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Quantum annealers have grown in complexity to the point that quantum computations involving
few thousands of qubits are now possible. In this paper, with the intentions to show the feasibility
of quantum annealing to tackle problems of physical relevance, we used a simple model, com-
patible with the capability of current quantum annealers, to study the relative stability of graphene
vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange
onto a quadratic unconstrained binary optimization problem, our approach exploits the ground
state as well the excited states found by the quantum annealer to extract all the possible arrange-
ments of multiple defects on the graphene sheet together with their relative formation energies.
This approach reproduces known results and provides a stepping stone towards applications of
quantum annealing to problems of physical-chemical interest.

1 Introduction
Whether you want to identify the most stable arrangement of wa-
ter molecules in ice nucleation, the energy barrier of a catalytic
reaction, or the stability of a chemical compound, the problem
always comes down to finding extrema (minima or maxima) of
a specific objective function. There is no an ideal algorithm that
is able to optimize any given objective function. Instead, differ-
ent methods have been developed, each being suited to a specific
class of problems.1 If the first derivative of the objective function
is computable, conjugated gradient methods2 or variable metric
methods3 may be used. Alternatively, tabu algorithms,4 Metropo-
lis methods,5 or simulated annealing6 can be used. Simulated
annealing is a powerful tool to efficiently finding the global min-
imum of multidimensional objective functions with a large num-
ber of local minima.7 In simulated annealing the objective func-
tion to be minimized is identified with the energy of a statistical-
mechanical system. The system is given a temperature as a fic-
titious control parameter that, through a slow high value, drives
the system to the state with the lowest energy (the ground state
of the system).

Quantum annealing (QA) performs a similar task to find the
minima (maxima) but it exploits the principles of quantum me-

a Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, United
States.
b Department of Physics and Astronomy, University of Southern California, Los Angeles,
CA 90089, United States.
c Center for Quantum Information Science & Technology, University of Southern Cali-
fornia, Los Angeles, California 90089, United States.
d Department of Physics and Science of Advanced Materials Program, Central Michigan
University, Mt. Pleasant, MI 48859, United States. Tel: +1 989 774 2564; E-mail:
forna1m@cmich.edu

chanics.7,8 Indeed, QA is searching simultaneously many config-
uration space regions thanks to the quantum phenomenon of su-
perposition.9 At the beginning of the search, all configurations
are equally probable. However, the probability of visiting rele-
vant minima increases during the annealing process.10 Quantum
tunneling allows the searching to pass through energy barriers
rather than be forced to climb them, reducing the probability of
becoming trapped in secondary minima.11 The role of quantum
entanglement in discovering correlations between the configura-
tion space coordinates that lead to global minima has also been
discussed.12

Due to hardware limitations, current quantum annealers are
not suitable yet to treat the full complexity of a physicochemi-
cal problem but can solve models appropriately reduced to in-
clude fewer relevant degrees of freedom. This work expands re-
cent application of quantum annealing to material science prob-
lems:13–16 traditionally the focus has been on the ground state, in
this work we take advantage of the statistical properties of quan-
tum annealing by using a portion of the excited state spectrum
of the Ising Hamiltonian. Using a D-Wave quantum annealer we
solve a prototypical stability problem in materials science, with
the definition of a single objective function that establishes a hi-
erarchy in the configurations. By construction the ground state
is identified as a reference point for the energy comparisons and
assigns meaning to the excited states.

The particular stability problem studied in this work regards
vacancies in graphene. This has been done using QA as imple-
mented in D-Wave Systems to explore a potential energy sur-
face17–19 and generate meaningful structural models associated
with vacancies in graphene.
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D-Wave is an Ising spin matrix with tunable parameters, work-
ing at low temperature. The Ising matrix assumes a graph
C(V ,E ) composed of a set of vertices, V , and edges, E . Each of
the N spins is a binary variable located at a vertex. The spins are
superconducting flux qubits, and their connectivity is set by the
Chimera graph C(V ,E ).20 The modern DW_2000Q_6 (DW2Q6)
has 2041 physical qubits and operates at T = 13.5±1mK. The lim-
ited number of qubits and the limited connectivity imposed by the
Chimera graph restrict the application of QA in chemistry and ma-
terials science; at the present stage only simple models of larger
physical systems can be implemented and solved on DW2Q6. The
model proposed in this work has been constructed to study the
stability of graphene vacancies in a free-standing graphene sheet.

