
Analysis and Visualization of Energy Densities. II. Insights 
from Linear-Response Time-Dependent Density Functional 

Theory Calculations

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-08-2020-004207.R1

Article Type: Paper

Date Submitted by the 
Author: 21-Oct-2020

Complete List of Authors: Pei, Zheng; Xiamen university, State Key Laboratory of Physical 
Chemistry of Solid Surfaces, Collaborative Innovation Center of 
Chemistry for Energy Materials, Fujian Provincial Key Laboratory of 
Theoretical and Computational Chemistry, and Department of Chemistry,
Yang, Junjie; University of Oklahoma, Chemistry and Biochemistry
Deng, Jingheng; University of Oklahoma, Chemistry and Biochemistry
Mao, Yuezhi; Stanford University, Department of Chemistry
Wu, Qin; Brookhaven National Laboratory, Center for Functional 
Nanomaterials
Yang, Zhibo; University of Oklahoma, Chemistry and Biochemistry
Wang, Bin; University of Oklahoma, Chemical, Biological and Materials 
Engineering
Aikens, Christine; Kansas State University, Chemistry
Liang, WanZhen; Xiamen university, State Key Laboratory of Physical 
Chemistry of Solid Surfaces, Collaborative Innovation Center of 
Chemistry for Energy Materials, Fujian Provincial Key Laboratory of 
Theoretical and Computational Chemistry, and Department of Chemistry, 
College of Chemistry and Chemical Engineering,
Shao, Yihan; Department of Chemistry and Biochemistry, University of 
Oklahoma, ;  

 

Physical Chemistry Chemical Physics



Analysis and Visualization of Energy Densities. II. In-
sights from Linear-Response Time-Dependent Density
Functional Theory Calculations †

Zheng Pei,a,# Junjie Yang,b,# Jingheng Deng,b Yuezhi Mao,c Qin Wu,d Zhibo Yang,b

Bin Wang,e Christine M. Aikens, f Wanzhen Liang,∗a and Yihan Shao∗b

Inspired by the analysis of Kohn-Sham energy densities by Nakai and coworkers, we extended the
energy density analysis to linear-response time-dependent density functional theory (LR-TDDFT)
calculations. Using ethylene-tetrafluoroethylene and oxyluciferin–water complexes as examples,
distinctive distribution patterns were demonstrated for the excitation energy densities of local
excitations (within a molecular fragment) and charge-transfer excitations (between molecular
fragments). It also provided a simple way to compute the effective energy of both hot carriers
(particle and hole) from charge-transfer excitations via an integration of the excitation energy
density over the donor and acceptor grid points.

1 Introduction

Wavefunction analysis has been a central component of electronic
structure calculations, dating back to the dawn of modern quan-
tum chemistry. To characterize the charge density distribution
of electronic ground state, numerous population schemes were
developed to extract atomic (or fragment) charges from the one-
particle density matrix, the electronic density, or the total electro-
static potential.1–3 These include Mulliken partitioning,4 Löwdin
partitioning,5,6 atoms-in-molecule partitioning,7–9 natural popu-
lation analysis,10–12 electrostatic-potential-derived charges,13–22

Becke-weight-based partitioning,23 Hirshfeld partitioning,24–26

fragment-based Hirshfeld partitioning,27 iterative Hirshfeld par-
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titioning,28–31 iterative Stockholder atoms partitioning,32,33 ex-
tended Hirshfeld partitioning,34 density derived electrostatic and
chemical charges,35–39 charge models I through V,1,40,41 etc. Re-
latedly, Fukui functions (i.e. atomic population changes upon
electron detachment/attachment)42–44 were also developed to
gauge the site reactivity of organic compounds.

Most of these ground-state atomic population schemes can
be readily extended to excited-state calculations to analyze the
excited-state electron density, as well as the corresponding attach-
ment, detachment, and transition densities.45–48 Furthermore,
several metrics based on the excited-state wavefunction45,49–58

(especially the Λ value from Peach et al59 and the charge transfer
number from Plasser et al45) were proposed to distinguish be-
tween different types of electronic excitations (i.e., local, charge
transfer, and Rydberg excitations) of molecular complexes or ex-
tended molecules. Recently, the exciton (particle-hole pair) concept
from the solid state physics perspective was also adopted by Dreuw,
Plasser, and coworkers to distinguish and characterize different
excitation types and extract their relevant properties.60–63

During an electron excitation, the molecular system not only
undergoes a charge density distribution, which is described by the
detachment (hole) and attachment (particle) densities,64 but also
experiences a substantial increase in the total energy (a.k.a. the
excitation energy). Conceptually, it is appealing to consider how
the excitation energy is distributed within the molecule. Intuitively,
we expect a map of the excitation energy density (i.e. a real-space
distribution of the excitation energy) would show substantially
increased energy density around the hole (because it requires
energy to remove an electron from occupied orbitals) and possibly
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around the particle (if energy is needed to inject an electron into
unoccupied orbitals there). An integration of the excitation energy
density around (well-separated) hole/particle will then yield the
effective energies of both the hole and particle. These effective
energies could be quite valuable in the modeling of hole-particle
pairs in photochemical processes, such as solar cells, light-emitting
devices, plasmon-enhanced spectroscopy, and catalysis, etc.

