
Quantum simulation of electronic structure with a 
transcorrelated Hamiltonian: improved accuracy with a 

smaller footprint on the 
quantum computer

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-08-2020-004106.R1

Article Type: Paper

Date Submitted by the 
Author: 06-Oct-2020

Complete List of Authors: Motta, Mario; IBM Almaden Research Center
Gujarati, Tanvi; IBM Almaden Research Center
Rice, Julia; IBM Almaden Research Center
Kumar, Ashutosh; Virginia Tech, Chemistry
Latone, Joseph; IBM Almaden Research Center
Masteran, Conner; Virginia Tech, Chemistry
Lee, Eunseok; Mercedes-Benz Research and Development North 
America,
Valeev, Edward; Virginia Tech, Chemistry
Takeshita, Tyler; Mercedes-Benz Research and Development North 
America,

 

Physical Chemistry Chemical Physics



Quantum simulation of electronic structure with a transcorrelated
Hamiltonian: improved accuracy with a smaller footprint on the
quantum computer

Mario Motta,a∗ Tanvi P. Gujarati,a∗ Julia E. Rice,a∗ Ashutosh Kumar,b Conner Masteran,b

Joseph A. Latone,a Eunseok Lee,c Edward F. Valeev,b and Tyler Y. Takeshitac∗

Quantum simulations of electronic structure with a transformed Hamiltonian that includes some
electron correlation effects are demonstrated. The transcorrelated Hamiltonian used in this work is
efficiently constructed classically, at polynomial cost, by an approximate similarity transformation
with an explicitly correlated two-body unitary operator. This Hamiltonian is Hermitian, includes
no more than two-particle interactions, and is free of electron-electron singularities. We investigate
the effect of such a transformed Hamiltonian on the accuracy and computational cost of quantum
simulations by focusing on a widely used solver for the Schrödinger equation, namely the variational
quantum eigensolver method, based on the unitary coupled cluster with singles and doubles (q-
UCCSD) Ansatz. Nevertheless, the formalism presented here translates straightforwardly to other
quantum algorithms for chemistry. Our results demonstrate that a transcorrelated Hamiltonian,
paired with extremely compact bases, produces explicitly correlated energies comparable to those
from much larger bases. For the chemical species studied here, explicitly correlated energies based
on an underlying 6-31G basis had cc-pVTZ quality. The use of the very compact transcorrelated
Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two
orders of magnitude, and the number of qubits by a factor of three.

1 Introduction
The simulation of quantum many-body systems is an important
application for a quantum computer1–7. In the context of quan-
tum chemistry and materials science, a key example of such
an application is the electronic structure (ES) problem, namely
solving for the ground or low-lying eigenstates of the electronic
Schrödinger equation for atoms, molecules, and materials. In re-
cent years, a variety of quantum algorithms has delivered promis-
ing results in the calculation of potential energy curves, ground-
and excited-state energies and ground-state correlation functions
for molecules comprising first and second row elements8–15.

Despite the rapid development of quantum hardware and al-
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gorithms, modern quantum computation platforms are imma-
ture. This fact, combined with the limitations of classical simula-
tors and popular one-to-one mappings of spin-orbitals to qubits,
has resulted in most quantum ES simulations reported to date
employing minimal basis sets (i.e. describing core and valence
orbitals only) or being restricted to active spaces of a few or-
bitals and electrons. While simulations based on minimal ba-
sis sets and/or small active spaces continue to provide bench-
marks, useful quantum simulations will require significant quan-
tum resources. Today routine classical ES calculations may con-
tain hundreds to thousands of basis functions that would need to
be mapped to logical qubits. Thus, it is clear we need approaches
that can give the desired accuracy with fewer quantum resources.

Two such approaches are currently being explored. One ap-
proach is to perform small calculations on the quantum computer
followed by classical post-processing to partially correct for basis
set errors associated with using too few qubits16. The second is
to reduce the quantum resources required for more accurate cal-
culations (measured in the number of qubits and quantum gates).
In this paper, we focus on the latter approach.

The conventional description of the many-body wave function
as a superposition of single Slater determinants offers a natural
and efficient way to address static electronic correlation. How-
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ever, it does not treat dynamic correlation efficiently, which is
necessary to achieve chemical accuracy, as compared to experi-
ment. The inefficient treatment of dynamic correlation leads to
slow convergence to the complete basis set (CBS) limit and thus
requires the use of large basis sets to attain such accuracy.

Indeed, due to the Coulomb singularity of the electronic
interaction, the short-range dynamical correlation introduces
cusps17–19 at the points of coalescence between two electrons.
These cusps cannot be approximated efficiently by orbital prod-
uct expansions and require explicit parametric dependence of the
wave function on the inter-electronic distances. Although the use
of such explicitly correlated wave functions has been common-
place for high precision computations of small systems since the
pioneering work of Hylleraas in 192920, efficient application of
explicitly correlated methods to molecules has become possible
only due to the development of the ideas proposed by Kutzel-
nigg21. The explicitly correlated F12 (originally known as “R12")
methods dramatically improve the convergence of the electronic
energy and other molecular properties with respect to the basis
set size. Numerous improvements over the years22–30 have now
made the F12 calculations quite black-box and robust31–33.

In this work, we consider the use of explicit correlation for
defining a similarity-transformed Hamiltonian that includes the
dynamical electron correlation effects following the recipe of
Yanai and Shiozaki for canonical transcorrelated F12 (CT-F12)
Hamiltonian34. The CT-F12 theory can be seen as an exten-
sion of the transcorrelated Hamiltonian approach originally intro-
duced by Boys and Handy35 and later improved by Ten-no36 and
Luo37, where singularity-free Hamiltonians are constructed from
the similarity transformation of the original Hamiltonian through
a geminal correlation operator Â,

Ĥ→ Ĥ ′ = e−ÂĤeÂ . (1)

What makes the CT-F12 method robust and simpler to use, com-
pared to the earlier transcorrelated Hamiltonian formalisms, is
the choice of the unitary operator in the similarity transfor-
mation, eÂ, (where Â = −Â†), thereby ensuring that the effec-
tive Hamiltonian remains Hermitian, and in the truncation of
the approximate Baker–Campbell–Hausdorff (BCH) expansion of
Eq. (2) to include only 1 and 2-body effective Hamiltonian el-
ements, following the ideas from the canonical transformation
(CT) method38,39,

Ĥ ′ = e−ÂĤeÂ

≈ Ĥ +[Ĥ, Â]1,2 +
1
2
[[Ĥ, Â]1,2, Â]1,2 + . . . .

