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Abstract:

Density functional theory calculations play a central role in understanding chemical and solid-

state systems. Progress depends on density functionals that accurately reproduce both energies, 

for thermochemistry, and properly describe ground states and other properties that are of interest. 

The Cr dimer, benzene and graphene are particularly important benchmark systems for quantum 

chemistry and condensed matter physics. The Strongly Constrained and Appropriately Normed 

(SCAN) functional, which is an advanced meta-generalized gradient approximation functional 

that significantly improves molecular energies is shown to perform poorly for the Cr dimer. This 

is connected with its poor performance for itinerant solid-state magnets and is a consequence of 

over localization of electrons, thus illustrating an analogy between the Cr dimer and itinerant 

magnets. The Cr dimer is a notoriously difficult system for density functionals. However, we 

additionally find that SCAN predicts an incorrect symmetry broken ground state for 2D graphene 

and for the benzene molecule, which is surprising considering that ground states of these are 

known well described even by the simplest local density approximation. We show that SCAN 

overly favors localized spin polarized states, which is a serious deficiency of this approach. 

Thus, the challenge of finding density functionals that accurately treat both localized and 

delocalized electronic systems remains.

Keywords: Meta-GGA, self-interaction, magnetism
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Density Functional Theory (DFT) based calculations are a widely used, useful and 

practically indispensable tool in chemistry, condensed matter physics, and materials science.1-5 

These calculations rely on approximate density functionals. Unlike variational wave function-

based approaches, density functionals are not systematically improvable. Instead, one relies on 

empirical knowledge of the accuracy of the functionals on arrays of test cases as well as the 

extent to which given functionals reproduce known exact results. While DFT calculations are 

often used for calculating energies, for example in the context of thermochemistry, they are also 

very widely used in providing understanding of bonding and properties, including bonding, 

electronic structure and magnetism. Therefore, it is important that a functional reproduce not 

only total energies, but also other properties of interest, for example distinguishing between 

metallic and semiconducting states, describing ground state symmetries and producing spin 

densities and magnetic behaviors in accord with experiment.

A long-standing goal is the development of a tractable universal density functional, that is 

a functional that provides uniformly accurate results for all chemical and solid-state systems.6-9 A 

particular challenge is the need to describe all types of electronic states in a universal functional. 

This includes both localized states, as in atoms and most small molecules, and delocalized states, 

as in aromatic molecules, such as benzene, and the states near the Fermi level in metals.6, 10-14 

This not only from the point of view of obtaining accurate total energies, but because of the 

importance in chemistry of frontier orbitals, and in condensed matter and materials of electronic 

states near band edges and at the Fermi level in metals. For example, while not particularly 

important for thermochemistry, the Dirac bands of graphene, as predicted by standard DFT, have 

been the focus of much interest in that material.15-16
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There is a widely held expectation that as functionals incorporate more detailed 

information about the electron density they become more reliable. This is the concept of Jacob’s 

ladder.17-21 This concept starts with the local density approximation (LDA), with an energy 

functional built on the local density, as the first rung, followed by generalized gradient 

approximations (GGA), using the local density and its gradient as ingredients in the second rung, 

and meta-GGA functionals, that in the case we consider incorporate the local density, its gradient 

and the kinetic energy density, on the third rung. Going up this ladder adds more flexibility to the 

functionals. This flexibility can be used to satisfy known behaviors of the electron gas, and also 

for fitting if desired. One important constraint, especially for localized systems, is the fact that 

the energy has derivative discontinuities at integer electron numbers.22-24 Building this fact into 

functionals favors integer occupations of orbitals and thus localization. This is essential for 

describing the behavior of atoms and localized systems such as Mott insulators.12, 25-26 Therefore, 

this is an important constraint. It cannot be satisfied on the lowest two rungs of Jacob’s ladder, 

but may be better satisfied on higher rungs, including semi-local functionals that incorporate 

kinetic energy densities.26-27 The unanswered question is whether this can be accomplished 

without degrading the already very good description of delocalized systems from the lower 

rungs.