In contrast to the much-developed charge density analysis, how-
ever, much less effort has been devoted to the analysis of grid-
based energy distribution for electronic ground and excited states.
As a matter of fact, the only work we are aware of in this direc-
tion is a grid-based energy density evaluation scheme by Nakai
et al, who used it to decompose the total Kohn-Sham density
functional theory (KS-DFT) energy into atomic and bond energy
components,65–67 and to analyze the MP2 and CCSD correlation
energy distribution.68 But it is rather straightforward to extend
Nakai et al’s grid-based energy density evaluation to the analysis
of the excitation energy distribution within the linear-response
time-dependent density functional (LR-TDDFT) framework.69–73

Such an extension will be reported below in this article.
An interesting question here is: is the excitation energy density

uniquely defined? Needless to say, the computed LR-TDDFT exci-
tation energy density map of a molecular system would depend
on the choices of the density functional, basis set, and numerical
integration grid (for solving KS-DFT and LR-TDDFT equations
and for evaluating the energy density). Given a combination of
functional/basis/grid, however, one component of the excitation
energy density is found to be not uniquely defined within our
formulation. It corresponds to the electrostatic interaction be-
tween the hole and particle (shown later in Eqs. 28 and 29), and
we choose to split its contributions evenly between the hole and
particle.

A second interesting question is: is the excitation energy density
an observable? In the context of a recent perspective from Krylov
on whether molecular orbitals are observables,48 we tend to think
that the excitation energy density is not a physical observable.
Instead, it is only intended to be a mathematical construct for
helping us assess the 3-D distribution of excitation energy.

A third question is: given an excitation energy density, is its
fragment partitioning uniquely defined? The answer is clearly no.
Multiple grid-based schemes for partitioning the electron density,
such as Becke23 and fragment-based Hirshfeld (FBH) schemes,27

can be borrowed to assign the energy density at each grid point to
different fragments. In addition, as pointed out by a reviewer and
explained at the end of Section 2.3, the nuclear-attraction portion
of the excitation energy density can also be subjected to either
grid-based or nucleus-based partitioning.

This article is organized as follows. In the next section, we
will briefly review Nakai et al’s scheme for computing grid-based
KS-DFT energy density, and then formulate our extension of this
scheme for evaluating and partitioning LR-TDDFT excitation en-
ergy density. Results and discussions will be provided in Sections
3 and 4 for two model complexes (C2H4–C2F4 and OLH–H2O).
Concluding remarks will be presented in Section 5. This article
complements an accompanying report, where an analysis of en-
ergy densities from a real-time time-dependent density functional

theory (RT-TDDFT) simulation74 was presented.

2 Methods
In this work, all occupied Kohn-Sham orbitals (labeled as i and
j), and virtual orbitals (labeled as a and b) are assumed to be
all real. They are linear combinations of atom-centered Gaussian
basis functions (labelled as µ, ν , λ , and σ),

ψi(rrr) = ∑
µ

Cµiφµ (rrr) (1)

ψa(rrr) = ∑
µ

Cµaφµ (rrr) (2)

with Co and Cv collectively representing the respective molecular
orbital coefficients. The ground-state one-particle density matrix
is P = CoC†

o, namely

Pµν = ∑
i

CµiCν i (3)

and the corresponding electron density is

ρ(r) = ∑
i
|ψi(r)|2 = ∑

µν

Pµν
φµ (rrr)φν (rrr). (4)

2.1 Grid-Based KS-DFT Ground State Energy Density
The ground-state KS-DFT energy is known to contain several com-
ponents,

E0 = (ET +EN)+(EJ +EK)+EXC

= P ·h+
1
2

P ·ΠΠΠ ·P+
∫

fxc(ρ(rrr)) dr (5)

with the core Hamiltonian (h) — kinetic (T) and nuclear attraction
(N) — being

ET +EN = ∑
µν

Pµν

∫
φµ (rrr)

[
−1

2
∇

2−∑
n

Zn

|rrr−RRRn|

]
φν (rrr)drrr (6)

where Zn and RRRn are the nuclear charge and coordinates of the n-th
atom, respectively. The Coulomb (J) and Hartree-Fock exchange
(K) energies are,

EJ +EK =
1
2

P ·ΠΠΠ ·P =
1
2 ∑

µν ,λσ

Pµν [(µν |λσ)−αK(µλ |νσ)]Pλσ

(7)

where αK is the ratio of Hartree-Fock exchange for conventional
hybrid functionals and the two-electron repulsion integrals are

(µν |λσ) =
∫∫

φµ (rrr)φν (rrr)
1

|rrr− rrr′|
φλ (rrr

′)φσ (rrr′) drrrdrrr′ (8)

(µλ |νσ) =
∫∫

φµ (rrr)φλ (rrr)
1

|rrr− rrr′|
φν (rrr′)φσ (rrr′) drrrdrrr′ (9)

Note that, for range-separated functionals, the Coulomb operator
in Eq. 9 will be replaced with a linear combination of short-range
and long-range operators.

