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Abstract

Phonon-mediated thermal transport is inherently multi-scale. The wave-length of phonons 

(consider phonons as waves) is typically at nanometer scale, the typical size of a phonon wave 

energy packet is tens of nanometers, while the phonon mean free path (MFP) can be as long as 

microns. At different length scales, the phonons will interact with structures of different feature 

sizes, which can be as small as 0D defects (point defects), short to medium range linear defects 

(dislocations), medium to large range 2D planar defects (stacking faults and twin boundaries), 

and large scale 3D defects (voids, inclusions, and various microstructures). The nature of multi-

scale thermal transport is, there are different heat transfer physics across different length scales 

and in the meantime the physics crossing different scales is interdependent and coupled. Since 

phonon behavior is usually mode dependent, thermal transport in materials with combined 

micro-/nano-structure complexity become complicated, making modeling such transport process 

very challenging. In this perspective, we first summarize the advantage and disadvantage of 

computational methods for mono-scale heat transfer, and the state-of-the-art multi-scale thermal 

transport modeling. We then discuss a few important aspects of future development of multi-

scale modeling, in particular with the aid of modern machine learning and uncertainty 

quantification techniques. As more sophisticated theoretical and computational methods 

continue to advance thermal transport predictions, novel heat transfer physics and thermally 
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functional materials will be discovered for pertaining energy systems and technologies.

1. Introduction

In all fields of modern science and technology, phenomena across space and time scales are the 

most fascinating issues. The micro-scale components of the materials and structures are atoms 

and molecules, and their interaction in principle determines all macro-scale behavior of the 

materials, which is the most interesting scale for practical applications. Therefore, 

understanding the characteristics and principles of materials at different spatial and time scales 

has a great appeal for technological innovation. In the material modeling and simulation, it can 

be roughly divided into the following four feature space scales (Figure 1): 

(1) Nanoscale (10-9 m): The electrons are the dominant players, and quantum mechanics 

determines the interaction between them.

(2) Microscale (10-8 – 10-6 m): Atoms play a major role, and their interactions can be described by 

classical atomic potentials, with or without fixed formula, including the effects of chemical 

bonds between them. Some thermodynamic quantities such as temperature cannot be well 

defined in some extreme cases.

(3) Mesoscopic scale (10-5 – 10-4 m): Microstructures play an important role in determining 

material properties, such as grain boundaries, voids, and other microstructure elements. 

Empirical models are usually effective to handle the phenomena in this scale.

(4) Macro-scale (>10-3 m): Materials are regarded as continuous medium and constitutive laws 

govern the behavior of physical systems. At the macro-scale, continuous fields such as density, 

velocity, temperature, displacement, and stress fields can be well defined. Constitutive law can 

be also used to analyze some effects from defects.

In contrast to spatial scales, the time scale spans femtoseconds (10-15 s) to seconds, ~20 orders of 

magnitude change which is much larger than that for length scale. For instance, during 

femtosecond laser fabrication1, photons are mainly absorbed by electrons, which is governed by 
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femtosecond photon-electron interactions, and the subsequent energy transfer from electrons to 

ions (usually phonons) is of femtosecond to picosecond order. Therefore, femtosecond laser 

fabrication process can be improved by controlling localized transient electron dynamics, which 

poses a challenge for measuring and controlling at the electron level during fabrication 

processes. Another example is the additive manufacturing with short pulse width and high 

energy of a femtosecond laser2, where current limitations in understanding effects of the laser-

metal or laser-alloy interactions, particularly the dynamics associated with highly non-

equilibrium melt pool environments, represent a significant barrier to the rapid optimization, 

simulation, and rational design of process conditions. In short, effectively treating cross-time-

scale problems is much more challenging than dealing with cross-length-scales.

In recent years, in the intersection of materials science-physics-computational modeling and 

simulation, several important and dominant methods have been developed including first-

principles calculations (nanoscale), molecular dynamics (microscale), and Monte-Carlo and 

phase-field (mesoscale), and continuum mechanics (macroscale). Overall, these methods work 

very well in their respective length- and time-scales (herewith we call them “mono-scale 

methods”), while expanding them to the neighboring length- and time-scales usually needs 

careful treatment and most of time the solution or methodology is problem based and/or system 

specific, i.e. a general or universal framework was rarely reported.

From thermal transport point of view, the microelectronics field is the earliest engineering field 

where the macro-, micro- and nano-scale heat transfer solutions need to merge. Developments 

in the hard surface and interface science have given us ever faster computers and 

communication technologies. With advanced nanotechnologies, nowadays electronic devices 

are getting smaller and smaller, while their power requirements are increasing. Size scaling of 

transistors and the increase of clock rates, according to Moore’s law, led to an explosion in 

power-density for logic circuits, communication devices, and memories. Although the energy 

per operation is still decreasing, cramming more and more transistors in the same area increases 

the density of dissipated power to an unacceptable level that threatens the current fast rate of 
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progress of the industry. Therefore, proper design of thermal management within the devices is 

becoming increasingly critical to sustain performance, reliability, and disruptive development 

of electronics. In most modern electronic systems (computers, radios, radar modules, etc.), the 

electronic device is the warmest element in the system, and waste heat is removed by 

conduction, spreading, and convection to an appropriate working fluid (e.g. air, water, or a 

refrigerant) with gradual reductions in the temperature as heat travels from the source to the 

fluid. Taking the high-speed Blue Gene supercomputer as an example [Figure 1(a)], along the 

heat path from the source in the drain region of individual transistors to the heat sink, whether 

in an air or in a liquid cooler, the heat flux crosses a multitude of interfaces [Figure 1(c)]. Still 

today, thermal interfaces are responsible for around 1/3 to 1/2 of the total thermal resistance in 

power single inline packages or microprocessor systems. Multiscale strategies are therefore very 

important to ensure efficient heat removal, such as package-scale thermoelectric coolers, 

thermal interface materials, and transistor level approaches, all of which need to work 

synergistically to accomplish the mission. Those approaches all include thermal (mainly 

phonons) transport issues at multi-interfaces that still must be addressed.