The recently developed Strongly Constrained and Appropriately Normed (SCAN) meta-

GGA functional28-29 is of particular note. This functional incorporates many exact constraints. 

Additionally, through these constraints and choices of norms (systems that the functional is 

constrained to describe exactly) it improves the dependence of the energy between integer 

occupations, thus better approximating the derivative discontinuities of the exact functional. It 
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has been demonstrated to perform extremely well for the energetics and structures of sets of 

molecules and solids.21, 28-32

However, rather surprisingly, while describing energies and structures of many molecules 

extremely well, SCAN was found to perform poorly for bulk Fe metal, and some other metallic 

magnetic materials due to increased moments and magnetic energies.33-39 These errors were 

attributed to errors in describing itinerant metallic electrons in these itinerant magnets, including 

excessive localization due to the emphasis in SCAN on reproducing the removal of self-

interaction errors for atoms and small molecules.34 It has also been noted that SCAN has 

inaccuracies for the weakly bonded alkali metals, where the interplay between localized semi-

core states and itinerant metallic valence states was implicated.40

Correction of self-interaction errors is also important for many solid-state materials, 

including materials that are not strongly correlated, such as TiO2.41 In effect, the correction of 

self-interaction errors for molecules leads to errors in the treatment of extended, band like states 

in metallic Fe, Co and Ni. However, up to now, these problems have been isolated to extended 

solids. Here we show that these problems can manifest themselves also in small molecules, 

where electrons are necessarily localized spatially, and also in graphene, which is a prototypical 

two-dimensional material.

We did DFT calculations using the VASP code.42-43 The Cr2 molecule was modeled in an 

8.0 x 8.1 x 15 Å periodic box with the molecule oriented in the z-direction. The energy of an 

isolated Cr atom was calculated using an 8.0 x 8.1 x 8.2 Å box. For graphene, the vacuum is 10 

Å along the z-direction, and with a Brillouin zone sampling 21 x 21 x 2 k-mesh. Benzene was 

modeled in a 12 x 12 x 6 Å periodic box with the molecule lying within plane. High energy 

cutoffs of 600 eV were used in these calculations. Importantly, the calculations were done with 
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broken spin symmetry. In addition, as tests, we did calculations for the three systems using the 

all-electron FHI-aims code, using the tightest basis set provided by the code.44 This method 

avoids pseudopotential approximations, which could be important for meta-GGA functionals,45 

and has an efficient but more restricted basis set than the planewaves used in VASP. For 

benzene, which is a particularly delicate case, we also did calculations with VASP using even 

higher cutoff parameters, specifically a planewave cutoff of 800 eV with an augmentation cutoff 

of 1000 eV. In addition, we did calculations with different real space grids. For benzene, we also 

tested two different pseudopotentials, specifically the default PBE pseudopotentials and hard 

PBE pseudopotentials. The key results, specifically, that SCAN behaves similar to functions that 

over-localize orbitals in Cr2, and that the ground states of graphene and benzene are incorrectly 

described as magnetic and symmetry broken are independent of these choices.

We begin with the neutral Cr2 dimer. This is a notoriously challenging case for wave-

function-based approaches, and has often been used as a benchmark.46-54 It is also an interesting 

test case for density functionals due to its multiple bonding involving six orbitals per atom, 

although the actual bonding is thought to involve a balance between spin-polarization (in broken 

spin symmetry calculations) and bonding.55 The binding curve shows a relatively short bond 

length, with weak binding and a shoulder structure, reflective of competing electronic states.56-57 

We performed calculations for the LDA (here we use the standard LDA based on 

parameterization of Monte Carlo data for the uniform electron gas58 and the random phase 

approximation spin dependence,59 as implemented in the VASP code),60 the PBE GGA,61 the 