With most quantum chemistry programs, the kinetic, nuclear
attraction, Coulomb, and Hartree-Fock energy components would
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be calculated analytically. But, as shown by Nakai et al, like the
exchange-correlation energy in Eq. 5, an energy density can also
be defined for each of all other energy components,

ρ
E
0 (r) = ρ

T
0 (r)+ρ

N
0 (r)+ρ

J
0 (r)+ρ

K
0 (r)+ fxc(ρ(rrr)) (10)

which together integrate into the total KS-DFT energy in Eq. 5

E0 =
∫

ρ
E
0 (r) dr (11)

The kinetic energy density is well known to be,75,76

ρ
T
0 (r) =

1
2 ∑

µν

Pµν
[
∇φµ (r)

]
· [∇φν (r)] , (12)

whereas the nuclear attraction energy density is simply the product
of the electron density and the nuclear electrostatic potential

ρ
N
0 (r) =−ρ(r)∑

n

Zn

|r−Rn|
. (13)

Once the grid value of electrostatic potential of each pair of atomic
basis functions

Vλσ (r) =
∫

φλ (r′)φσ (r′)
|r− r′|

dr′ (14)

is pre-computed, one can readily obtain the Coulomb (J) and
Hartree-Fock exchange (K) energy densities in three steps,

ρ
J
0 (r) =−ρ(r)V (r) =

[
∑
µν

Pµν
φµ (r)φν (r)

][
∑
λσ

Vλσ (r)Pλσ

]
(15)

ρ
K
0 (r) =−αK ∑

µν ,λσ

φµ (r)φλ (r)Vνσ (r)Pµν Pλσ

=−αK ∑
νσ

[
∑
µ

Pµν
φµ (r)

]
Vνσ (r)

[
∑
λ

Pλσ
φλ (r)

]
(16)

where V (r) =−∑λσ Vλσ (r)Pλσ is the electrostatic potential of the
total electron density. While the costs of computing Vλσ (r), V (r),
∑µ Pµν φµ (r), and ρK

0 (r) all scale as O(N2
basNgrid), the most expen-

sive term is Vλσ (r) because it takes more floating-point operations
(FLOPS) to evaluate one-electron integrals than to perform matrix
multiplications.

2.2 Grid-Based LR-TDDFT Excitation Energy Density

Within the LR-TDDFT framework, the (unrelaxed) difference den-
sity matrix (Pω ) and transition density matrix (Rω ) are defined
from the transition amplitudes (X and Y, each of dimension
Nv×No),77

Pω = Pattach
ω −Pdetach

ω

= Cv(XX† +YY†)C†
v−Co(X†X+Y†Y)C†

o (17)

Rω = CvXC†
o +CoY†C†

v (18)

of each excited state. Note that Pω is a symmetric matrix, while
Rω is not. Using these matrices, a compact expression for the

excitation energy is,78

ω = Pω ·F+Rω · (ΠΠΠ+ΩΩΩ) ·Rω (19)

where F is the ground-state Fock matrix. Here, ΩΩΩ is the exchange-
correlation portion of the Kohn-Sham response kernel

Ωµν ,λσ =
∂Fxc

µν

∂Pλσ
=
∫ (

∑
ξ ,ξ ′

∂ 2 fxc

∂ξ ∂ξ ′
∂ξ

∂Pµν

∂ξ ′

∂Pλσ

)
dr (20)

with ξ and ξ ′ referring to alpha and beta electron densities (ρσ )
and their gradient components (ρx

σ , ρ
y
σ , and ρz

σ ). We shall call
the Pω ·F term in Eq. 19, which arises from orbital energy dif-
ferences, the one-electron contribution to the excitation energy.
The Rω · (ΠΠΠ+ΩΩΩ) ·Rω term, on the other hand, will be called two-
electron contributions.

Similar to the ground-state KS-DFT energy, we can distribute
the LR-TDDFT excitation energy in Eq. 19 over a real-space grid,

ω =
∫

ρ
ω (r) dr (21)

with the excitation energy density components being

ρ
ω (r) = ρ

T (r)+ρ
N(r)+ρ

J(r)+ρ
K(r)+ρ

XC(r). (22)

The first two components — kinetic and nuclear attraction energy
densities — come only from the one-electron term (Pω ·F)

ρ
T (r) =

1
2 ∑

µ,ν ,i
Pµν

ω

[
∇φµ (r)

]
· [∇φν (r)] (23)

ρ
N(r) =−ρdiff(r)∑

n

Zn

|r−Rn|
(24)

where the (unrelaxed) difference density is

ρdiff(r) = ∑
µν

Pµν
ω φµ (r)φν (r) (25)

The last three components (Coulomb, Hartree-Fock exchange, and
exchange-correlation) of the excitation energy density in Eq. 22,
on the other hand, all include both one-electron contributions
(associated with difference density matrix) and two-electron con-
tributions (associated with transition density matrix). Amongst,
the Coulomb (J) and Hartree-Fock exchange (K) components can
be evaluated as,

ρ
J(r) = ∑

µν ,λσ

φµ (r)φν (r)Vλσ (r)
(

Pµν
ω Pλσ +Rµν

ω Rλσ
ω

)
(26)

ρ
K(r) =−αK ∑

µν ,λσ

φµ (r)φλ (r)Vνσ (r)
(

Pµν
ω Pλσ +Rµν

ω Rλσ
ω

)
(27)

The computation of ρJ(r) and ρK(r) can follow a similar procedure
as that of ground-state energy components shown in Eqs. 15 and
16, but it will involve more matrix multiplications. A subtle but
important issue here is that the two-electron contribution to ρK(r)
in Eq. 27, is not uniquely defined. This can be easily understood
within the MO representation, where this excitation energy density