(2)

where, [..]1,2 refers to the retention of only 1 and 2-body ele-
ments of the given commutator. The operator Â is defined using
the Slater-type geminal, F̂12(r12) =−γ−1 e−γr12 , where the inverse
length scale γ is commensurate with the correlation length scale
of the valence electrons and in practice is tuned for a given orbital
basis set40. Only the pure two-body (de)excitation component
(relative to a zeroth-order reference) is included in Â, and the
geminal is scaled by {1/2,1/4} when acting on {singlet,triplet}

electron pairs in accordance with the spin dependence of the
electron-electron cusp18 (this is the so-called SP Ansatz of Ten-
no41,42). Thus, the exact form of the operator is known a priori,
albeit the operator introduces a dependence on the particular ref-
erence and the geminal length scale.

In the present work the CT-F12 Hamiltonian is used in
conjunction with the variational quantum eigensolver (VQE)
method43–46. To the best of our knowledge, this is the first
study to combine explicitly correlated techniques with quan-
tum algorithms, to achieve higher accuracy without increasing
quantum resources (e.g. number of qubits needed to repre-
sent the Hamiltonian). A slightly later contribution47 consid-
ered a different transcorrelated method, which is characterized
by a non-hermitian Hamiltonian, in combination with variational
imaginary-time evolution techniques. The results of the two
works are thus complementary, and highlight the importance of
exploring different transcorrelated approaches for quantum sim-
ulation.

We study several chemical species comprising hydrogen (H2,
H+

3 ) and closed-shell, first-row hydrides (LiH, BH, HF) using
Pople48,49 and correlation-consistent50 basis sets, while adopt-
ing the well-established unitary coupled cluster with singles and
doubles (q-UCCSD) Ansatz51–54.

In order to focus on the CT-F12 method, we use the VQE
method and q-UCCSD Ansatz since these latter techniques are
now part of the standard toolkit of quantum simulation. However,
it should be noted the Hermitian nature and the compact form of
the CT-F12 Hamiltonian studied makes its integration with other
Ansätze and quantum algorithms very straightforward.

In published literature, CT-F12 methods have been used to ex-
trapolate from reasonably sized basis sets to much larger basis
sets34. In this work, motivated by the desire to fit the budget of
contemporary quantum hardware, we investigated extrapolation
from small basis sets (e.g. 6-31G) to somewhat larger basis sets.
Note that this is not a direct translation from the classical CT-F12
algorithms.

The remainder of the present work is structured as follows: the
CT-F12 and VQE methods are briefly reviewed in section 2, results
are presented in section 3, conclusions are drawn in section 4.

2 Methods

2.1 Canonical transcorrelated F12 Hamiltonian

In the CT-F12 method, two main approximations are employed in
addition to the approximate BCH expansion of Eq. (2): (a) the
expansion is truncated to only include up to double commutators
and (b) in the double commutator term, the full Hamiltonian Ĥ
is replaced by its effective 1-body constituent, the Fock operator
F̂ ,

Ĥ ′ ≈ Ĥ +[Ĥ, Â]1,2 +
1
2
[[F̂ , Â]1,2, Â]1,2 . (3)

These approximations are consistent with the ones employed in
some approximate CT-F12 theories55 and ensure that the effec-
tive Hamiltionian is correct through second-order in the pertur-
bation (in the Møller-Plesset sense). Of course, since the unitary
transformation e−Â is applied approximately, CT-F12 energies are
not guaranteed to be variational, especially in multireference sit-
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Fig. 1 Schematic notation of orbital indices in the CT-F12 method.
Reprinted from34, with the permission of AIP Publishing.

uations, where high-order contributions are important.

Figure 1 refers to the notation of orbital indices used from34.
The molecular Hamiltonian in spin-free form is written as

Ĥ = hµ

ν Êν
µ +

1
2

gµλ

νκ Êνκ

µλ
, (4)

where indices κ, λ , µ, ν label formal basis in the (complete) 1-
particle Hilbert space, hµ

ν and gµλ

νκ are matrix elements of the one-
and two-body parts of the Hamiltonian,

hµ

ν =〈ν | Ĥ1 |µ〉 , (5)

gµλ

νκ =〈νκ| Ĥ2 |µλ 〉 . (6)

Operators

Êν
µ = ∑

σ=↑↓
ĉ†

νσ ĉµσ , Êνκ

µλ
= ∑

στ=↑↓
ĉ†

νσ ĉ†
κτ ĉλτ ĉµσ , (7)

are the spin-summed transition operators composed of the tradi-
tional creators/annihilators ĉ†

p/ĉq. In all the equations, Einstein
summation convention is implied. The Fock operator is written as

F̂ = f µ

ν Êν
µ , f µ

ν = hµ

ν +ρ
κ

λ

(
gµλ

νκ −
1
2

gλ µ

νκ

)
, (8)

where ρ is the one-body density matrix at the Hartree-Fock level.
The orbital basis (OBS) p,q,r,s,t,u is divided into occupied i, j,k,l
and unoccupied a,b parts. The orbitals of the complete basis set
(CBS) are represented by µ,ν ,λ ,κ with the unoccupied ones de-
noted by α,β ,γ. Finally the complementary auxiliary orbital basis
set (CABS)26, is denoted by x,y.

As mentioned before, Â is an anti-hermitian operator,

Â =
1
2

Gαβ

i j

(
Êαβ

i j − Ê i j
αβ

)
, (9)

where

Gαβ

i j =
3
8
〈αβ |Q̂12F̂12|i j〉+ 1

8
〈αβ |Q̂12F̂12| ji〉, (10)

is defined in terms of a geminal (2-body correlator)

F̂12(r12) =−
e−γr12

γ
, (11)

and a projector ensuring orthogonality to the unoccupied orbital
products |ab〉,

Q̂12 = 1−V̂1V̂2 , (12)

where V̂i projects the i-th particle state onto the unoccupied or-
bitals represented in the orbital basis set. Since our work deals
with the unitary coupled cluster method with a Hartree-Fock ref-
erence, the strong orthogonality (i.e. pure 2-body character) of
the geminal is automatically ensured by the form of the operator
Â in Eq. (9).