Graphene is a purely covalent material where each carbon atom
makes three bonds. The removal of one atom breaks three co-
valent bonds, creating three dangling bonds. A single vacancy
corresponds to three non bonded electrons, namely one electron
per dangling bond.21 Zhang et al. 22 showed that the formation
energies of graphene vacancy defects can be modeled using the
information of bond-length and bond-angle distortions, as well
as the number of dangling bonds. Dangling bonds are sources of
important instabilities for graphene. In response, the host ma-
terial always tends to minimize the number of dangling bonds
by structural reorganization, such as reconstruction and cluster-
ing of vacancies.23–27 Our simple model looks at the graphene
vacancy defects as dangling bonds, which are appropriately ar-
ranged by minimizing the energy cost. The complexity of the
problem has been limited to match DW2Q6 potentials and does
not consider any defects reconstruction contribution that, any-
way, may be easily included if higher qubits connectivity becomes
available. The model reproduces the correct order for the stability
of graphene vacancy defects as normalized to the number of va-
cancies, thus promoting a cluster of vacancies rather than isolated
vacancies. The model discriminates different arrangements and
provides competing and coexisting local structures. The results
are in agreement with more complex theoretical analyses28–31

as well as with experimental measurements32,33 where, even if
graphene is grown over a substrate, the hierarchy in the stability
of defect configurations is comparable to the one of free-standing
graphene.

2 QUBO formulation
DW2Q6 minimizes objective functions expressed as quadratic un-
constrained binary optimization (QUBO) problems (or equiva-
lently as Ising Hamiltonians),34 Q(x) = xT Q̂x where x is an array
of binary variables, and Q̂ a positive defined matrix representing
the function to be minimized. In order to implement the QUBO
on a physical processor, one has to identify a set of interacting
qubits, which represent the off-diagonal terms in the QUBO.35

To compensate for the limited connectivity as represented in the
Chimera graph, logical variables are encoded in chains of physi-
cal qubits. A chain of physical qubits simulates a binary variable
and reproduces the interactions in Q(x). The procedure to define
connected logical qubits is known as a minor embedding36, and
the tuning of such a procedure strongly affects the performance
of the quantum annealing process.

The protocol proposed in this work includes: 1) mapping
the crystal structure into a graph G(V ,E ), where nodes are the
atomic sites and edges are the atomic bonds; 2) defining the bi-
nary variables that encode the problem; and 3) designing a QUBO
that returns structural model(s) of the desired configuration as
ground-state or excited states.

The hexagonal carbon lattice of graphene is generated by
two sublattices; considering the coordination of each atom, a
graphene sheet including k carbon atoms can be mapped in an
order-3 bipartite graph G(V ,E ) with |V |= k nodes and |E |= 3k/2
edges, where the independent subsets of nodes represent the two
sublattices (see Fig. 2-a). Independently of the number of atoms
treated in the simulation cell, periodic boundary conditions are
considered to simulate the infinite sheet. It is always possible
to find a representation of G(V ,E ) in terms of square adjacency
matrix Ai j with dimension k, where Ai j = 1 whenever node i is
connected to node j, otherwise Ai j = 0. For the graph in Fig. 2-a
(top left panel) the adjacency matrix is

Ai j =



0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1
1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0



.