Journal Name, [year], [vol.], 1–13 | 3

Page 3 of 14 Physical Chemistry Chemical Physics



component becomes

ρ
K
2 (r) =−αK ∑

µν ,λσ

φµ (r)φλ (r)Vνσ (r)R
µν
ω Rλσ

ω

=−αK ∑
ia, jb

[
ψa(r)ψb(r)Vi j(r)XaiXb j +ψa(r)ψ j(r)Vbi(r)XaiYb j

+ψb(r)ψi(r)Va j(r)YaiXb j +ψi(r)ψ j(r)Vab(r)YaiYb j
]

(28)

and the first term (associated with X⊗X) would dominate. For
charge-transfer excitations, this density would be concentrated
mainly on the electron acceptor, where virtual orbitals a and b
reside. On the other hand, an equivalent way for distributing the
two-electron Hartree-Fock exchange energy (that integrates to the
same total exchange energy contribution to the excitation energy)
is to transpose both (nonsymmetric) transition density matrices in
Eq. 27,

ρ
K
2 (r) =−αK ∑

µν ,λσ

φµ (r)φλ (r)Vνσ (r)R
νµ
ω Rσλ

ω

=−αK ∑
ia, jb

[
ψi(r)ψ j(r)Vab(r)XaiXb j +ψb(r)ψi(r)Va j(r)XaiYai

+ψa(r)ψ j(r)Vbi(r)YaiXai +ψa(r)ψb(r)Vi j(r)YaiYb j
]

(29)

For charge-transfer excitations, this produces an energy density
mostly on the donor moiety, where occupied orbitals i and j are
located. In this work, we will use the average between these two
distributions (Eqs. 28 and 29). For charge-transfer excitations,
this means that the two-electron Hartree-Fock exchange energy
(i.e. the electrostatic interaction between the particle and the hole)
is evenly split between the donor and acceptor moieties.

Finally, the one-electron and two-electron contributions to the
exchange-correlation term in Eq. 22 are

ρ
XC
1 (r) = ∑

µν

(
∑
ξ

∂ fxc

∂ξ

∂ξ

∂Pµν

)
Pµν

ω (30)

ρ
XC
2 (r) = ∑

µν ,λσ

Rµν
ω

(
∑
ξ ,ξ ′

∂ 2 fxc

∂ξ ∂ξ ′
∂ξ

∂Pµν

∂ξ ′

∂Pλσ

)
Rλσ

ω (31)

2.3 Real-Space Partitioning Schemes

Two sets of weights for real-space grid points — Becke weights23

and those from Fragment-Based Hirshfeld (FBH) analysis27 — will
be employed to partition the charge and energy densities onto
different fragments.

Within the Becke scheme, which is widely employed for integrat-
ing the exchange-correlation contributions to the KS-DFT energy
and Fock matrix, Lebedev quadrature points are added around
each atom. The weight of each grid point is defined as

wn(r) =
Pn(r)

∑m∈atoms Pm(r)
(32)

with Pm(r) being polynomial functions of the distance between the
grid point from the m-th nucleus. For each molecular fragment

(A), the collective weight is

wBecke
A (r) = ∑

n∈A
wn(r). (33)

Within the FBH analysis, one first computes the electron densi-
ties for isolated fragments, ρ isolated

B (r). The “promolecule” density
for a molecular complex is defined as a sum of these fragment
densities,

ρ
promolecule(r) = ∑

B
ρ

isolated
B (r) (34)

For each real-space grid point, a weight, wA(r), can be assigned to
each fragment

wFBH
A (r) =

ρ isolated
A (r)

ρpromolecule(r)
(35)

Note that FBH population was used previously to construct con-
strained density functional theory (CDFT) states of molecular
complexes.27,79,80

Using either set of atomic weights, we can partition the differ-
ence electron density in Eq. 25 and the excitation energy density
in Eq. 22 onto different fragments,

(∆Q)A =
∫

wA(r)ρdiff(r) dr (36)

ωA =
∫

wA(r)ρω (r) dr (37)

In this work, the fragment charge in Eq. 36 was computed using
the relaxed difference densities.

In these partition schemes, the energy density components are
all assigned to the fragments using the weight functions in Eqs. 32
and 35. For the nuclear attraction portion of the excitation energy
density in Eq. 24, for instance, the fragment values are

ω
N,g
A =

∫
wA(r)ρN(r) dr =−

∫
wA(r)ρdiff(r)∑

n

Zn

|r−Rn|
dr (38)

which amounts to a grid-based fragment partitioning of the unre-
laxed difference density in Eq. 25. A reviewer drew our attention
to an alternative nucleus-based partitioning,

ω
N,n
A =−

∫
ρdiff(r) ∑

n∈A

Zn

|r−Rn|
dr. (39)

The average of the grid-based and nucleus-based partitioning was
adopted by Nakai and coworkers in the ground state energy density
analysis (see Eq. 26 in Ref. 66). This hybrid partitioning scheme
worked well in the decomposition of the instantaneous RT-TDDFT
energy in the accompanying paper.74

We also tried both schemes to partition the nuclear attraction
contribution to the excitation energy density of the C2H4–C2F4–F
configuration. For charge-transfer excitations, as shown in Table
S12, the nucleus-based partitioning yielded rather different values
(by over 150 eV) for the fragment nuclear-attraction energies. As
a result, neither it nor a hybrid scheme can adequately cancel
one-electron Coulomb and other contributions to the fragment
excitation energy. Therefore, only the grid-based partitioning in
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Eq. 38 will be utilized in our analysis below in the Results section.