The coefficients 3/8 and 1/8 in Eq. (10) arise from the spin-
dependent cusp condition coefficients.41,42 Since optimized val-
ues of the correlation factor γ are available in the literature only
for standard medium and large sized basis sets40, we chose those
values of γ which for a given molecule and basis set, gave the
lowest CT-F12/CCSD energies at the equilibrium geometry. Table
1 lists the values of γ used for the 6-31G and cc-pVDZ basis sets
for different molecules.

Molecule 6-31G cc-pVDZ
H2 0.7 0.7
H+

3 0.7 0.7
LiH 0.6 0.6
BH 0.7 0.7
HF 1.3 1.3

Table 1 Optimized values of the correlation factor γ for each molecule
and basis set

Finally, the transformed Hamiltonian takes the form

Ĥ ′ = hp
q Êq

p +
1
2

gpr
qs Êqs

pr , (13)

where the explicit formulas for one and two body elements are
shown in34. The overall complexity of computing the trans-
formed Hamiltonian for the Hartree-Fock reference is O(N6); the
cost grows quadratically with the CABS basis rank when approach
C of reference56 is used to compute the geminal matrix element
of the Fock operator, but this cost can be robustly lowered further
to linear57. Note that the Hamiltonian Ĥ ′ is Hermitian, only con-
tains one- and two- body terms, and since its two-body part is not
multiplicative, it has lower symmetry than the original Hamilto-
nian (e.g., gpr

qs 6= gps
qr (for Ĥ ′) whereas gpr

qs = gps
qr) (for Ĥ). Due to

technical limitations, Yanai and Shiozaki symmetrized the 2-body
part of the transcorrelated Hamiltonian [(gpr

qs + gps
qr)/2→ gpr

qs ] to
obtain the same symmetry as the original Hamiltonian34, how-
ever no such symmetrization was performed here.

cc-pVDZ-F12-OptRI basis set58 was used as our CABS basis set
utilizing the CABS+ approach26 in all the reported calculations.
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Finally, evaluation of the CT-F12 Hamiltonian was implemented
through the “plugout" feature of the C++ based MPQC4 software
package59 i.e. the MPQC4 toolkit was imported as a library in an
external C++ program.

2.2 The variational quantum eigensolver

Variational quantum state preparation algorithms are a class of
quantum algorithms, that have been conjectured to be partic-
ularly amenable to near-term quantum devices. In close anal-
ogy with classical variational approaches, one chooses a class
of Ansatz states approximating the ground state of the Hamil-
tonian of interest. In general, such an Ansatz is defined by an
initial state |Ψ0〉 and a unitary circuit Û(θ) defined by a set
of classical variational parameters θ ∈ Θ, leading to a family
|Ψ(θ)〉 = Û(θ)|Ψ0〉 of wavefunctions. For each state |Ψ(θ)〉, the
energy E(θ) = 〈Ψ(θ)|Ĥ|Ψ(θ)〉 provides an upper bound to the
ground-state energy, and the parameters θ can be optimized to
lower the energy of the state |Ψ(θ)〉 relying on a classical opti-
mization algorithm. This procedure defines the variational quan-
tum eigensolver or VQE method43.

The choice of the variational family {|Ψ(θ)〉}θ is motivated by
a combination of factors. On the one hand, it is important to
produce an accurate approximation to the true ground state of
the system, to offer chemically meaningful results. Secondly, the
optimization problem of minimizing E(θ) as a function of the pa-
rameters θ has to be well-behaved, to give the ability of finding
energy minima. Finally, for calculations on quantum hardware,
it is important to have circuits that fit their budget of available
gates, qubit connectivity and coherence times of contemporary
quantum hardware.

The diversity of problems investigated in quantum simulation
and the ever-changing capabilities of quantum hardware have
motivated a large variety of proposals in recent years, see for ex-
ample9,11,60–62, making the design and benchmark of variational
quantum Ansätze an active area of research.

2.3 Unitary coupled cluster with singles and doubles

An important example of a variational family suggested for appli-
cations in quantum chemistry is the unitary coupled cluster (UCC)
Ansatz51–54,63,

|ΨUCC(θ)〉= eT̂−T̂ † |Ψ0〉 ,

T̂ =
d

∑
k=1

∑
i1...ik
a1...ak

θ
a1...ak
i1...ik ĉ†

a1
. . . ĉ†

ak
ĉi1 . . . ĉik ,

(14)

where |Ψ0〉 denotes the Hartree-Fock state, d denotes the max-
imum order of excitations in the UCC wavefunction, and the
cluster amplitude tensors θ

a1...ak
i1...ik are antisymmetric in the indices

a1 . . .ak and i1 . . . ik. In particular, d = 2 in Eq. (14) gives unitary
coupled cluster with single and double excitations (UCCSD).

This choice of Ansatz is very natural in situations where mean-
field theory is successful, which suggests that excitations relative
to the mean-field state |Ψ0〉 in the actual ground state wavefunc-
tion should be small, or equivalently that dynamical correlation

dominates the problem.
Standard coupled cluster Ansatz eT̂ |Ψ0〉 is widely used in clas-

sical quantum chemistry but is challenging to implement on a
quantum device due to the non-unitarity of eT̂ , whereas the con-
verse is true for UCC. Understanding the relationship between
standard and unitary coupled cluster Ansatzë is an active area of
research54,64, of value to both chemistry and quantum informa-
tion science. To be able to implement the UCCSD ansatz on the
quantum computer, a Trotter decomposition step as explained in
Section 3.4 is used. As per the nomenclature adopted in previous
literature12,65, we refer to this Ansatz as q-UCCSD.

3 Results
The calculations performed in this work involved initial pre-
processing by quantum chemistry codes (in this case MPQC4 and
PySCF)59,66,67) on classical computers, to generate optimized
mean-field orbitals and matrix elements of the regular and ex-
plicitly correlated Hamiltonian prior to performing computations
with quantum simulators. The restricted Hartree-Fock (RHF) sin-
glet state was chosen as the initial state for all of the calculations
described here. All correlated calculations used the frozen core
approximation. It is worth observing that the frozen core approxi-
mation not only economizes simulations by removing orbitals and
electrons, but is also justified by the nature of the basis sets used
in the present work, since they are constructed for valence-only
correlated calculations.