Another example is thermoelectric energy conversion. Thermoelectrics offer an attractive 

pathway for addressing an important niche in the globally growing landscape of energy 

demand, since they can convert waste heat into electricity, the highest form of energy in terms 

of thermodynamic quality. In general, development schemes to improve thermoelectric 

conversion efficiency in the past decades were guided by the concept of “phonon glass – 

electron crystal”3-4, i.e., reducing the lattice contribution to the thermal conductivity as closely as 

possible to an amorphous state, while keeping relatively high electrical conductivity and 

Seebeck coefficient by optimization of the doping level5. In this framework, exhaustive scientific 

efforts have been dedicated to reducing the lattice thermal conductivity6. The “phonon glass – 

electron crystal” approach has stimulated a significant amount of new research and has led to 

significant increase of ZT for several compounds such as skutterudites7-8, clathrates9-10, and half-

Heusler intermetallic compounds11-12 (Figure 2). Recently, due to the improving capability to 

Page 4 of 54Physical Chemistry Chemical Physics



Page 5 of 54

synthesize nanostructured materials, nanostructuring of existing TE materials of interest has 

emerged as a promising pathway to greatly reduce lattice thermal conductivity to values as low 

at the theoretical limit and, as a result, to improve thermoelectric performance13 (Figure 2). 

Typical examples in this route include low-dimensional nanostructures such as quantum dots, 

nanowires along with subsequent structure modulation14-15-16, nanocomposites17, superlattices18-

19-20, and bulk nanostructured materials21. By exploiting nano-scale effects, such as strong 

boundary or interfacial phonon scattering, and by taking advantage of the quantum 

confinement effect, nanostructured materials can achieve decent ZT values at room temperature 

and record-high ZT values of 1.5 – 2.0 for medium and high temperatures. However, there is 

little room to further improve ZT coefficient of nanostructured materials. Although 

nanostructures in bulk thermoelectrics allow effective phonon scattering of a significant portion 

of the phonon spectrum, leading to unprecedentedly low lattice thermal conductivity, phonons 

with long mean free paths (MFPs) still remain largely unaffected. To this end, recently 

researchers proposed a concept of all-scale hierarchical architectures to achieve the maximum 

reduction in lattice thermal conductivity by considering sources of scattering on all relevant 

length scales in a hierarchical fashion, from atomic-scale lattice disorder and nanoscale 

endotaxial precipitates to mesoscale grain boundaries22. The experimental tests on PbTe were 

very promising, which call for direct modelling of phonon transport across different length 

scales for further structure tailoring and system optimization. The key of achieving 

breakthrough ZT coefficient of nanomaterials for the next generation of thermoelectrics is to 

precisely predict the detailed collective phonon transport in the “hierarchical” materials that 

has different interfaces spanning from atomic to mesoscopic and even to macroscopic level 

(Figure 3).

2. Review of major mono-scale computational methods for heat transport

As heat carriers for semiconductors and insulators, phonons in a material typically have 

wavelengths and mean free paths that span several orders of magnitude and are usually mode 
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dependent. This complexity leads to the coexistence of ballistic and diffusive transport and the 

simultaneous action of scattering sources at multiple scales. Furthermore, phonon distributions 

depend on wavevector and polarization and are also inhomogeneous in space and time. The 

classical Fourier’s law, which considers heat is conducted diffusively with the thermal 

conductivity of bulk materials, is found to be only valid in continuum scale. When the 

characteristic length of the structure reduces to micro-meter and even down to nano-meter, a 

growing number of experimental measurements have observed the reduction of the thermal 

conductivity compared to the bulk value23- 24. The performance of micro-nano materials 

depends on the results of nonlinear coupling evolution of different physical processes on 

multiple spatial and time scales from micro and meso to macro, and the development of 

corresponding multi-scale heat conduction simulation methods has become a hotspot of 

research in the past decades.

From numerical modeling point of view, computational methods including anharmonic lattice 

dynamics (ALD) based on force constants from empirical force fields or first-principles 

calculations and in combination with Boltzmann transport equation (BTE), nonequilibrium 

Green’s function (NEGF), classical molecular dynamics (MD) simulations, and Monte Carlo 

(MC) simulations have been used to study nanoscale thermal transport25. Below is a short 

description of each method that is suitable and widely used for single time and spatial scale:

1. Anharmonic lattice dynamics, combined with phonon Boltzmann transport equation26, has 

been able to predict thermal conductivity with unprecedented accuracy and without the 

need of any empirical input, when using first-principles calculations27-28 to evaluate force 

constants. The coupled ALD/BTE method has been successfully used to predict the thermal 

conductivity of simple perfect crystals29-30-31-32-33-34-35 and some compounds36. However, it 

becomes more challenging if inhomogeneity has to be taken into account, which involves 

significantly large supercell that requires unbearable computational demands. In addition, 

the method has difficulty in precisely characterizing the effect of free surface and boundary. 

Recently, lattice dynamics was also used to evaluate frequency dependent transmission 
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coefficients at an ideal Si-Ge interface37. However, lattice dynamics only handles harmonic 

phonon process at the interface so far.

2. Green’s function: In an atomistic Green’s function approach, the system is represented at the 

molecular level by atomistic potential models. Heat current in the system subject to a small 

temperature difference is related to the interatomic force constants. This heat current is 

expressed in terms of Green’s function, and the phonon transmission as a function of 

phonon frequency is calculated38-39-40. This method has been widely used for studying 

ballistic phonon transport in nanostructures, across interfaces and molecular junctions. 

Recently, the Green’s function method is extended to provide mode dependent 

transmission41, but it still can only handle ballistic transport so far.