2.4 Characterization of Electronic Excitations

In our work, besides fragment charges, two other metrics will be
used to distinguish charge-transfer excitations from local excita-
tions. The first one is the widely-used Λ factor proposed by Peach
et al.59 For a given LR-TDDFT excited state, it will be computed as

Λ =
∑a,i Oai |Xai +Yai|2

∑a,i |Xai +Yai|2
(40)

where Oai is the overlap of the moduli of the a-th virtual orbital
and the i-th occupied orbital,

Oai =
∫
|ψa(r)||ψi(r)| dr. (41)

Alternatively, one can utilize the detachment (“hole”) and attach-
ment (“particle”) densities, which can be computed by plugging
the corresponding unrelaxed difference density matrix components
in Eq. 17 into Eq. 25. In a recent work, the overlap of detachment
(or attachment) densities from separate LR-TDDFT calculations
was employed to compare excited states computed using different
basis sets.81 In this work, the overlap between the attachment
and detachment densities of each excited state proposed first by
Etienne51,52

SDA =
∫ [

ρ
detach(r)

] 1
2
[
ρ

attach(r)
] 1

2 dr (42)

will be used as an alternative metric for assessing its character.
For each excited state, both criteria will fall in the range of

[0,1), with a smaller value indicating a stronger charge-transfer
character.

3 Computational Details
Two model complexes were used to demonstrate the distribution
of the excitation energy densities. The first was the ethylene–
tetrafluoroethylene (C2H4–C2F4) complex, which was widely used
in the development of the range-separated functionals.82,83 Both
C2H4 and C2F4 were optimized using the ωB97X-D functional84

and 6-311++G(d,p) basis set.85 Then, these monomers were
combined together (without further geometry relaxation) into
three different configurations:

• Cofacial (labeled as F, Figure 1). Two monomers were
stacked on top of each other with a 5 Å distance in between.

• Planar 1 (labeled as P1, Figure 2). Two monomers laid side-
by-side with a 5 Å distance between the closest carbon atoms.

• Planar 2 (labeled as P2, Figure 3). Two monomers laid end-
to-end with a 5 Å distance between the closest carbon atoms.

The second was the oxyluciferin molecule (OLH or OxyLH2),
where 6’-oxygen is protonated, in complex with a water molecule.
Its anionic form has been shown to be the light emitter in firefly
bioluminescence.86 Three different types of configurations would
also be studied:

• Hydrogen-bonded 1 and 2 (labelled as HB1 and HB2, Figure
5). Water molecule formed a hydrogen bond with the 5’-
oxygen or 6’-oxygen of OLH. Both complexes were optimized
at ωB97X-D/6-311++G(d,p) level of theory.

• T-shape (labelled as T, Figure 6). Water molecule formed a
T-shape complex with OLH, with its one O-H bond pointing
towards the center of the benzene ring of OLH. A series of
geometries were obtained via restrained geometry optimiza-
tion with varying distances (1.6, 1.7, 1.8, 1.9, 2.0, and 2.1
Å) between the water hydrogen atom and the center of the
OLH benzene ring.

The evaluation and partitioning of excitation energy densities
were implemented within a development version of the PYSCF soft-
ware package.87 Standard and restrained geometry optimization
and LR-TDDFT/TIP3P excitation energy calculations of different
OLH–H2O configurations were carried out by the Q-CHEM soft-
ware package.88 All geometries used in this article, together with
their ωB97X-D/6-311++G(d,p) energies as computed by Q-CHEM,
are provided in the Electronic Supplementary Information.

4 Results
4.1 Ground-State Energy Density

Before proceeding to present our results on the excitation energy
density of the two molecular complexes, it would be beneficial to
analyze and understand the ground-state energy densities. This
has already been carried out in the accompanying paper, where the
ground-state energy densities of N2 molecule and a small Ag4 clus-
ter were analyzed. Here is a summary of our key understandings
of the ground-state energy densities:

• The kinetic energy density (ρT
0 ) and the Coulomb energy

density (ρJ
0 ) are always positive. In contrast, the nuclear

attraction energy density (ρN
0 ), Hartree-Fock exchange energy

density (ρK
0 ), and exchange-correlation energy density (ρXC

0 )
are all negative. ρK

0 and ρXC
0 are substantially smaller in the

magnitude than other energy densities.

• The total ground-state energy density (ρE
0 ) is usually neg-

ative, and thus has an opposite sign as the charge density.
But ρE

0 has a positive value in a “donut” region around each
nucleus, due to a slower decay of the kinetic energy density
there.

• All energy density components decay rapidly away from the
molecule.

4.2 Ethylene–Tetrafluoroethylene (C2H4–C2F4) Complexes

Ethylene–tetrafluoroethylene is an interesting system. With the
HOMO of the complex coming from C2F4 and the LUMO from
C2H4, one of the low-lying excited states involves a charge transfer
between these orbitals from different fragments. Such a charge-
transfer state can have a lower energy than local excitations on
either C2F4 or C2H4 fragment, especially with the use of conven-
tional hybrid density functionals and smaller basis sets.