Having selected a set of single-electron orbitals for each of the
studied species, VQE computations were performed with quan-
tum simulators. We used IBM’s open-source library for quantum
computing, Qiskit68. Qiskit Aqua contains implementations of
techniques to map the fermionic Fock space onto the Hilbert space
of a register of qubits, and an implementation of the VQE algo-
rithm. Here we use the tapering-off technique69,70 to account
for molecular point group symmetries and reduce the number of
qubits required for a simulation. In analogy with conventional
symmetry-adapted quantum chemistry calculations, this reduc-
tion does not introduce additional approximations in the calcu-
lations. In the VQE simulations, we used the quantum circuit
defined in65 to implement the q-UCCSD Ansatz.

We then minimized the expectation value of the Hamiltonian
with respect to the parameters in the circuit. The minimization
was carried out using the classical optimization method, L-BFGS-
B71,72. We ran our experiments on the statevector simulator of
Qiskit.

For the CT-F12 Hamiltonian, q-UCCSD correlation energies were
computed as differences between total CT-F12/q-UCCSD energies
and RHF energies with regular Hamiltonian, as outlined in34. For
comparison with the F12 results, restricted, regular coupled clus-
ter with singles and doubles (CCSD) calculations were performed
using PySCF. CBS energies are computed extrapolating cc-pVxZ
(x=2,3,4,5) RHF energies with the formula ERHF,x = α + βeγx,
and cc-pVxZ (x=3,4,5) correlation energies with the formula
Cx = α ′+ β ′

x3 following50.
In addition to that, we list the energies of a composite method,

where the Hartree-Fock energy is calculated with a large basis
set (namely, cc-pVTZ) using the regular Hamiltonian, and added
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and cc-pVDZ (right) bases. Bottom: Comparison between classical CCSD/CBS correlation energies and classical CCSD/(6-31G, 6-31++G∗∗, cc-
pVDZ, cc-pVTZ), CT-F12/q-UCCSD/6-31G correlation energies (left). Comparison between classical CCSD/CBS correlation energies and classical
CCSD/(6-31G, 6-31++G∗∗, cc-pVDZ, cc-pVTZ), CT-F12/q-UCCSD/cc-pVDZ correlation energies (right). Lines are a guide for the eye, and gray
bands represent the range of computed equilibrium bond lengths.

to the CT-F12/q-UCCSD correlation energies (namely determined
using the CT-F12 Hamiltonian and a smaller basis set, 6-31G un-
less otherwise specified). The composite approach removes the
effect of basis set incompleteness both at one-body (Hartree-Fock
energy) and two-body level (dynamic correlation energy). As
such, the composite approach consistently yields the best prop-
erties reported in this work.

Such a composite method is well suited for a hybrid classi-
cal/quantum methodology. The Hartree-Fock procedure, which
in its canonical formulation scales at most as N4, is appropriate
for the classical hardware, whereas the calculation of the correla-
tion energy, which can cost as much as 2N , is best mapped to the
quantum computer.

For the sake of compactness, we adopt the following no-
tation: standard calculations are denoted by method/basis
(e.g. q-UCCSD/6-31G), explicitly correlated calculations by CT-
F12/method/basis (e.g. CT-F12/q-UCCSD/6-31G), and compos-
ite methods by RHF/basis + correlated method (e.g. HF/cc-pVTZ
+ CT-F12/q-UCCSD/6-31G) or simply correlated method / comp.
Note that CCSD and q-UCCSD are equivalent to full configuration
interaction (within the same basis) for systems with two elec-
trons.

We first present results for hydrogen 3.1 and the trihydrogen
cation 3.2, followed by results for some first row hydrides (LiH,
BH and HF) in section 3.4.

3.1 Hydrogen molecule

In Figure 2 we compute the potential energy surface of the hydro-
gen molecule using RHF, CCSD, q-UCCSD, and CT-F12-q-UCCSD
with the 6-31G and cc-pVDZ basis sets.

As seen, the difference between the q-UCCSD and CT-F12-q-
UCCSD energies is more pronounced when the underlying ba-

method/basis type Req[Å] ω[cm−1]

RHF/6-31G regular 0.7312(6) 4660(42)
q-UCCSD/6-31G regular 0.7468(5) 4386(25)
q-UCCSD/6-31G CT-F12 0.7397(6) 4462(29)

RHF/cc-pVDZ regular 0.7488(7) 4617(34)
q-UCCSD/cc-pVDZ regular 0.7613(6) 4414(22)
q-UCCSD/cc-pVDZ CT-F12 0.7572(6) 4432(24)

CCSD/CBS regular 0.740(1) 4439(59)
q-UCCSD/comp(a) comp 0.7480(8) 4314(44)
q-UCCSD/comp(b) comp 0.7471(8) 4332(35)

Table 2 RHF, CCSD and q-UCCSD equilibrium bond lengths and vi-
brational frequencies for H2 at 6-31G and cc-pVDZ level with regular
and CT-F12 Hamiltonians, and extrapolated to the CBS limit. Num-
bers in round brackets denote uncertainties from the fitting procedure.
Experimental values are Req = 0.741Å and ω = 4401cm−1 respectively73.
"comp" refers to the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-
31G and RHF/cc-pVTZ + CT-F12/q-UCCSD/cc-pVDZ methods (a,b
respectively).

sis is 6-31G. In the lower portion of Figure 2, we compared
q-UCCSD/6-31G and CT-F12/q-UCCSD/6-31G correlation ener-
gies against CCSD/6-31G, CCSD/6-31G∗∗, CCSD/6-31++G and
CCSD/6-31++G∗∗ correlation energies. Note that the positive (or
close to zero) correlation energy differences seen for the larger
basis sets reflect that CT-F12/q-UCCSD/6-31G correlation ener-
gies have quality better than (or comparable to) the regular cor-
relation energies for these larger basis sets.

CT-F12/q-UCCSD/6-31G correlation energies have quality
comparable to regular CCSD/6-31++G∗∗ correlation energies
suggesting that, for split-valence basis sets48,74, explicit correla-
tion accounts for the combined effect of polarization and diffuse
functions.

Comparison between CT-F12/q-UCCSD/cc-pVDZ and regular
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31G correlation energies. Results are shown as a function of R for the stretching of a triangular (left) and a linear (right) molecule, and for the
variation in θ from the triangular to the linear conformer (middle). Lines are a guide for the eye, gray bands represent the range of RHF and q-UCCSD
equilibrium bond lengths, and sketches in the panels illustrate the meaning of the coordinates R and θ with R0 = 0.81Å.
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CCSD/cc-pVxZ (x=D,T), CCSD/CBS correlation energies50 sug-
gests that explicit correlation yields correlation energies of quality
comparable with the next basis set in the series, cc-pVTZ. In the
large R regime, correlation energies are slightly overestimated.