3. Classical molecular dynamics simulations are based on fully atomistic description of 

systems and trace the time-dependent trajectories of all atoms based on Newton’s second 

law of motion and interatomic potentials42-43. Equilibrium and non-equilibrium molecular 

dynamics (EMD, NEMD) are the two major methods to calculate thermal conductivity with 

their respective advantages and disadvantages42. Although it is robust and “automatic” to 

consider the effect of surface and interface, the disadvantage of MD simulation is that it 

largely relies on an accurate interatomic potential. The problem of inaccurate interatomic 

potential can be alleviated by ab initio molecular dynamics (AIMD). In recent years, due to 

the fast advancement of computational capability, AIMD has been largely used for quantum 

level simulations of chemical process44-45, thermodynamics46-47, material physics, 

mechanics48-49, and also thermal transport50-51-52-53, wherein finite temperature dynamical 

trajectories are generated by using forces computed “on the fly” from electronic structure 

calculations. In addition, most of time the MD simulations are limited by the small length 

scale (up to microns) and short time scale (up to tens or hundreds of nanoseconds). The 

limited length scale issue can be partially solved by recent development of coarse grained 

molecular dynamics (CGMD) which can do meso- or even macro-level simulations. 

Although CGMD has been long proposed and improved for biological systems54-55-56-57, little 
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progress has been made in the application and development to thermal transport field58-59-60.

4. Monte Carlo simulations or finite volume method are often used to solve the Boltzmann 

equation for arbitrary structures61-62-63-64-65. However, when frequency dependent phonon 

mean free paths need to be considered, the computational time of the Monte Carlo 

simulation becomes considerably large. Moreover, for complex structures the widely used 

Matthiessen rule were found to be questionable especially when the structure sizes have a 

large variation and such a treatment can significantly overestimate thermal conductivity. A 

more severe problem is to feed critical input parameters such as phonon lifetime and 

scattering details at the interface or boundary, which cannot be straightforwardly obtained 

from atomistic simulations. Currently, the sophisticated method is to fit some parameters or 

use gray or empirical models in Monte Carlo simulations to match the experimental results 

or give a relatively large uncertain prediction with lower and upper bounds. Regarding 

length scale, recently hybrid Monte Carlo algorithm was proposed as an excellent 

computational scheme that can not only significantly outperform the traditional Metropolis 

sampling, that was the particularly popular flavor of this technique, but also complement 

molecular dynamics in materials science applications, while allowing ultra-large-scale 

simulations of systems66. From this regard, the Monte Carlo method is very promising for 

predicting thermal transport in solids and interfaces with length scale far beyond atomistic 

models such as classical MD, AIMD, and even CGMD.

5. Continuum level modeling: this type of modeling includes finite element method (FEM) and 

computational fluid dynamics (CFD), which is usually used for simulating conductive and 

convective heat transfer, respectively. The governing equations, e.g. Fourier's law of heat 

conduction, are established on the general heat transfer principles, such as energy 

conservation law and thermodynamics laws. Although mature for continuum scales, 

sometimes the thermal energy equations were pushed down to the limit of micro- or even 

nano-scale solid particles67. Care must be taken for the important properties in the 

continuum methods, e.g., the effective thermal conductivity and interfacial/volumetric heat 
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transfer coefficient at the solid-solid or solid-liquid interfaces. Moreover, the continuum 

model of Fourier's law of heat conduction cannot be used for instantaneous thermal 

response to highly out-of-equilibrium thermodynamic conditions.

Special note is addressed to the historically basic approaches to simulate the thermal 

conductivity of continuum media, in particular composite materials. A Mori-Tanaka68 scheme 

was presented for modeling the overall thermal conduction behavior of composites containing 

reinforcements with interfacial resistances and prescribed size distributions. The approach was 

used for studying composites reinforced by spherical particles with monomodal and bimodal 

log-normal volume fraction distributions. But the Mori-Tanaka predictions were partially 

corroborated by two-dimensional numerical simulations confirming experimentally observed 

considerable sensitivity of macroscopic conductivities to the shape of particles. Halpin-Tsai69 

derived a theoretical model for the transverse thermal conductivity using the analogy between 

in-plane field equations and boundary conditions to the transverse transport coefficients.
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where  and  are the transverse thermal conductivities in the x- and y-direction xx yy

respectively,  is the thermal conductivity of the fiber,  is the fiber volume fraction, and f fv

 is the thermal conductivity of the matrix.  is the empirical geometric shape parameter m 

used to account for discontinuous lamellar arrangement fibers. The factor  is usually 

determined experimentally by curve fitting methods. Numerical solutions consistent with the 

governing equations of elasticity have been developed for the effect of filament shape on 

transverse moduli. In 1904, Maxwell Garnett developed a simple but immensely successful 

homogenization theory70, which approximates a complex electromagnetic medium. The 
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Maxwell Garnett mixing formula gave the permittivity of this effective medium in terms of the 

permittivities and volume fractions of the individual constituents of the complex medium. It 

was the basis relation of many recent models for effective thermal conductivity of nanofluids. 

The model was based on the solution of heat conduction equation through a stationary random 

suspension of spheres. The effective thermal conductivity ( ) depends on the thermal eff

conductivity of spherical particle ( ), base fluid ( ) and particle volume fraction of p f

suspension ( ). The Maxwell’s formula71 is expressed as

                         .                        （3）
 2 2

2 ( )
p f p f

eff f
p f p f
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 

    

  

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The Maxwell’s formula gave a good result for well-dispersed non-interacting spherical-shaped 

particles with low particle volume concentrations and with negligible thermal resistance at the 

particle/fluid interface. The model failed to predict a good match with experimental results for 

high solid concentration as well as the effect of different parameters involved, especially the 

particle size of nanoparticles, even in low particle volume concentrations.