Vacancies are treated as fictitious atoms: a node i can be occu-
pied by either a carbon (αc) or a vacancy (αv) atom. Each node i is
associated with a couple of binary variables {xiαc ,xiαv}, such that
xiαc = 1 when site i is occupied with a carbon, 0 otherwise. The
same holds for xiαv . Thus, the representation in terms of binary
variables of a graph with two sites, where the first one is a carbon
and the second one a vacancy, is {1,0,0,1}. Overall, x is a string
containing 2|V | binaries that describe the arrangement of atoms
(and fictitious atoms) in the simulation cell. To the variables αc

and αv are associated occupation numbers, Nαc and Nαv , such that
Nαc +Nαv = |V |. Dangling bonds are represented by an edge link-
ing a node occupied by αc and to one occupied by αv. Our QUBO
formulation Q̂ is designed to reproduce the correct arrangement
of (fictitious) atoms in the graphene sheet, such that the ground
state xgs = minx Q(x) is the defect-free graphene. Vacancies result
in dangling bonds whose number should be minimized and are
encoded in the excited states of the QUBO. We model this effect
by introducing a repulsive term ∑

d−1
i, j=0 Ai jxiαc x jαv , that penalizes

configurations containing dangling bonds.
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The QUBO of our model reads:

Q(x) = p
d−1

∑
i=0

(1− xiαv − xiαc)
2 +

k−1

∑
n=0

(Nαv +Nαc − xiαc − xiαv)
2+

+
d−1

∑
i, j=0

Ai jxiαc x jαv ,

(1)

where p is a constant. The first term assures that each node is
occupied only by one type of atom; the second term penalizes
configurations with occupations different from Nαc and Nαv , and
the last term is the repulsive one.

3 QA technical details

Quantum annealing (QA) proceeds from an initial Hamiltonian
H0 = ∑i σ x

i , where a transverse magnetic field is acting on qubit
i, to a final Hamiltonian H, whose ground state encodes the so-
lution of the computational problem under consideration. QUBO
problems are implemented on DW2Q6 as Ising spin models ar-
ranged on the Chimera graph. To this aim, the graph representing
the off-diagonal QUBO terms has to be embedded in the Chimera
graph. D-Wave’s API provides a tool called minorminer which
searches for the optimal (minor)embedding using a heuristic ap-
proach. This tool searches for the shortest chains of physical
qubits that reproduce the interactions in the QUBO problem. Ide-
ally a chain of qubits behaves as a string of binary variables, thus
qubits are ferromagnetically coupled. The choice of intra-chain
coupling (JF ) is important as it affects the energy spectrum in the
dynamics, and the probability of finding the ground state. JF cou-
plings should be strong enough to avoid chain-breaking without
dominating the dynamics.

The QUBO problem is automatically cast into an Ising Hamilto-
nian:

H = ∑
i∈V

hiσ
z
i + ∑

(i, j)∈E
Ji jσ

z
i σ

z
j (2)

where the local fields {hi} and couplings {Ji j} are programmable
within a few percent Gaussian distributed error. The {σ z

i } rep-
resents both a binary variable taking values ± 1, and the Pauli z-
matrix. Given a spin configuration {⊗N

i=0σ
z
i }, H is the total energy

of the system. Problems submitted to DW2Q6 are automatically
scaled so that hi ∈ [−2,2] and Ji j ∈ [−1,1].

The evolution is controlled by t ∈ [0,T ] through two mono-
tonic functions A(t) and B(t) such that Htot = A(t)H0 +B(t)H with
A(T ) = 0 and B(0) = 0. During an annealing cycle, the magnitude
of H0 is gradually reduced to zero, while the magnitude of H is
slowly increased from zero. After each annealing cycle D-Wave
returns a set of spin values {σ z

i = ±1} that attempts to minimize
the energy given by Eq. 2 (a lower energy indicates better opti-
mization). The annealing cycle is repeated to obtain an accurate
statistic of the solution, here 100,000 times. The length of the
annealing cycle T is tunable, and its length affects the probability
of reaching the correct solution.