Equilibrium bond lengths and vibrational frequencies, obtained
by fitting the computed potential energy surfaces around the
minimum to a Morse potential, are listed in Table 2. We ob-
serve that the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-
31G and RHF/cc-pVTZ + CT-F12/q-UCCSD/cc-pVDZ energies
lead to equilibrium geometries and vibrational frequencies in
good agreement with CCSD/CBS.

3.2 Tri-hydrogen cation

In Figures 3 and 4 we compute potential energy surfaces for the
tri-hydrogen cation, using the 6-31G and cc-pVDZ bases, respec-
tively. We considered three conformers: (i) an equilateral trian-
gle with variable bond length R, (ii) a linear geometry with vari-
able bond length R, and (iii) an isosceles triangle with fixed bond
length R0 = 0.81Å and variable angle θ .

As seen in the lower portion of Figure 3, CT-F12/q-UCCSD/6-
31G correlation energies have quality superior to the CCSD/6-
31G and CCSD/6-31++G∗∗ correlation energies. In Figure 4, CT-
F12/q-UCCSD/cc-pVDZ correlation energies have quality compa-
rable to CCSD/cc-pVTZ correlation energies, as seen above for
H2. In both cases, CT-F12 correlation energies lie a few mHa
above CBS correlation energies.

In Table 3, we list the equilibrium bond lengths for the linear
and equilateral triangle conformers, and the energy difference
between them. We observe that both q-UCCSD and CT-F12/q-
UCCSD predict similar equilibrium bond lengths and conforma-
tional barriers. As in the case of H2, composite RHF/cc-pVTZ +
CT-F12/q-UCCSD/cc-pVDZ energies leads to equilibrium geome-
tries and energy differences in agreement with CCSD/CBS.

method/basis type Rtri
eq [Å] Rlin

eq [Å] ∆E [mHa]
RHF/6-31G regular 0.843(1) 0.798(1) 53.8(2)

q-UCCSD/6-31G regular 0.855(1) 0.809(1) 49.9(2)
q-UCCSD/6-31G CT-F12 0.849(5) 0.806(1) 48.9(2)

RHF/cc-pVDZ regular 0.889(6) 0.819(1) 71.7(2)
q-UCCSD/cc-pVDZ regular 0.900(1) 0.837(1) 63.3(2)
q-UCCSD/cc-pVDZ CT-F12 0.895(1) 0.832(1) 64.6(2)

CCSD/CBS regular 0.874(1) 0.814(1) 65.2(2)
cc-pVTZ/comp(a) comp 0.874(1) 0.809(1) 67.6(2)
cc-pVTZ/comp(b) comp 0.875(2) 0.816(1) 65.4(2)

Table 3 Equilibrium bond lengths for equilateral triangle and linear H+
3 ,

and energy difference between equilateral triangle and linear conformers.
The listed quantities were obtained by locally fitting the computed poten-
tial energy surfaces to a Morse potential. "comp" refers to the composite
RHF/cc-pVTZ + CT-F12/q-UCCSD/6-31G and RHF/cc-pVTZ + CT-
F12/q-UCCSD/cc-pVDZ methods (a,b respectively).

3.3 First-row hydrides

In Sections 3.1 and 3.2 we explored hydrogen compounds. Here,
we considered three closed-shell first-row hydrides: LiH, BH and
HF. We use RHF, q-UCCSD,and CT-F12/q-UCCSD with a 6-31G

basis.
Results, including those with the composite method, are re-

ported for LiH, BH and HF in Figures 5, 6 and 7, respectively. The
trends observed for these molecules are again similar to those
seen for H2. CT-F12/q-UCCSD/6-31G correlation energies have
quality superior to CCSD/6-31++G∗∗ and CCSD/cc-pVDZ corre-
lation energies, as shown in the bottom panels.

In Tables 4, 5 and 6, we list the results for equilibrium bond
lengths and vibrational frequencies of LiH, BH and HF, respec-
tively. For all the hydrides considered here, CT-F12/q-UCCSD/6-
31G geometries and frequencies are closer to experimental and
CCSD/CBS values than q-UCCSD/6-31G. For LiH and BH, vibra-
tional frequencies further improve when the surface is described
by the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-31G ener-
gies. A similar effect is seen, in all species, for the equilibrium
geometry.

method/basis type Req [Å] ω [cm−1]

RHF/6-31G regular 1.6369(1) 1414(8)
q-UCCSD/6-31G regular 1.6691(1) 1287(8)
q-UCCSD/6-31G CT-F12 1.6477(1) 1353(7)
q-UCCSD/comp comp 1.615(1) 1385(5)

CCSD/CBS regular 1.607(2) 1390(5)

Table 4 Equilibrium bond length and vibrational frequencies for LiH,
extracted from a Morse fit of potential energy curves. Experimental
values are Req = 1.595Å and ω = 1405cm−1, respectively73. The label
“comp" refers to the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-
31G method

method/basis type Req [Å] ω [cm−1]

RHF/6-31G regular 1.2328(7) 2433(11)
q-UCCSD/6-31G regular 1.2671(5) 2186(5)
q-UCCSD/6-31G CT-F12 1.2487(6) 2287(7)
q-UCCSD/comp comp 1.232(1) 2364(7)

CCSD/CBS regular 1.234(1) 2369(5)

Table 5 Equilibrium bond length and vibrational frequencies for BH,
extracted from a Morse fit of potential energy curves. Experimental
values are Req = 1.232Å and ω = 2367cm−1, respectively73. The label
“comp" refers to the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-
31G method

method/basis type Req [Å] ω [cm−1]

RHF/6-31G regular 0.920(2) 4234(39)
q-UCCSD/6-31G regular 0.945(2) 3836(33)
q-UCCSD/6-31G CT-F12 0.935(2) 3972(33)
cc-pVTZ/comp comp 0.910(1) 4320(26)

CCSD/CBS regular 0.913(1) 4236(29)

Table 6 Equilibrium bond length and vibrational frequencies for HF,
extracted from a Morse fit of potential energy curves. Experimental
values are Req = 0.917Å and ω = 4138cm−1, respectively73. The label
“comp" refers to the composite RHF/cc-pVTZ + CT-F12/q-UCCSD/6-
31G method
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Fig. 5 Top: Potential energy curves for LiH using RHF/6-
31G, q-UCCSD/6-31G, CT-F12/q-UCCSD/6-31G, q-UCCSD/comp and
CCSD/CBS. Bottom: Comparison between classical CCSD/CBS corre-
lation energies and classical CCSD/(6-31G, 6-31++G∗∗, cc-pVDZ, cc-
pVTZ), CT-F12/q-UCCSD/6-31G correlation energies. Lines are a guide
for the eye, and gray bands represents the range of computed equilibrium
bond lengths.