Table 1: Advantages and disadvantages of typical numerical methods for heat transfer

Advantages Disadvantages

ALD/BTE
Very accurate when combined with 

first-principles calculations
High computational demand for large 
supercells; cannot simulate interfaces

NEGF
Can obtain frequency dependent 

transmission coefficients
To date, applies to ballistic phonon 

transport only
Classical 

MD
Fast; high computing efficiency; can 
simulate large-scale inhomogeneity

Empirical; largely relies on accurate 
potential; lack of quantum effects

MC/BTE
Fast; can simulate large length scales 

(even beyond microns)
Requires input parameters from 

atomistic level simulations

Continuum
Fast; can simulate continuum length 

scales and long time scales
Cannot simulate Non-Fourier heat 

conduction
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3. State-of-the-art of Multiscale Heat Transfer Modeling

In recent decades, revolutionary progress has been made in nanotechnology and 

nanoengineering, in particular in the synthesis and processing of materials with representative 

structures or functional parts down to the nano-meter scales. Such modern science and 

technology has urgent demand for deep understanding of thermal transport in nano-scale 

devices, nanostructures, and heterostructures. There were lots of progress in relevant 

experiments and modeling with individual computational methods that have been achieved in 

the past two decades. To acquire those knowledge, the readers are suggested to read recent 

comprehensive review papers72-73. Over the past decades, interest in the simulation of micro- 

and nano-scale heat transfer has sparked the development of a variety of multi-scale models 

and numerical methods for phonon transport in semiconductors and dielectrics. There are also a 

few comprehensive literature review papers in this area74-75-76. Herewith we highlight some 

representative development. Hybrid models are defined herein as concurrent multiscale 

modeling techniques in which discretized continuum methods (e.g., finite element method) are 

coupled with various types of atomistic methods (e.g., molecular statics (MS) or molecular 

dynamics (MD). Boundary conditions have been shown to strongly affect the lattice 

temperature inside the device77-78-79. An accurate treatment of boundary conditions requires 

linking subcontinuum thermal transport by phonons inside the device to the continuum heat 

diffusion outside the device. An essential feature of multiscale modeling approaches is the way 

how the communication (energy and momentum exchange) is handled in the interface between 

the continuum and atomistic regions. This is also the common challenge for all present 

multiscale modeling of other physical properties. Generally, the interface region is divided into 

two subregions: a “handshake” zone and a “padding” zone. The size and nature of these zones 

depend on the specific type of multiscale modeling method80. The coupling boundary 

conditions between the continuum and atomistic regions can be subdivided into “strong 

compatibility” and “weak compatibility”, both being applied within the so-called padding 

region. The handshake region, wherein the transition can be abrupt with no handshake region, 
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can exist and provide a gradual transition from the atomistic to the continuum model treatment 

of the continuum region itself, which can be based on FEM. Currently, there are two ways to 

achieve the hybrid method for heat conduction: (a) decoupled scheme, which refers that the 

information is transferred by some parameters and different methods for different length scale 

are conducted individually; (b) coupled scheme, where the solutions of different methods will 

be coupled during their solving process, and the final full solution correspond to the converged 

results of different methods76.

3.1 Decoupled scheme

The decoupled scheme is mainly applicable for the coupling of microscopic and mesoscopic 

methods, since both methods deal with the detailed information of heat carriers and it is easy to 

achieve information exchange just by several parameters. For example, in previous studies, 

molecular dynamics simulations and finite element methods are used to evaluate the effective 

thermal conductivity of graphene epoxy nanocomposites81-82-83, SiC-reinforced aluminum metal 

matrix composite84, nanometer-scale integrated circuits85, and interfacial phonon transport 

through Si/Ge multilayer film86. Thermal boundary conductance between crosslinked epoxy 

and the graphene sheet is obtained by performing classical molecular dynamics simulation, 

which can take into account various atomic-level structure topology and detailed interface 

conditions, is inputted later to the finite element based representative volume elements to 

evaluate local thermal conductivity constants of the nanocomposites (Figure 4). 

Another example is multiscale modeling of thermal conductivity of polycrystalline graphene 

sheets87. First, Green–Kubo equilibrium molecular dynamics (GK-EMD) simulations were 

performed for the evaluation of the thermal conductivity of ultra-fine grained graphene sheets 

with grain sizes ranging from 1 nm to 5 nm consisting of 25 up to 400 grains (Figure 5). Then, 

the macroscopic polycrystalline graphene models were constructed using the finite element 

approach, where all the grain boundaries were assumed to exhibit an effective contact 

conductance which was acquired by fitting the finite element results to the GK-EMD results for 

ultra-fine grained structures. By performing the finite element calculations for the systems with 
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larger grain sizes, close agreement between the finite element results and the GK-EMD 

extrapolated curve was observed. With this model, the effect of grain size distributions on the 

effective thermal conductivity of polycrystalline graphene sheets was further investigated. 

Obviously, the accuracy and effectiveness of the large scale finite element results depend on the 

strong assumption of uniform contact conductance across the grain boundaries, which is 

questionable in the cases of highly inhomogeneous grain orientations and large extended 

defects occurring at the boundaries.