Table 1 collects information on the lowest two excitations for
each of the three C2H4–C2F4 configurations, which were obtained
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Table 1 Excitation character metrics (Λ and SDA), FBH fragment charges (∆QA), FBH fragment excitation energies (ωA) for the lowest local excitation and
charge-transfer excitations of three C2H4–C2F4 configurations. Obtained from LR-TDDFT calculations using the PBE0 functional and 6-31G(d) basis set.

Configuration ES# Λ SDA
QA (a.u.) ωA or ω (eV)

C2H4 C2F4 C2H4 C2F4 Total

F 2 0.623 0.631 0.000 0.000 −0.003 7.129 7.125

P1 1 0.611 0.628 −0.010 0.010 0.026 7.074 7.099

P2 1 0.623 0.631 −0.001 0.001 0.005 7.121 7.126

F 1 0.092 0.042 −0.997 0.997 0.315 6.698 7.012

P1 2 0.015 0.006 −0.990 0.990 0.426 6.819 7.244

P2 2 0.005 0.003 −0.999 0.999 0.466 6.835 7.301

Fig. 1 Difference density and excitation energy density plots (isovalue
= 0.01 au; red = negative) for the lowest (a, b) local excitation and (c, d)
charge transfer excitation of the F (stacked) configuration of the C2H4–
C2F4 complex from LR-TDDFT calculations with PBE0 functional and
6-31G(d) basis set.

from LR-TDDFT calculations using the PBE0 functional89 and 6-
31G(d) basis set.90,91 The corresponding difference densities and
excitation energy densities are shown in Figures 1, 2, and 3.

The charge-transfer character of each excited state can be first
assessed by examining the FBH fragment charges as defined in
Eq. 36. For the cofacial configuration (F), our LR-TDDFT/PBE0/6-
31G(d) calculation predicted a charge-transfer excited state (with
0.997 e− within the FBH scheme shifted from C2F4 to C2H4; see
Figure 1c for the density change) to be lower than a local excitation
on C2F4 (with 0.000 e− shifted; Figure 1a). On the other hand,
for two other configurations (P1 and P2), the charge-transfer
state (with 0.990 or 0.999 e−; Figures 2c and 3c) has a higher
energy than the corresponding local excitations. Similar amounts
of charge transfer between the fragments can be found in Table
S10 for the Becke and ESP-derived charge schemes.

Two other metrics for characterizing excited states behaved
very similarly. In Table 1 , Λ and SDA values were shown to be
consistently smaller than 0.1 for charge-transfer states, and their
values fell in the range of 0.60–0.65 for locally excited states. This
confirms that the SDA value can also be useful for distinguishing
charge-transfer excitations from local excitations.

As expected, the excitation energy densities were shown in
Figures 1, 2, and 3 to be concentrated on a molecular fragment

Fig. 2 Difference density and excitation energy density plots (isovalue
= 0.01 au; red = negative) for the lowest (a, b) local excitation and (c,
d) charge transfer excitation of the P1 (planar side-by-side) configura-
tion of the C2H4–C2F4 complex from LR-TDDFT calculations with PBE0
functional and 6-31G(d) basis set.

Fig. 3 Difference density and excitation energy density plots (isovalue
surface of 0.01 au; red = negative) for the lowest (a, b) local excitation
and (c, d) charge transfer excitation of the P2 (planar end-to-end) configu-
ration of the C2H4–C2F4 complex from LR-TDDFT calculations with PBE0
functional and 6-31G(d) basis set.

for localized excitations, and distributed over both fragments for
charge-transfer excitations. We can easily recognize two distinct
contributions to each excitation energy density:

• “normal” contribution, which has the opposite sign (color) as
the difference density. (The corresponding natural transition
orbitals92 of these lowest CT states are shown in Fig. S1 of
SI). This is similar to our observation for the ground state
energy density as summarized above in Section 4.1. For the
lowest charge-transfer excitation of the cofacial configuration,
for example, an electron was detached from C2F4 HOMO (see
the red “cloud” in Figure 1c). Accordingly, one can recognize
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Fig. 4 Kinetic energy density (isovalue = 0.01 au) for a) C2H4 LUMO and
b) C2F4 HOMO. The latter was multiplied by -1 to be consistent with its
contribution to the kinetic energy density of the charge-transfer excitation.

a positive (blue) energy density of a similar shape on C2F4 in
Figure 1d.

• kinetic energy contribution, which has the same sign (color)
as the different density but has a very different shape. For
the cofacial configuration, the kinetic energy densities are
shown in Fig. 4 for C2H4 LUMO and C2F4 HOMO, which
combine together to yield the kinetic energy density of the
lowest charge-transfer excitation. Such a contribution is
clearly responsible for the extra features within and near the
molecular planes in the excitation energy density plots in, for
instance, Figure 1d.