4 Results
In our QA calculations, it is adopted a simulation cell whose bi-
partite graph G(V ,E ) has |V | = 12 and |E | = 36 (Fig. 2-a, top).
This is the smallest cell that allows the accommodation of a 3-
vacancy defect structure; extended defects are of less interest for
free-standing graphene. The vector x ∈ Z2|V |

2 represents the ar-
rangement of carbon atoms and vacancies in the simulation cell
and contains 2|V | = 24 binary variables. To satisfy the condition
of free-standing graphene sheet as ground state, Nαc = |V | and
Nαv = 0. Thus, the designed Q(x) (see Sec. 2) returns by con-
struction the free-standing graphene as the lowest energy config-
uration. The reliability on the ground state of the QUBO has been
tested with a standard analysis of the probability of finding the
ground state (Pgs). The scope of this analysis is to demonstrate
that our QUBO is well designed and to demonstrate that the pa-
rameters of DW2Q6 can be tuned to maximize the Pgs. Besides
the tuning of the JF and the annealing time, it has been shown
that the choice of the embedding can affect significantly the Pgs.37

Because the main goal of this work is to profit by the statistical
properties of quantum annealing and not strictly maximize the
Pgs, the embedding was chosen randomly each run.

Fig. 1 shows the effect of JF and annealing time T on Pgs.
The Pgs reaches the 27% with JF = 0.1 and decreases with the in-
creasing of the JF . We have also shown that choice of the penalty
constant p affects overall the Pgs, while the best JF is independent
from the choice of p (see Supplementary Material). The analysis
on the annealing time T indicates 200 µs is the best value for max-
imizing the Pgs. The accuracy on the solution depends also on the
number of spin reversal (SR) operations which are performed to
avoid the effect of possible bias on the physical couplers. We have
identified SR=100 as a good value for the convergence of the per-
formance. The average quality of the embeddings and the time
performance of quantum annealing are assessed by computing
the time to get the solution with probability 99% (T99) (see Sup-
plementary Material). Since Pgs does not vary significantly with
T (see Fig. 1), the time to solution increases with the annealing
time. We compare the performance with simulated annealing as
implemented in Ocean38 (see Supplementary Material) and we
observe that DW2Q6 performs an order of magnitude better for
the shortest analysis times.

A graphical representation of a defect-free configuration and
3-vacancy defected graphene sheet are sketched in Fig. 2-a (top
and bottom respectively), both as stick-and-ball models (left) and
bipartite graphs (right), where carbon atoms are shown as white
nodes and fictitious vacancy atoms as red crosses. In the stick-
and-ball model the carbon atoms at the border of the defect are
highlighted in red and the missing bonds are shown as black dot-
ted lines. The bipartite graphs represent the simulation cell con-
taining 12 atoms with periodic boundary conditions.

By replacing carbon atoms with “vacancy atoms”, graphene
goes from a ground state configuration to an increasingly de-
fected one. Defected configurations correspond to excited states
of the QUBO since Q(x) quantifies the deviation from the ground
state configuration. These variations are due to the violation of
the second term of Eq. 1. It turns out that the larger the num-
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Fig. 1 Probability of finding the correct ground state (Pgs) on DW2Q6 defined as the ratio between the number of correct solutions and total annealing
cycles (100,000) as a function of the intra-chain ferromagnetic coupling JF given in units of the largest coefficient of the embedded Ising model (left
panel), and as a function of the annealing time T (middle panel). The right panel reports the comparison for the time performance between DW2Q6 and
simulated annealing as a function of the annealing time T. For short annealing times QA is an order of magnitude faster than SA. Only solutions with
unbroken chains are counted. Runs are performed using 100 spin reversal operations. For each run on DW2Q6 the embedding was chosen randomly.

Fig. 2 (a) Left panel: stick-and-ball models of free-standing (top) and 3-vacancy defect (bottom) graphene configurations. Carbon atoms are repre-
sented in white or in red if bordering a defect, missing carbon atoms are indicated by red crosses, while dangling bonds by black dotted lines. Right
panel: representations of defect-free (top) and 3-vacancy defect (bottom) graphene configurations as order-3 bipartite graph with two disjoint parts
corresponding to the inequivalent carbon atoms in the Bravais lattice. Carbon atoms at the border of the defect are not highlighted here. (b) Energy
spectrum of the QUBO formulation. The ground state coincides with the free-standing graphene configuration; the 1st excited state refers to 1-defect
graphene configuration; 2nd and 3rd refer to 2-defect graphene configurations, where the lower in energy (2nd ) corresponds to the clustered 2-vacancy
configuration and the higher (3rd ) to the configuration made by two separated 1-vacancies; 4th, 5th, and 6th refer to 3-defect graphene configurations,
where, again, the lower in energy correspond to the clustered 3-vacancy configuration. The energy values are reported as differences with respect to
the ground state energy. More extended vacancy defects are not considered because of the low probability to be experimentally detected due to their
higher instability. For each state, a pictorial representation of the configuration is given. A suitable choice for the QUBO parameters permits DW2Q6 to
detect many relevant configurations.
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ber of vacancies, the higher the corresponding Q(x) values. With
the same number of defects, configurations where the vacancies
are clustered are preferred with respect to those whom vacancies
are spread around the graphene sheet. This adjustment in energy
agrees with the minimization of graphene dangling bonds and it
is caused by the last term of Eq.1 (Fig. 2-b).