3.2 Coupled scheme

Instead of using some parameters to transfer information across different length scales, the 

coupled scheme runs different methods simultaneously and the information exchange is 

achieved during every iteration step. In the nano- and micro-scale, phonon scattering by nano-

scale structural features and anharmonicity can be calculated atomistically from first-principles, 

whereas ballistic and diffusive transport are automatically accounted for via the space-

dependent distribution functions88. However, the solution of the BTE is a challenging task, 

especially in complex geometries. The Monte Carlo method is especially flexible for use with 

complex geometric configurations and can readily include different scattering mechanisms. To 

explicitly study the non-Fourier heat conduction, phonon MC simulation is a worth 

recommending approach. Li et al89 presented a new hybrid phonon Monte Carlo-diffusion 

method for ballistic-diffusive heat conduction. They used an alternating method, similar to the 

Schwarz technique proposed for the coupled Stokes/DSMC problem in the fluidic simulation, to 

couple the phonon tracing MC and Fourier’s law90. It is found that the hybrid method can 

accurately predict the distributions of temperature and heat flux in the system with nearly the 

same precision as the phonon tracing MC while the computation time can reduce up to 90%, 

validating its potential use for larger and more complex structures. An efficient method has 

been developed to solve the space-dependent Peierls-Boltzmann equation via variance reduced 

Monte Carlo (VRMC)91-92-93. The calculations presented in this pioneering work were not ab initio 

and resorted to the simplifying assumption of spherically symmetric phonon dispersions with 
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scattering rates only dependent on energy. Recently, the VRMC has been generalized and 

implemented with full dispersions and scattering amplitudes calculated by ab initio for real 

materials and released as the program almaBTE94. Regarding the critical parameters of 

interfacial phonon scattering process, currently the almaBTE adopts the assumption that 

particles (phonons) reaching the interfaces between dissimilar materials will be 

transmitted/reflected according to the previously widely used diffuse mismatch model that 

allows for elastic mode conversions. It is worth pointing out that, all empirical models such as 

diffuse mismatch model may have some problem or yield inaccurate phonon scattering process, 

in particular when the interfacial structures become complicated and/or there are multiple 

interfaces/interlayers with thickness well below the characteristic length of phonon mean free 

paths in the respective bulk materials (the particle picture of phonons will fail in this case, i.e. 

the wave nature of phonons would become significant).

4. Perspective on Future Multi-scale Heat Transfer Modeling

4.1 Promising role of artificial intelligence in bridging mono-scale methods

4.1.1 Urgent need of accurate but robust interfacial heat transfer model

As discussed above, the most critical element for future multi-scale heat transfer modeling is to 

develop a robust, as accurate as possible, “interfacial” heat transfer model to deal with phonon 

scattering process across boundaries and interfaces, near voids and surfaces, and sophisticated 

model connecting the simulations across different length scales. An ideal multi-scale modeling 

framework should be equipped with the feature that, there are different heat transfer physics 

across different length scales and in the meantime the physics crossing different scales is 

interdependent and coupled. To this end, the above coupled scheme that integrate different 

mono-scale methods into a single framework is very promising. Certainly there is an urgent 

need to smoothly bridge these mono-scale computational methods. A single, seamless, and 

concurrent multiscale thermal transport framework is illustrated in Figure 6. Similar approach 
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has been implemented in solid mechanics, such as finite-temperature quasicontinuum (QC) 

method95-96-97-98-99. Such a method would provide a complete description of thermal transport in 

complex structures from scattering at atomistic defects to the thermal transport behavior at very 

large length scales. To ensure the accuracy of predictions, machine learning interatomic 

potentials tuned to first-principles calculations can be used at the MD level to correctly capture 

defect effects, as machine learning has shown a promising role in MD simulations toward 

calculating intrinsic lattice thermal conductivity and interfacial thermal resistance100-101-102 via ab 

initio trained neural network interatomic potentials103-104-105. As such, this approach may be an 

alternative to direct ab initio calculations of forces, and it may enable examination of larger and 

more complex material systems with highest possible accuracy.

4.1.2 Promise of machine learning interatomic potentials for studying heat transfer in 

heterostructures

It is clear that, many traditional interatomic potentials such as embedded-atom method (EAM), 

Tersoff potential, charge optimized many-body (COMB), reactive force filed (ReaxFF), have 

promoted the development of precisely describing the interatomic interactions. However, these 

potentials usually address particular classes of materials or particular types of applications and 

suffer from poor transferability to unknown structures. Smith et al106 demonstrated how a deep 

neural network trained on quantum mechanical DFT calculations can learn an accurate and 

transferable potential for organic molecules. Pun et al107 proposed a new approach that could 

drastically improve the transferability of machine learning potentials by informing them of the 

physical nature of interatomic boding. With further development of machine learning based 

interatomic potentials, it is highly expected that such achievement will significantly change the 

state-of-the-art of thermal transport in solids and related interfaces. Behler’s group has initiated 

a lot of work on neural network potentials for various materials including organic molecules 

and surfaces108-109-110-111 Typical recent improvement in neural network potentials include: deep 

potential molecular dynamics (DPMD) with a carefully crafted deep neural network that 

preserves all the natural symmetries112, neural network force fields from energy 
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decompositions102, and spatial density neural network force fields (SDNNFFs)113. With well-

trained neural network potentials, much larger scale MD simulation than traditional MD can be 

conducted, in particular for heterostructures or inhomogenieties that occur on meso-scale or 

even larger. For example, Mortazavi et al. trained machine-learning interatomic potentials 

(MLIPs) over short AIMD trajectories that enable first-principles multiscale modeling, where 

DFT simulations can be hierarchically bridged to efficiently simulate macroscopic structures114. 

They performed case study of the lattice thermal conductivity of two-dimensional 

graphene/borophene heterostructures and were subsequently able to extend the study of 

effective thermal transport along the heterostructures at continuum level.

4.1.3 Role of machine learning in bridging thermal transport across different length scales

Machine learning may play more critical role in bridging mono-scale methods as shown in 

Figure 6 (the dashed boxes). As in all concurrent multiscale methods, the challenge is in 

providing rigorous energy conserving coupling between domains of different resolution. This 

requires that, temperature continuity, energy and momentum flux across MD/MC and MC/FE 

interfaces, and other phonon scattering principles should be fulfilled simultaneously (Figure 6). 

