching such model selection problems. One way is to
consider the degree to which the information contained in the
data is expressed by each of the models, while penalising models
with many parameters in order to avoid overparametrisaton.43,44

Another approach is to compete the models against one-another
pairwise, and test the null hypothesis that the models approx-
imate the data (more accurately the data generating process)
equally well against the alternate hypothesis that one approxi-

mates the data better than another.45 In simple cases, and when
the model has far fewer degrees of freedom than the data, de-
termination of the best model can be made by a comparison of
performance heuristics, e.g. root-mean-square residuals, variance
of bootstrapped fit parameters p̄pp or cross-validated in-sample pre-
diction power (see supplementary information). For the purposes
of MFE research, as a first-order approximation, we suggest the
ML function described above as a simple model of a M. Better, fast
and more insightful models of a MARY curve are being actively de-
veloped.9 The technique described here can, however, be used to
model most stimulus-modulated derivative signals (those which
conform with the assumptions made in the derivation). The cor-
rectness of M model must, in that case, be carefully considered.

5 Conclusions

With minimal assumptions, we have shown that the stimulus mod-
ulation broadening can be represented as a convolution, and de-
rived the exact shape of the underlying convolution kernel. Ad-
ditionally, our derivation has captured the effects of harmonic
distortion and generation of overtones of the modulated signal.
Hence, we have introduced a model-based technique to model an
arbitrary stimulus-modulated derivative signal, and its overtones.
We have shown its utility with specific application to modelling
of Modulated MARY spectroscopy data of magnetic field effects.
We were able to resolve a sub-Gauss shift in the low-field effect
feature upon deuteration, which is of great interest for the field
of RP-based MFEs46,47 and magnetoreception research.7,48

Multiple harmonics of the same sample response can be de-
tected simultaneously with multiple quadrature detectors or a
single multichannel one, especially if digital lock-in techniques
are employed. We therefore propose that the technique of multi-
harmonic detection and reconstruction described in this work is
applicable, not only in Modulated MARY spectroscopy, but in a
wide range of techniques which make use of stimulus modulation.
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Glossary
For the benefit of the reader, we provide the following glossary of
some of the more context-specific symbols used throughout the
text (especially in Sec. 2)

fm Frequency of the oscillating component of the modulated
stimulus (magnetic field).

bm Amplitude of the oscillating component of the modulated
stimulus.

bo Static (offset) component of the magnetic field.
b Total applied magnetic field – sum of the offset and modu-

lated components (Eq. 9).
τ Time constant of the exponential window of the LIA.
I Input to the LIA. This is the result of the modulated stimulus

(magnetic field, b ) on the transfer function (M, MARY curve,
Fig. 1b).

R Reference oscillation of the LIA – in-phase harmonic of the
modulated stimulus (Eq. 2).

h Integer harmonic constant. Reference oscillation is an h th har-
monic of the modulation frequency.

η Number of radians of oscillation of the reference frequency
(R) within a single time constant (τ) of the LIA.

Dh Time-domain detection kernel of the LIA (Eq. 4), correspond-
ing to the harmonic constant h .

S Output of the LIA – demodulated, and LP-filtered input (I ).
M Transfer function (MARY curve) from the stimulus (magnetic

field, b ) to the samples’ response (Fig. 1b). Derivatives of
the transfer function with respect to the stimulus are denoted
with ′.

t Time, counted in number of oscillation periods of the modu-
lated stimulus (Eq. 16)

j Period counter for the integral split (Eq. 16).
J Average height of the exponential window component of the

detection kernel (D) within the j th period of the modulated
stimulus (Eq. 18).

E Shape of the exponential window of the detection kernel
within the any one period of the modulated stimulus (Eq. 19).

m Modulation parameter – oscillating part of the stimulus,
scaled to unit amplitude (Eq. 24).

Tn n th Chebyshev polynomial of the 1st kind (Eq. 29).
Un n th Chebyshev polynomial of the 2nd kind (Eq. 31).
Kh Convolution kernel which models the h th harmonic of the ac-

tion of the stimulated modulus on the derivative of the trans-
fer function (M′, Eq. 36 and 37).

ML Double Lorentzian model of the MARY curve (Eq. 39).
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A covolutional model for the effect of broad modulated stimulus (magnetic field) is developed 
by considering the curvature of the underlying transfer function (magnetosensitivity profile).
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