3.4 Estimate of quantum resources
In the previous Sections, we explored energies, equilibrium
geometries and vibrational properties of a collection of small
molecules, assessing the accuracy of CT-F12/q-UCCSD. In this
Section, we estimate and compare the quantum resources needed
to perform regular and explicitly correlated calculations for the
chemical species considered in this work.

The necessary quantum resources stem from the structure of
the Hamiltonian operator and the VQE q-UCCSD circuit. Stan-
dard quantum encodings map the Fock space FM of a molecular
systems comprising 2M spin-orbitals onto the Hilbert space of 2M
qubits,

Ê : FM →
(
C2
)⊗2M

, Ê |x〉= |Ax〉 , (15)

where x ∈ {0,1}2M is a binary string encoding a determinant, of-
ten with the convention that the block of spin-up orbitals precedes
the block of spin-down orbitals. A is an invertible 2M×2M binary
matrix. The standard Jordan-Wigner transformation is obtained
by choosing A as the identity matrix. The parity encoding instead
uses

A0 = 1 , A1 =

(
1 0
1 1

)
,

A2 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 . . .

(16)
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Fig. 6 Top: Potential energy curves for BH using RHF/6-
31G, q-UCCSD/6-31G, CT-F12/q-UCCSD/6-31G, q-UCCSD/comp and
CCSD/CBS. Bottom: Comparison between classical CCSD/CBS corre-
lation energies and classical CCSD/(6-31G, 6-31++G∗∗, cc-pVDZ, cc-
pVTZ), CT-F12/q-UCCSD/6-31G correlation energies. Lines are a guide
for the eye, and gray bands represents the range of computed equilibrium
bond lengths.
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R[Å]

0

50

100

150

200

C
(R

)
−

C
C
B
S

C
C
S
D
[m

H
a]

Fig. 7 Top: Potential energy curves for HF using RHF/6-
31G, q-UCCSD/6-31G, CT-F12/q-UCCSD/6-31G, q-UCCSD/comp and
CCSD/CBS. Bottom: Comparison between classical CCSD/CBS corre-
lation energies and classical CCSD/(6-31G, 6-31++G∗∗, cc-pVDZ, cc-
pVTZ), CT-F12/q-UCCSD/6-31G correlation energies. Lines are a guide
for the eye, and gray bands represents the range of computed equilibrium
bond lengths.
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system basis type orbitals qubits Paulis(a) parameters operations CNOTs depth
H2 6-31G regular 4 6 159 15 741 476 604
H2 cc-pVDZ regular 10 18 2,951 99 2,393 1,864 2,106
H2 6-31G CT-F12 4 6 235 15 741 476 604
H2 cc-pVDZ CT-F12 10 18 4,191 99 2,393 1,864 2,106
H+

3 , triangular 6-31G regular 6 10 1,403 35 2,667 1,916 2,268
H+

3 , triangular cc-pVDZ regular 15 28 34,486 224 39,252 33,344 36,090
H+

3 , triangular 6-31G CT-F12 6 10 1,083 35 2,667 1,916 2,268
H+

3 , triangular cc-pVDZ CT-F12 15 28 22,522 224 39,252 33,344 36,090
LiH 6-31G regular 10 18 5,851 99 12,087 9,644 10,780
LiH 6-31G CT-F12 10 18 8,527 99 12,087 9,644 10,780
BH 6-31G regular 10 18 5,851 344 44,087 35,180 37,241
BH 6-31G CT-F12 10 18 9,271 344 44,087 35,180 37,241
HF 6-31G regular 10 18 5,851 804 104,027 82,628 86,120
HF 6-31G CT-F12 10 18 9,439 804 104,027 82,628 86,120

Table 7 Columns 4-6: number of spatial orbitals, qubits and Pauli operators in the Hamiltonian for molecular species investigated in this work, at
various levels of theory. Columns 7-10: total number of parameters, quantum gates, CNOT gates and circuit depth in the VQE q-UCCSD and
CT-F12/q-UCCSD circuits. (a) matrix elements of the Hamiltonian smaller in absolute value than 10−8 Ha are truncated

As a result, for the parity encoding one has

Ê (−1)N̂↑ Ê † = ẐM , Ê (−1)N̂↑+N̂↓ Ê † = Ẑ2M , (17)

where Zi denotes the Pauli Z operator acting on qubit i.

Conservation of spin-up and spin-down particle numbers mod-
ulo 2 can be enforced by freezing qubits M and 2M in eigenvec-
tors of ZM and Z2M with suitable eigenvalues, thereby reducing
the number of qubits by 2.

A similar reduction of qubits can be achieved in presence of
point-group Z2 symmetries. Denoting {τ̂i}k

i=1 the generators of
the Hamiltonian symmetry group, it can be proved69,70 that there
exists a Clifford transformation Û , computable at polynomial cost
on a conventional computer, such that

Û Ê τ̂iÊ
†Û† = X̂i . (18)

The simulation can thus be restricted to an irreducible represen-
tation of the Z2 symmetry under consideration by freezing qubit
i into an eigenvector of Xi.

In combination with the parity encoding75,76, conservation of
spin-up and spin-down particle numbers reduces the number of
qubits by 2, and tapering off techniques can be used to bring the
number of qubits to Nq = 2M−2− k.

Under the chosen encoding, and in presence of tapering tech-
niques, the Hamiltonian takes the form

Ĥ =
Np

∑
i=1

ciP̂i , (19)

where P̂i is a tensor product of Nq Pauli operators,

P̂i = σ̂i1 ⊗·· ·⊗ σ̂iNq
∈ {Î, X̂ ,Ŷ , Ẑ}Nq , (20)

where X̂ ,Ŷ , Ẑ denote the spin- 1
2 Pauli operators. Naturally, the

number Np of terms in Eq. (19) is an important quantum re-
source, because it affects the number of measurements needed
to estimate the expectation value of Ĥ.