To model heat energy transfer between the MD and MC regions, the frequency domain direct 

decomposed method (FDDDM) is a suitable approach115-116-117. FDDDM provides frequency-

dependent heat flux across any virtual plane perpendicular to the heat flux direction in the 

system, which has already been applied to various interfaces118-119-120-121 and even bulk 

systems122-123. For complex interfaces or grain boundaries, phonon scattering process is too 

complicated to be modeled in great detail or in a deterministic way. In this case, one can use 

deterministic MD simulations to sample large amount of representative interfacial or grain 

boundary structures and their corresponding interfacial thermal transport behavior, e.g. the 

frequency-dependent transmission by the FDDDM124, and then utilize machine learning 

techniques to obtain high-fidelity models to fast and accurately predict interfacial thermal 

transport across new interfaces or grain boundaries. Machine learning or broader artificial 

intelligence algorithms can be also used for minimizing statistic errors of parameters in the 
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empirical models such as conventional models for phonon-impurity and phonon-boundary 

scattering, and also for narrowing down the upper and/or lower bounds of model predictions 

(i.e. reducing prediction uncertainty).

4.2 Quantitative deep learning for the optimization of complex thermal transport processes

In complex structures such as polycrystalline materials, grain boundaries are sites of enhanced 

atomic motion, but the complexity of the atomic structures within a grain boundary network 

makes it difficult to link the structure and atomic dynamics. In particular, thermal transport 

across grain boundaries is still not well understood125, due to challenges in obtaining 

experimental data and limitations in simulation studies that rely on employing empirical 

potentials. In the past two decades non-equilibrium molecular dynamics (NEMD) simulations 

were mainly performed to examine thermal conductivities of individual grain boundaries126-127-

128-129-130. General results revealed that thermal conductivity normally varies with misorientation 

angle and grain boundary energy, however, the underlying physical mechanism has not been 

elucidated in terms of the detailed grain boundary structures. The difficulty resides in that, 

grain boundaries are actually high dimensional space which makes single or few structural 

parameters proposed in previous study131 insufficient for explaining structure-property 

relationships. In this regard, machine learning, in particular deep learning, could have great 

potential to quantitatively predict thermal transport in polycrystalline structures and also 

extract / identify the dominant structural factors that govern the thermal transport process. A 

schematic of using deep learning to study phonon scattering process across grain boundaries 

and bridge the nano-scale and meso-scale simulation is illustrated in Figure 7. This framework 

is composed of integrating (i) machine learning of interatomic potentials for local atomic 

potential landscape at nano-meter or atomic scale; (ii) NEMD method for probing phonon 

scattering/transmission at grain boundaries (up to hundred nanometers), such as using FDDDM 

as mentioned above; and (ii) the Peierls-Boltzmann transport theory for simulating phonon 

transport in a much larger length scales (up to hundred microns).

Specifically, the step (i) involves training interatomic potentials for nano-scale MD simulations 
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(see the right-bottom panel of Figure 7). Lots of machine learning techniques can be used in this 

regard, e.g. the latest techniques of DPMD112 and SDNNFF113 as mentioned above. For step (ii), 

it is worth emphasizing here the promise of SDNNFF113 for studying the thermal transport 

across grain boundaries. The SDNNFF method proposed by Hu group was originally 

established on training total forces of each individual central atom i (denoted as ) according 𝒇𝑖

to its local environment or spatial distributions of neighbors. This method focuses on the usage 

of a three-dimensional mesh of density functions, which together act as a mapping of the atomic 

environment and provides a physical representation of the forces acting on the central atom. 

Currently, Hu group is extending the SDNNFF method to train interatomic forces, i.e. 

interaction between a central atom i and its neighbor pair j (denoted as ). It should be noted 𝒇𝑖𝑗

that,  is directly relevant to the atomistic heat current  between two atoms i and j116𝒇𝑖𝑗 𝒒𝑖𝑗

, (4)𝒒𝑖𝑗 =
1
2〈𝒇𝑖𝑗(𝒗𝑖 + 𝒗𝑗)〉

where  is the force between two atoms i and j,  is the velocity of atoms, and  denotes 𝒇𝑖𝑗 𝒗 〈 ∙ 〉

the time average. Then, training effective  will enable quantitative characterization of 𝒇𝑖𝑗

atomistic heat current and summing  over the grain boundary which can be regarded as a 𝒒𝑖𝑗

special interface will enable investigation of interfacial heat transport across grain boundaries. 

Note that, the number of atoms in the grain boundaries is huge and then the training data for 

the atomic pairs (i and j) and associated atomistic heat current  is also huge, which will 𝒒𝑖𝑗

enable a well-trained deep learning neural network model, a similar strategy as we used in 

previous SDNNFF method113. Once the neural network model for  is trained, it is then 𝒇𝑖𝑗

straightforward to couple with previously developed FDDDM116 approach to evaluate the 

phonon spectrum of cross-boundary thermal transport in the framework of NEMD (see 

schematic in the middle-bottom panel of Figure 7). Another promising approach is the neural 

network force field by direct energy decomposition102, which is based on extracting atomic 

energies from DFT calculations. It has been used for calculating the thermal conductivity of 

amorphous silicon based on long molecular dynamics simulations. As per-atom energy is 

trained, it is highly expected that this approach can be extended to NEMD framework as well 
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(atomistic heat flux can be derived from the spatial change of atomic energies or energy 

densities), and then the above phonon spectrum of interfacial heat flux can be extracted from 

NEMD simulation, which brings us to the step (iii). In step (iii), deep learning can be used for 

“learning” the patterns of frequency dependent interfacial heat spectrum and correlating the 

interfacial thermal conductance or resistance to the features of local atomic structures at the 

grain boundaries (see the left-bottom panel of Figure 7). Deep learning could be also powerful 

in identifying the dominant phonon scattering process across numerous grain boundaries when 

using empirical model of phonon-grain boundary scattering as input parameters for higher 

level BTE modeling, since in this case the space of adjustable computational parameters is so 

huge that studying the effect of combinations of all parameters is impossible. Identifying 

governing phonon-grain boundary scattering events is critical for tailoring the atomic structures 

for achieving desirable thermal transport properties. The computational framework proposed in 

Figure 7 is expected to establish a quantitative understanding of thermal transport across 

various types of grain boundaries with the high predictive power of atomistic simulations with 

first-principles level accuracy, and also has the potential to keep the computational cost several 

orders-of-magnitude cheaper than the direct atomistic simulations.