DW2Q6 correctly identifies the ground state of Q(x) and the
defected graphene configurations as excited states (Fig. 2-b). In
the implementation, 24 logical variables encoding the arrange-
ment of carbon and fictitious vacancy atoms result in 156 qubits
on the Chimera graph, where the longest chains measure 8 qubits.
The choice of p = 10 (Eq. 1) is driven by the need of setting the
correct ground state and exploring the portion of excited states
relevant to the problem. Larger values of p do not allow the de-
tection of the correct ground state by DW2Q6, while for smaller
values some interesting excited states turn out to be too high in
energy to be detected during the QA process. We decided to use
JF = 0.6 and T = 20 µs since the maximization of the Pgs is not
required for our procedure. Indeed, the goal here is to have ac-
cess to as many excited state as possible, making irrelevant the
parameters that maximize the Pgs. The statistical approach inher-
ent in the QA returns all the defect arrangements in the simula-
tion cell providing information on the degeneracies of structural
models. The relative stability hierarchy of the defects shows the
defect-free graphene as the most stable configuration, followed
by single, double and triple vacancies. A cluster of N-vacancies
is lower in energy with respect to N separated vacancies (Fig.2-
b). These solutions of QA reflect the theoretical literature on the
topic28–31 and the experimental evidences of graphene vacancy
defects in presence of a substrate.32,33 It is worthy to underline
that the hierarchy of the formation energies for single, double
and triple vacancies in the free-standing graphene is comparable
to the hierarchy of the formation energies of the same defects in
graphene grown on a substrate. Because we are dealing with a
simplified model where no effects due to the defect reconstruction
and electronic contributions are taken into account, the quality of
the results is based only on the relative stability of the configura-
tions.

5 Conclusions
We have shown the feasibility of a D-Wave quantum computer in
solving physical problems applied to atomistic configuration sta-
bility. In order to accomplish this task, we have developed a new
method that exploits the statistical properties of quantum anneal-
ing by assigning physical to the full spectrum of the QUBO. In this
scenario, the ground state of the QUBO is the natural reference
for the energy comparison between different configurations of the
system. We believe that this is a stepping stone in material science
simulations where setting a reference for the energy comparison
is always a non-trivial task.

The developed method allows the mapping of a stability prob-
lem applied to graphene vacancy defect onto a QUBO formula-
tion, making it solvable by DW2Q6. Our model can be general-
ized to more complex physical problems involving configuration
stability. A natural extension of this work could include graphene
over a substrate, stability of graphene’s registries,39 and/or va-

cancy defects stability also in presence of adatom coming from
the substrate.32,33 This scenario requires a more complex QUBO
formulation in terms of fictitious atoms and a larger simulation
cell (larger then a 3-vacancy defect).

In this work, rather than requiring a different simulation’s input
for each configuration of the system, a single model expressed as
a QUBO formulation already provides the necessary information
about both pristine and defected systems, streamlining the energy
comparison between the configurations of the system. This is a
peculiarity of D-Wave that arises from the statistical approach re-
quired by QA. In principle, this allows access to all equi-energetic
configurations of a multidimensional space with a single QUBO
formulation. Thinking of a future possibility of building larger,
more accurate, and fully connected quantum annealers, the ap-
proach described in this work opens an interesting and promis-
ing prospective in solving more and more complex chemical and
physical problems.
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