The q-UCCSD and CT-F12/q-UCCSD circuits can be imple-
mented by a Trotter decomposition,

Û(θ)'
[
∏
ia

e
θa

i
Ns (ĉ†

a ĉi−ĉ†
i ĉa)

∏
i jab

e
θab

i j
Ns (ĉ†

a ĉ†
b ĉ j ĉi−ĉ†

i ĉ†
j ĉb ĉa)

]Ns

(21)

where Ns is the number of slices in a Trotter implementation of
the q-UCCSD or CT-F12/q-UCCSD operator. In this work, we
used Ns = 1 time slices in all calculations, and a first-order Trotter
scheme with two-body and one-body excitations applied consec-
utively. Unlike eT̂−T̂ †

, each of the exponentials in the right-hand
side of Eq. (21) can be mapped onto a circuit comprising a num-
ber of single-qubit and CNOT gates that scale at most linearly
with the number of qubits Nq.

It is worth pointing out that the description given in this sec-
tion refers to the implementation of q-UCCSD in the Qiskit pack-
age. In recent times, a number of methodological developments
have given rise to implementations with lower gate complexity,
for example through low-rank decompositions and recompilation
techniques77–81. Similarly, the impact of Trotterization82–84 has
been understood more profoundly and established more firmly. In
this work, we made the operational decision to integrate CT-F12
into an existing and publicly available computational package for
q-UCCSD calculation. Exploration of more efficient strategies and
extension to other algorithms and variational forms are important
topics, that should be addressed in future research.

To characterize the computational cost of a q-UCCSD or CT-
F12/q-UCCSD simulation, it is important to know the number of
parameters θ to be optimized, the number of quantum operations
(one- and two-qubit gates) and especially CNOT gates comprising
the circuit Û(θ), and the circuit depth, corresponding to the num-
ber of groups of quantum gates that cannot be executed in par-
allel. Of course, circuits comprising more gates, especially CNOT
gates, and featuring higher depth, are more expensive.

We list all these parameters in Table 7. To reduce the number of
qubits, we used Z2 symmetries that conserve the number of spin-
up and spin-down particles. An important and encouraging obser-
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system basis orbitals qubits parameters operations CNOTs depth
H2 6-31G 4 8 15 1,478 768 979
H2 cc-pVDZ 10 20 99 20,630 14,616 16,435
H2 cc-pVTZ 28 56 783 394,310 341,280 357,427
H+

3 6-31G 6 12 35 4,822 2,920 3,491
H+

3 cc-pVDZ 15 30 224 65,410 51,016 55,385
H+

3 cc-pVTZ 42 84 1,763 1,285,270 1,163,416 1,200,563
LiH 6-31G 10 20 99 20,630 14,616 16,435
LiH cc-pVDZ 18 36 323 110,230 89,080 95,507
LiH cc-pVTZ 43 86 1,848 1,376,930 1,249,080 1,288,057
BH 6-31G 10 20 344 72,964 50,176 54,529
BH cc-pVDZ 18 36 1,328 434,692 343,040 354,817
BH cc-pVTZ 43 86 8,528 5,771,492 5,167,640 5,132,217
HF 6-31G 10 20 804 171,656 116,736 125,185
HF cc-pVDZ 18 36 4,340 1,396,872 1,091,328 1,111,041
HF cc-pVTZ 43 86 33,540 21,831,272 19,435,728 18,975,841

Table 8 Number of orbitals, qubits and number of parameters, operations, CNOTs and depth of the q-UCCSD and CT-F12/q-UCCSD circuits for
various systems, for the species studied in this work. The Jordan-Wigner mapping and frozen core approximation (for Li, B, F) were used, without
truncations of small terms or circuit transpilation

vation is that the cost of an explicitly correlated calculation with
underlying basis B, for example, CT-F12/q-UCCSD/6-31G, is es-
sentially identical to that of a regular simulation with underlying
basis B, q-UCCSD/6-31G. The only difference is represented by
the higher number of Pauli operators in the Hamiltonian, which
in turn is due to the loss of 8-fold symmetry in favor of 4-fold sym-
metry. In fact, the number of Pauli operators in the Hamiltonian is
dominated by the two-body contribution, due to the summation
over the N4 elements of the electron repulsion integral (pr|qs).
This summation reduces to N2(N + 1)2/4 terms in presence of 4-
fold symmetry (pr|qs) = (rp|sq) = (qs|pr), and to N2(N + 1)2/8
terms in presence of 8-fold symmetry, (pr|qs) = (rp|sq) = (qs|pr)
and (pr|qs) = (rp|qs)66,67. This is why the number of Pauli op-
erators in the CT-F12 Hamiltonian is roughly twice that of the
regular Hamiltonian. Other differences seen in Table 7 are due to
the one-body Hamiltonian, truncation thresholds and molecular
symmetries.

Despite the higher number of Pauli operator, and much more
importantly, a CT-F12/q-UCCSD/B calculation (here B denotes
the underlying basis) yields results of accuracy comparable with
those from a q-UCCSD/B′ with B′ larger than B, which can result
in a quantum simulation several orders of magnitude more expen-
sive. Table 8 lists a number of properties to consider before per-
forming q-UCCSD/(6-31G, cc-pVDZ, cc-pVTZ) calculations for the
systems considered in this work. The numbers quoted in Table 8
provide an estimate of the quantum resources needed to carry out
such simulations, rather than their precise requirements. This is
meant to help appreciate how CT-F12 economizes q-UCCSD sim-
ulations. For example, the qubits required by a cc-pVTZ simula-
tions is roughly 4 times that required by a 6-31G simulation. Sim-
ilarly, the number of CNOT gates in a q-UCCSD/cc-pVTZ circuit is
roughly 2 orders of magnitude higher than the corresponding one
with a 6-31G basis set. We emphasise that the reduction in CNOT
gates observed here arises primarily from the use of transcorrela-
tion: a 6-31G basis and a transcorrelated Hamiltonian are equiv-
alent in accuracy to a cc-pVTZ basis and a standard Hamiltonian.

Since the former basis is more compact, i.e. it has less orbitals,
any calculation performed with it requires less qubits and gates,
in the amount specified above.

It is reasonable to assume that CT-F12/q-UCCSD/6-31G pro-
vide correlation energies comparable to q-UCCSD/cc-pVTZ corre-
lation energies, since composite methods yield potential energy
curves of quality near to CCSD/cc-pVTZ. For example, see Fig-
ures 2, 6 and 7, where the composite RHF/cc-pVTZ + CT-F12/q-
UCCSD/6-31G (RHF/cc-pVTZ + CT-F12/q-UCCSD/cc-pvDZ for
H2) curves lie almost on top of CCSD/cc-pVTZ curves.