Very recently, machine learning with data derived from the smooth overlap of atomic positions 

(SOAP) descriptor and perturbed MD has been utilized to quantify the relationship between 

local atomic structure and overall thermal conductivity in standard- and high-pressure 

symmetric tilt grain boundaries, twin, twist, and asymmetric tilt grain boundaries of MgO132. A 

simple metric based on the SOAP descriptor, namely local distortion factor (LDF), was 

proposed and analyzed to correlate with atomic thermal conductivity of the polycrystalline 

MgO in a non-linear fashion. The importance of structural disorder at grain boundaries for 

phonon transport in polycrystals is consistent with previous study on nanocrystalline 

diamond133. With developed machine learning model, it is straightforward to explore the entire 

high-dimensional space of grain boundaries to precisely control or tailor the thermal transport, 

provided that the trained model is capable of correctly representing the local structural 
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distortion to the largest extent. It should be noted that, such method is limited to the system size 

due to the nature of full atomistic simulation.

4.3 Uncertainty quantification in multi-scale heat transfer modeling

Uncertainty quantification (UQ) and big data analysis have received increasing attention in 

recent years. Extensive research effort has been devoted to these topics, and novel numerical 

methods have been developed to efficiently deal with large-scale data sets and complex 

problems with uncertainty. Both UQ and big data analysis enable us to better understand the 

impacts of various uncertain inputs (boundary and initial data, parameter values, geometry, 

network etc.) to numerical predictions. UQ and big data analysis are thus critical to many 

important practical problems. As the data size and dimensions of parameter space increase, one 

of the biggest challenges in UQ computations and big data analysis is the computational cost for 

analyzing the data and running the simulations. From multi-scale heat transfer modeling point 

of view, since there are lots of empirical models and/or trained models that will be used to 

determine the final material property (such as effective thermal conductivity or overall 

interfacial thermal resistance) or predict phonon transport process in complex structures, UQ 

will undoubtedly play critical role in providing confident prediction results to the community. 

Uncertainty can exist everywhere in multi-scale simulations, from the pseudo plane wave 

potential used in first-principles134-53-135-136, to the interatomic potentials used for GK-EMD or 

NEMD simulations137-138-139-140-141-142-143, to the empirical phonon-boundary/-surface/-impurity 

scattering formula used in phonon BTE modeling144, to the uniform effective thermal resistance 

used in thermal transport across grain boundaries145. One of the intuitive ideas is to combine 

detailed theoretical models and experiments for selected model systems and/or structures with 

UQ algorithms such as Bayesian decision framework to develop better theories, interpret 

emerging experiments correctly, design better experiments and simulations, and to quantify the 

uncertainty in the predictions146-147. To date, little study has been conducted on systematic UQ 

analysis of thermal transport148, even for mono-scale computational methods. For multi-scale 

thermal transport simulation, the first significant difficulty lies in that, the governing physical 
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mechanism is still not clear. For instance, on which scale the thermal transport is dominated in 

terms of thermal resistance and what is the corresponding thermal transport mechanism 

(ballistic or diffusive or hybrid)? What is the relationship between such dominant thermal 

transport process and local structure? In this sense, the UQ analysis is strongly coupled with the 

algorithm or framework development of multi-scale thermal transport itself. Without a clear 

understanding to the thermal transport in the entire system, the UQ analysis cannot be 

performed. The second challenge is due to the complexity of phonons which is usually mode 

dependent. So far, precise and sophiscated atomistic models for predicting mode dependent 

phonon-impurity/-surface/-boundary-/interface scattering are very rare. Despite some work has 

been initiated for phonon-interface interaction in the framework of NEMD simulations116-115-149-

150 and phonon wave-packet dynamics151-152-153 (so far limited to zero temperature), the small 

scale that current MD simulations can handle limits the broad application of the relevant 

algorithms to larger scale. It is worth pointing out that, some multi-scale models such as 

concurrent atomistic-continuum modeling154-155 have been used for simulating phonon-

dislocation interactions156-157. Such models need further development to include intrinsic 

phonon anharmonicity in the materials. Also, development of other types of phonon-“defect” 

interaction is still missing. More importantly, how to transfer these algorithms to upper scales 

so that the phonon-“defect” scattering process at larger length scales can be understood is still 

an open question. Again, the UQ analysis first calls for the fundamental understanding of these 

transport phenomena and foundation of the relevant algorithms or frameworks.

4.4 Phonon interaction with other energy carriers

There are four principal energy carriers from atomistic point of view: (1) ions/molecules; (2) 

atoms (lattice, phonons); (3) electrons (including magnons); and (4) photons. In the 

development of energy transport materials, most of time a single type of energy carrier is 

functioning. However, sometimes there are strong interaction or coupling between two 

different energy carriers and sometimes even among more. Taking thermal transport as an 

example, thermal conductivity measures a material’s ability of conducting heat and is 
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intrinsically determined by the quantum behaviors of electrons and phonons. In most 

semiconductors with a finite band-gap, the heat transport is dominated by phonons, and the 

lattice thermal conductivity is mainly limited by the phonon-phonon interaction (PPI) and 

extrinsic scattering due to defects or isotopes, and the contribution of electron-phonon 

interaction (EPI) or electron-phonon coupling (EPC) is usually negligible. However, recent 

studies found that EPC can be significant in affecting thermal conductivity of highly polarized 

GaN crystal with strong Fröhlich EPC for the longitudinal optic phonons with a long 

wavelength135, bulk silicon with high carrier concentrations158, layered metal oxide159, pure 

metals160, and even low-dimensional materials161. EPC has also long been believed to play 

critical role in determining the superconductivity162-163-164-165-166-167-168. Therefore, a promising and 

interesting research direction is to include the EPC effect into the existing mono-scale 

computational methods, such as phononic or electronic BTE, so that the energy transport 

mechanisms or phenomenon can be probed in more realistic and accurate way that is 

comparable with experiments and mimics the situation in practical applications. It is highly 

expected that, by considering EPC in phononic and electronic BTE, the root reason for excess 

heat generation in micro-/nano-electronics and the heat dissipation in larger scale can be deeply 

understood and then novel device-level architectures pertaining to more efficient thermal 

management will be designed and fabricated.