When the excitation energy densities are integrated over each
fragment according to Eq. 37, the total excitation energy is divided
into fragment contributions. In accordance with our expectation,
the excitation energy was shown in Table 1 to concentrate on one
fragment (C2F4 in tested cases) for local excitations. For the lowest
charge-transfer excitation of each configuration, significant (>0.3
eV) and positive excitation energy values were observed on both
donor and acceptor fragments. However, the value on the donor
fragment (C2F4 in these cases) are substantially larger, reflecting
that (the absolute value of) HOMO energy (i.e. ionization potential
within Koopman’s theorem) is usually larger than the LUMO energy
(i.e. electron affinity within Koopman’s theorem). For instance,
the electron donors contributed 6.7–6.8 eV to the total excitation
energies while only 0.3–0.5 eV came from electron acceptors (see
Table 1).

For higher charge-transfer excitation states, the electrons can
be excited into LUMO+1 or higher unoccupied orbitals. In those
cases, the acceptor portion of the excitation energy can become
larger. The C2H4 fragment, for instance, serves as an electron
acceptor of the fourth charge-transfer excited state from a TDDFT-
PBE/6-31G(d) calculation (see Table S1), and contributed 2.665
eV to the excitation energy out of a total of 8.078 eV. For those
states, natural transition orbitals92 should be used to analyze the
difference densities and the corresponding kinetic energy contri-
bution to the excitation energy density. As we mentioned in
the introduction, the fragment excitation energies on the donor
(acceptor) fragment can be regarded as effective energies of the
“hole” (“particle”) in the charge-transfer excitations.

4.3 Oxyluciferin–Water Complexes
The neutral oxyluciferin molecule (OLH) can form multiple hydro-
gen bond complexes with a single water molecule. As shown in
Figure 5, both 5’-oxygen (on the thiazole ring) and 6’-oxygen (on
the benzothiazole ring) could serve as the hydrogen bond acceptor,
leading to two complexes (HB1 and HB2). As indicated by the

BSSE-corrected binding energies in Table 2, these hydrogen bonds
could stabilize the complex by 4.0 to 6.5 kcal/mol.

Fig. 5 Difference density and excitation energy density plots (isovalue
= 0.005 au; red = negative) for the HOMO→LUMO excitations of two
hydrogen-bonded OLH–H2O complexes. Obtained from LR-TDDFT calcu-
lations with PBE0 functional and 6-31G(d) basis set.

Fig. 6 Difference density and excitation energy density plots (isovalue
surface of 0.005 au; red = negative) for the HOMO→LUMO excitations of
six T-shape OLH–H2O complexes (with the distance between water hydro-
gen and OLH benzene ring center ranging from 1.6 to 2.1 Å). Obtained
from LR-TDDFT calculations with PBE0 functional and 6-31G(d) basis
set.

The HOMO→LUMO vertical excitation of oxyluciferin involves a
partial charge transfer from the benzothiazole ring to the thiazole
ring. As shown in the difference density plots in Figure 5a and
5c, such a partial charge transfer was largely unchanged upon the
binding of a water molecule in the two hydrogen bond complexes.
In Table 2, the fragment charges on OLH or water in HB1 and
HB2 were found to be only 0.006 e−. Accordingly, the excitation
energy densities in Figure 5b and 5d remained localized on OLH,
with the fragment excitation energies integrated to only 0.02 eV
(HB1) and -0.01 eV (HB2) on H2O molecule in Table 2.
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Table 2 Binding energies, excitation character metrics (Λ and SDA), FBH fragment charges, and FBH fragment excitation energies for HOMO→LUMO
excitations of three neutral OLH–H2O configurations. Obtained from LR-TDDFT calculations with the PBE0 functional and 6-31G(d) basis set.

Con
∆Ebind (kcal/mol)

ES# Λ SDA
∆QA (au) ωA or ω (eV)

w/o BSSE w/ BSSE OLH H2O OLH H2O Total

HB1 −8.798 −6.599 1 0.627 0.632 0.006 −0.006 3.495 0.020 3.515

HB2 −6.115 −4.092 2 0.640 0.632 −0.006 0.006 3.638 −0.010 3.628

T1.6 7.224 7.888 1 0.594 0.607 −0.150 0.150 2.396 1.108 3.504

T1.7 4.192 7.554 1 0.602 0.616 −0.118 0.118 2.719 0.828 3.547

T1.8 1.954 4.910 1 0.602 0.636 −0.087 0.087 2.994 0.582 3.576

T1.9 0.380 2.934 2 0.615 0.631 −0.067 0.067 3.175 0.420 3.595

T2.0 −0.660 1.550 2 0.622 0.629 −0.052 0.052 3.305 0.303 3.608

T2.1 −1.361 0.502 2 0.625 0.630 −0.037 0.037 3.412 0.197 3.609

However, the picture can be quite different when oxyluciferin
formed a T-shape complex (T) with a water molecule. As shown
in the left column of Figure 6, the detachment density could
more easily “spill” over to the water molecule, which corresponds
to an extension of OLH HOMO to the water molecule. For the
HOMO→LUMO excitation of these T-shape complexes, Table 2 thus
showed a net loss of 0.037 to 0.150 e− from the water molecule.
This was accompanied by a “spillover” of the excitation energy
density to the water molecule in each of these T-shape complexes
(see the right column of Figure 6), with the fragment excitation
energy on water computed to be 0.197 to 1.108 eV.