SCAN,28 TPSS,20 and revTPSS (RTPSS)62 meta GGAs, the M06L alternate local density 

functional,63 and the HSE06,64 and B3LYP65 hybrid functionals. Our calculated binding energies 

curves are shown in Figure 1a.
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The LDA shows accord with experiment as far as the binding energy and bond length is 

concerned, as has been noted previously.66-67 PBE also shows a reasonable accord with 

experiment in terms of the bond length, but it has an under-binding in terms of energy, also as 

noted previously. Both PBE and LDA show weaker decreases in binding energy and longer 

distances than might be expected based on other systems. There is also a secondary minimum at 

longer bond length in the experimental curve. This characteristic has been associated with 

competition between spin polarization and binding. Other functionals, including hybrid 

functionals that are typically regarded as more accurate for the description of molecules, 

including B3LYP, very significantly underbind Cr2, by favoring a more strongly spin symmetry 

broken, longer bond length solution. Hybrid functionals that poorly describe Cr2 by producing 

strong spin polarization, also show poor behavior for itinerant ferromagnetic metals.8, 34, 68-69 No 

functional very closely reproduces the shape of the experimental binding energy curve. However, 

the LDA, PBE GGA, and the generally similar TPSS and revTPSS functionals are apparently 

closest.

Interestingly, SCAN behaves similarly to the hybrid functionals. This is associated with 

the tendency of the exchange interaction to favor more strongly spin-polarized antiferromagnetic 

solutions, along with reducing self-interaction. SCAN, differently from hybrid functionals, does 

not involve mixing of exact exchange and is strictly semi-local, but does attempt to have less 

self-interaction error through the choice of norms. SCAN yields higher spin polarization at all 

bond lengths, as seen in Figure 1b. These solutions correspond to the higher bond-length 

shoulder in the binding energy curve. In any case, it is clear that none of the density functionals 

provides a truly adequate description Cr2, and that functionals that are designed to reduce self-

interaction errors degrade agreement with experiment for this system. This is understood to be a 
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consequence of over localization of orbitals in these functionals for itinerant systems, and also in 

the Cr2 molecule.

Figure 1. (a) Binding energy curves for the neutral Cr dimer using different density functionals. 

The experimental curve is from Casey and Leopold.56 (b) Cr spin moment as a function of bond 

length..

We now turn to graphene, which is a prototypical 2D material of importance in chemistry 

and condensed matter physics.15, 70-71 The honeycomb lattice symmetry leads to a semi-metallic 

electronic structure featuring Dirac cone bands at the K and K’ points of the 2D Brillouin zone. 

This high symmetry and ensuing Dirac bands are among the most important and widely 
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discussed features of graphene. Breaking of the honeycomb lattice symmetry, by either chemical 

ordering (e.g. replacing C by alternating B and N) or by magnetism (e.g. an antiferromagnetic 

field) leads to gap opening. In addition, graphene is a classic example of resonant bonding in an 

extended structure.

Experimentally, graphene does not have magnetic moments, and instead shows orbital 

diamagnetism, similar to graphite.72 Standard density functionals, including the LDA and PBE 

GGA well reproduce the electronic structure of graphene as well as the fact that it is a non-

magnetic material. The SCAN result for the band structure (Figure 2) is similar to LDA and 

PBE, when symmetry breaking due to magnetism is not allowed. However, when magnetism is 

allowed the SCAN functional incorrectly predicts antiferromagnetic moments on the two 

sublattices, with a resulting gap opening, which amounts to more than 1 eV. This is a very 

sizable error. The calculated spin moment on the C atoms is 0.10 µB as obtained by integration 

of the spin density in a sphere of radius 0.863 Å. The moment can alternatively be determined by 

integration of the absolute value of the difference between the up-spin density and the down-spin 

density over space. This yields a larger moment of 0.15 B/C. Therefore, SCAN predicts a 

qualitatively incorrect, symmetry broken ground state for graphene. The energy gain from spin 

polarization is relatively small, consistent with the small moments, 9.1 meV/atom. Thus, while 

the ground state is incorrect, the thermochemistry is relatively unaffected by this fact. This 

illustrates the importance of looking at the properties of a material and not only the energy when 

assessing approximate density functionals.
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Figure 2. Band structure of graphene as obtained with SCAN, from non-spin-polarized 

calculations (NM) and allowing collinear antiferromagnetism with opposite spins on the two 

sublattices.