Moreover, due to the inherent coupling or interaction between phonons and other principal 

energy carriers, phonon-assisted photonic quantum transport phenomena have been 

extensively observed169-170-171-172-173-174-175. Reindl et al.176 showed an unprecedented two-photon 

interference from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs 

by exploiting the full potential of a novel phonon-assisted two-photon excitation scheme. This 

study marks an important milestone for the practical realization of advanced photonic quantum 

technologies and complex multiphoton entanglement experiments involving lattice vibrations 

such as dissimilar artificial atoms. The experiments will stimulate theorists to simulate the 

relevant phenomena by quantifying phonon-photon interactions. Analogously, one can extend 
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this idea to the other energy carrier such as ions, i.e. explore how the lattice vibrations will assist 

(better enhance) ionic transport, which is extremely important for fast ionic conductors in 

energy storage field. Kraft et al.177 investigated the influence of interatomic bonds (lattice 

vibrations) on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). 

They found that, the lattice softness has a striking influence on the ionic transport: the softer 

bonds lower the activation barrier and simultaneously decrease the prefactor of the moving 

ions, which provide a useful guidance for tailoring the lattice stiffness of materials in order to 

maximize ionic conductivity. Still, much more need to be done, e.g. systematic atomistic 

simulations of concurrent ionic and thermal (phononic) transport to uncover the entangled 

relation between phononic transport and ionic transport, and embedding these atomistic 

models into large scale modeling framework to investigate effect of large scale inhomogeneity.

5. Summary

Understanding and controlling subcontinuum phonon conduction emerges as a critical issue in 

recent decades, not only for the cooling of field-effect transistors with gate lengths less than 100 

nm, but also for developing high performance energy conversion and storage systems, where 

multiscale simulation method can play a central role in quantitatively predicting phonon 

transport across different length scales and time scales. Another motivation for multiscale 

simulation methods is that it is always neither possible nor necessary to calculate the full 

atomistic information in the whole simulation domain. This perspective describes the state of 

the art in multiscale thermal modeling and also points out some future research directions in 

this regard. Like the multiscale methods in other fields, current issue of these approaches 

resides in providing a seamless bridge between atomistic and continuum approaches, even if 

sometimes intermediate “mesoscopic” methods of simulation were introduced. Phonons are 

inherently highly dimensionally dependent (wave vector and polarization dependent), and the 

phonon mean free path can span orders of magnitude in space. This adds too much complexity 

and difficulty when dealing with phonon-inhomogeneity interaction at different length scales. 
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We highlight the potential of artificial intelligence such as machine learning techniques in future 

multi-scale modeling development for identifying the dominant role or mechanism when 

multiple phonon-inhomogeneity interaction occurs simultaneously. We also emphasize the 

importance of uncertainty quantification in the multi-scale thermal transport simulation, which 

is closely related to our understanding of heat conduction across different scales. Additionally, 

phonon coupling or entangling with other principal energy carriers is foreseen to be a new area 

in the near future, where more fundamental and previously unexplored thermal transport 

mechanisms and physics, such as ultrafast phonon dynamics178-179-180-181 and multi-channel 

thermal transport122-123-182-183, will be discovered and the relevant technologies will be promoted.
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Figure 1. Schematic of dominant role of interfacial heat transfer in thermal management of high 
power electronics. (a) Overview of Blue Gene supercomputer stacks. (b) Temperature contour 
indicates the microprocessor as the hottest part of electronics. (c) Heat path from the source in 
the drain region of individual transistors to the heat sink shows that the overall thermal 
resistance is dominated by a series of interfaces at both transistor level and external package 
level.
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Figure 2. Representative progress in thermoelectrics research with main concept of “phonon 
glass – electron crystal”.
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Figure 3. Multiscale nature and critical role of interfacial heat transfer in high performance 
thermoelectrics. (a) Principle of thermoelectrics that converts waste heat into electricity (right 
bottom) and typical examples of waste heat, such as steam at the outlet of cooling towers in 
power plants, automobile exhaust. (b) Schematic of nanostructured materials as high 
performance thermoelectrics where tremendous grain boundaries serve as hinders of 
propagating phonons. (c) Major mechanism of heat transfer in nanostructures, where phonon 
scattering at interfaces is dominant.
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Figure 4. A typical developed 3D representative volume element of graphene laminate 
constructed in Abaqus/Standard. Figure was taken from Ref.184 with permission from Elsevier.
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Figure 5. Samples of constructed finite element models for the evaluation of thermal 
conductivity of polycrystalline graphene structures. (a) Temperature and (b) heat flux 
distribution of a polycrystalline graphene sheet with an average grain size of 5 nm. (c) 
Temperature and (d) heat flux distribution of a polycrystalline graphene sheet with an average 
grain size of 500 nm. Figure was taken from Ref.87 with permission from Royal Society of 
Chemistry.
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Figure 6. Schematic of the multiscale thermal transport framework composed of atomistic 
(molecular dynamics) simulation, mesoscopic (Monte Carlo) simulation, and macroscopic (finite 
element) simulation. The red dashed boxes represent the hand-shaking regions connecting 
different mono-scale methods.
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Figure 7. Schematic of using deep learning to study phonon scattering process across grain 
boundaries and bridge the nano-scale and meso-scale simulation.
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