5 Discussions
Functional and Basis Set. So far, we have focused our report on
LR-TDDFT calculations using the PBE0 functional and 6-31G(d)
basis set. Such a choice was made on two practical considerations
— the easiness of identifying the charge-transfer excited state and a
moderate computational cost. But, As shown in Tables S1–S9, our
energy density analysis is also fully functioning with larger Pople
basis sets,85,93 such as 6-31+G(d), 6-311G(d), 6-311++G(d,p),
or Dunning correlation-consistent basis sets,94,95 such as cc-pVDZ,
aug-cc-pVDZ, cc-pVTZ and aug-cc-pVTZ.

Our implementation of excitation energy densities is also ap-
plicable to other functionals, such as pure and range-separated
functionals, which require the use of appropriate electron repul-
sion operators, if any, in the calculation of exchange energy density
components. Results with the PBE96 and ωB97X-D functionals are
shown in Tables S1, S3, S4, S6, S7, and S9 for C2H4–C2F4 dimers.
For local excitations, the excitation energy remain localized with
these two functionals. On the other hand, in a charge-transfer
excitation, the acceptor portion of the excitation energy (which
can be interpreted as the effective energy of the “particle”) arises
from a cancellation of the kinetic energy of the “particle” and other
contributions. While it is consistently positive with the ωB97X-D
functional, it can acquire a negative value with PBE and PBE0
functionals, likely due to lower (and sometimes even negative)
LUMO energy values.

Computational Cost. Within our preliminary implementation,
the computational cost for obtaining excitation energy density

arises mainly from the evaluation of Vλσ , which is the grid-based
electrostatic potential of each function pair (i.e. pairs of atomic
basis functions) in Eq. 14. Vλσ is needed in the construction
of Coulomb and exchange energy densities in Eqs. 26 and 27.
Such a calculation would become rather prohibitive for large sys-
tems and/or larger basis sets, but it can be greatly accelerated by
the use of the pseudospectral method97 as shown by Nakai and
coworkers.98 On the other hand, the resolution-of-the-identity
(RI) approach99–106 was employed in the past to approximate the
ground-state Hartree-Fock exchange energy density,107,108 and
thus we anticipate a similar use of the RI approach to accelerate
the evaluation of excitation energy densities.

Table 3 TDDFT (for the full system), TDDFT/TIP3P excitation energies,
and the differences between them (in eV) for the HOMO→ LUMO excita-
tions of the HB1, HB2, and T-shape configurations of neutral OLH–H2O
calculated with the PBE0 functional and 6-31G(d) basis set by Q-CHEM.

Configuration ES# ωFull-TDDFT ωTDDFT/TIP3P ∆ω

HB1 1 3.516 3.545 0.039

HB2 2 3.630 3.620 −0.010

T1.6 1 3.507 3.663 0.156

T1.7 1 3.550 3.663 0.113

T1.8 1 3.578 3.661 0.073

T1.9 2 3.597 3.656 0.059

T2.0 2 3.610 3.654 0.044

T2.1 2 3.611 3.642 0.031

Fluorophore-Solvent Charge Transfer. For the T-shape
oxyluciferin-water complexes, we have noticed a “spillover” of
detachment/attachment density and excitation energy density to
the water molecule. This is ultimately due to a strong interaction
between the fluorophore and water frontier orbitals, which can
only be captured by coupling orbitals from different fragments.109

As shown in Table 3, this has led the LR-TDDFT/TIP3P model
to systematically overestimate the vertical excitation energies of
T-shape complexes.

An individual T-shape complex can be energetically unfavorable,
as evident by the binding energies in Table 2. In TDDFT/TIP3P
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molecular dynamics simulation of the solvated OLH (and several
other fluorophores), we have nevertheless observed multiple water
molecules (in the first solvation shell) forming T-shape complexes
with the fluorophore. Lacking a treatment of charge-transfer in-
teractions between the QM and MM regions, LR-TDDFT/TIP3P
can systematically overestimate the vertical excitation energy of
the fluorophore (within in first solvation shell) by as much as
0.10–0.15 eV. For a more accurate description of solvatochromic
effect (especially with multiple solvents), it is therefore desirable
to extend orbital-dependent inter-fragment charge-transfer models
(such as the EFP model)110 to excited state calculations.

6 Conclusions
In this article, we presented a method for distributing the LR-
TDDFT excitation energy over the real space, and thus for ac-
quiring the grid-based excitation energy density for each excited
state. Due to the kinetic energy density term, the excitation en-
ergy distribution was found to be slightly more complicated than
the difference electron density (between the ground and excited
states).

For locally-excited states (as indicated by the attach-
ment/detachment densities and changes in fragment charges),
the excitation energy density was concentrated on a single molecu-
lar fragment, just as expected. In charge-transfer excitations, such
as the ones in the C2H4–C2F4 complex, the excitation energy den-
sity would be distributed over both donor and acceptor fragments,
with a higher percentage of the excitation energy allocated on
the donor fragment. Fragment excitation energies from a charge-
transfer excitation can be regarded as the effective energies for
the “hole” and “particle”, respectively.

For excitations with a partial charge transfer between a flu-
orophore and water, such as T-shape OLH–water complexes, a
small percentage of the excitation energy was found on the water
molecules. The challenge to model such an effect with QM/MM-
type methods stems from inter-fragment orbital mixing and might
motivate the development of new methodologies to capture solute-
solvent charge-transfer effects on electronic transitions.
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