We find that the same problem occurs in benzene. In particular, similar to graphene, the 

SCAN functional predicts a spin-symmetry broken state for benzene, with alternating spin 

moments on the C atoms. In the case of benzene, the calculated energy lowering due to this 

symmetry breaking is small 0.86 meV/C, but nonetheless non-zero. We carefully checked that 

this result is robust. Use of a harder pseudopotential with a higher planewave cutoff of 800 eV, 

leads to the same result, with a slightly smaller magnetic energy of 0.79 meV/C. It has been 

noted that the choice of grid is potentially important in meta-GGA calculations, particularly for 

SCAN.45  We therefore additionally checked the convergence with respect to the real space grid, 

which can be important for meta-GGA functionals. Doubling the grid density in each direction 
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(eight times the number of grid points) led to a negligible change in the magnetic energy 

consisting of an increase of 0.01 meV/C. We note that symmetry breaking, including this type of 

spin polarization symmetry breaking, is a common feature of strongly correlated electron 

systems. For example, in cuprates, such as the parent phases of the high temperature 

superconductors, simple density functionals such as the PBE functional and the LDA incorrectly 

predict non-spin-polarized metallic ground states,73 while hybrid functionals predict local 

moment antiferromagnetic ground states in accord with experiment. Interestingly, even though 

simple density functionals predict the wrong ground state for the cuprate parent compounds, they 

perform well for energetics of these materials, for example yielding accurate phonon 

frequencies.74-75 However, the analogy between the behavior for graphene and cuprates is not 

perfect. We did HSE03 calculations for graphene as well. For graphene we do not find a broken 

symmetry spin polarized ground state with HSE03 (note HSE03 is similar to HSE06 but with a 

larger screening parameter).76-77 We note that hybrid functionals are different from the SCAN 

meta-GGA functional in that SCAN is semi-local and designed to be one electron self-interaction 

free, while hybrid functionals retain non-local exchange by mixing a certain fraction of exact 

Coulomb or screened exchange to reduce self-interaction error.

As mentioned, development of a universal functional is a long-standing goal in density 

functional theory. Standard generalized gradient approximations, such as PBE, yield near 

chemical accuracy for many molecules, and accurate properties for many solid-state systems. 

However, they fail qualitatively in describing Mott insulators, such as the parent compounds of 

the high temperature cuprate superconductors.73, 78-79 These failures are understood as a 

consequence of a tendency to delocalization related to self-interaction errors and the resulting 

inadequate tendency towards integer orbital occupations.80 Thus, it is very exciting that the 
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SCAN functional, which is based on satisfaction of many exact constraints for the electron gas, 

was shown to yield both improvements over standard GGA functionals in the thermochemistry 

of sets of molecules and an improved description of many solids, including especially promising 

results for correlated materials.81

The present results show, however, that in addition to quantitative inaccuracies for 

itinerant transition metal ferromagnets, such as Ni and Fe, the SCAN functional shows large 

errors for the Cr dimer, as well as qualitatively incorrect symmetry broken descriptions of 

benzene and graphene. While Cr2 is known to be a particularly challenging case for theory, 

where no density functional yields very close agreement with experiment, the qualitative failures 

of SCAN in the descriptions of graphene and benzene are remarkable. Therefore, the challenge 

of simultaneously treating localized and delocalized electronic systems remains. In particular, 

SCAN does not provide a universal density functional, and the quest for such a functional and 

strategies for finding one is open.
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