4 Conclusions
To increase the accuracy of quantum simulations of chemical sys-
tems, we explored the use of ab initio Hamiltonians similarity-
transformed to incorporate dynamical electron correlation effects.

Our work takes a step towards removing an important limita-
tion of quantum simulations of chemical systems, namely the low
quality of energies and properties resulting from the use of mini-
mal basis sets. For the molecular species we studied, the number
of qubits needed to simulate a 6-31G basis yielded energies and
properties of cc-pVTZ quality.

Other favorable traits of the similarity-transformed Hamilto-
nian considered here (CT-F12 Hamiltonian) include its hermitic-
ity, absence of two-electron singularities, and inclusion of only
one- and two-body operators.

The improvement in the accuracy of energies and properties
requires only a very modest increase in the necessary quantum
resources, when compared to regular (non CT-F12) calculations
with the same basis set. In particular, the increase is limited to
the number of Pauli operators in the qubit representation of the
Hamiltonian.

We elected to focus specifically on the CT-F12 method and so
we used the q-UCCSD algorithm due to its widespread use in
published literature and computational packages. Nevertheless,
the results obtained here will straightforwardly translate to many
other quantum algorithms for quantum chemistry. Examples of
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such algorithms include quantum subspace expansion85, quan-
tum equation of motion86 and quantum phase estimation87. Al-
though we demonstrated a dramatic reduction in the quantum re-
sources required by CT-F12 q-UCCSD simulations, this algorithm
still far exceeds the budget of contemporary quantum hardware
in terms of both entangling gates and circuit depth due to the use
of the q-UCCSD Ansatz. Research into the combination of CT-F12
techniques and hardware-efficient Ansätze, that can be demon-
strated on contemporary quantum hardware, is underway.
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57 F. Pavošević, P. Pinski, C. Riplinger, F. Neese and E. F. Valeev,

J. Chem. Phys., 2016, 144, 144109.
58 J. G. Hill, S. Mazumder and K. A. Peterson, J. Chem. Phys.,

2010, 132, 054108.
59 http://github.com/ValeevGroup/mpqc, 2020.
60 I. H. Kim and B. Swingle, arXiv:1711.07500, 2017.
61 J.-G. Liu, Y.-H. Zhang, Y. Wan and L. Wang, Phys. Rev. Re-

search, 2019, 1, 023025.
62 C. Schön, E. Solano, F. Verstraete, J. I. Cirac and M. M. Wolf,

Phys. Rev. Lett., 2005, 95, 110503.
63 J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love

and A. Aspuru-Guzik, Quant. Sci. Tech., 2018, 4, 014008.
64 I. Sokolov, P. K. Barkoutsos, P. J. Ollitrault, D. Greenberg,

J. Rice, M. Pistoia and I. Tavernelli, arXiv:1911.10864, 2019.
65 P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis,

A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo,
S. Filipp and I. Tavernelli, Phys. Rev. A, 2018, 98, 022322.

66 Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma
et al., WIREs Comput. Mol. Sci, 2018, 8, e1340.

67 Q. Sun et al., J. Chem. Phys., 2020, 153, 024109.
68 G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello,

Y. Ben-Haim, D. Bucher, F. Cabrera-Hernández, J. Carballo-
Franquis, A. Chen, C. Chen et al., Zenodo, 2019, 16,.

69 S. Bravyi, J. M. Gambetta, A. Mezzacapo and K. Temme,
arXiv:1701.08213, 2017.

70 K. Setia, R. Chen, J. E. Rice, A. Mezzacapo, M. Pistoia and
J. Whitfield, arXiv:1910.14644, 2019.

71 C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, ACM Trans. Math.
Softw., 1997, 23, 550–560.

72 J. L. Morales and J. Nocedal, ACM Trans. Math. Softw., 2011,
38, 7–1.

73 R. D. Johnson III, NIST 101. Computational chemistry compar-
ison and benchmark database, National institute of standards
and technology technical report, 2019.

74 E. R. Davidson and D. Feller, Chem. Rev., 1986, 86, 681–696.
75 J. T. Seeley, M. J. Richard and P. J. Love, J. Chem. Phys., 2012,

137, 224109.
76 A. Tranter, P. J. Love, F. Mintert and P. V. Coveney, J. Chem.

Theory Comput., 2018, 14, 5617–5630.
77 M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R. Bab-

bush and G. K. Chan, arXiv preprint arXiv:1808.02625, 2018.
78 M. Motta, J. Shee, S. Zhang and G. K.-L. Chan, J. Chem. The-

ory Comput., 2019, 15, 3510–3521.
79 Y. Matsuzawa and Y. Kurashige, J. Chem. Theory Comput.,

2020, 16, 944–952.
80 A. Cowtan, W. Simmons and R. Duncan, arXiv preprint

arXiv:2007.10515, 2020.
81 R. Xia and S. Kais, arXiv preprint arXiv:2005.08451, 2020.
82 F. A. Evangelista, G. K.-L. Chan and G. E. Scuseria, J. Chem.

Phys., 2019, 151, 244112.
83 B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E. Economou

and E. Barnes, npj Quantum Inf., 2020, 6, 1–9.
84 H. R. Grimsley, D. Claudino, S. E. Economou, E. Barnes and

N. J. Mayhall, J. Chem. Theory Comput., 2019, 16, 1–6.
85 J. R. McClean, M. E. Kimchi-Schwartz, J. Carter and W. A.

de Jong, Phys. Rev. A, 2017, 95, 042308.
86 P. J. Ollitrault, A. Kandala, C.-F. Chen, P. K. Barkoutsos,

A. Mezzacapo, M. Pistoia, S. Sheldon, S. Woerner, J. Gam-
betta and I. Tavernelli, arXiv:1910.12890, 2019.

87 A. Y. Kitaev, arXiv preprint quant-ph/9511026, 1995.

12 | 1–12Journal Name, [year], [vol.],

Page 12 of 14Physical Chemistry Chemical Physics

http://github.com/ValeevGroup/mpqc


Quantum computing simulations of molecules are currently limited by the use of minimal 
Gaussian bases, 
a problem we overcome using a canonical transcorrelated Hamiltonian to accelerate basis set 
convergence, 
focussing on unitary coupled cluster as an example.
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