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Resonant states in cyanogen NCCN

Pamir Nag,a Roman Čurík,a∗ Michal Tarana,a Miroslav Polášek,a Masahiro Ehara,b Thomas
Sommerfeld,c∗ and Juraj Fedora∗

In a combined experimental and theoretical study we probe the transient anion states (resonances)
in cyanogen. Experimentally, we utilize electron energy loss spectroscopy which reveals the resonance
positions by monitoring the excitation functions for vibrationally inelastic electron scattering. Four
resonances are visible in the spectra, centered around 0.36 eV, 4.1, 5.3 and 7.3 eV. Theoretically, we
explore the resonant states by using the regularized analytical continuation method. A very good
agreement with the experiment is obtained for low-lying resonances, however, the computational
method becomes unstable for higher-lying states. The lowest shape resonance (2Πu) is indepen-
dently explored by the complex adsorbing potential method. In the experiment, this resonance is
manifested by a pronounced boomerang structure. We show that naive picture of viewing NCCN as
a pseudodihalogen and focusing only on the CC stretch is invalid.

1 Introduction
Astronomical observations report that neutral cyanopoly-
acetylenes and nitriles occur abundantly off Earth.1,2 The elec-
tronic structure of these compounds has been largely probed by
laboratory experiments and theoretical methods. However, there
is a clear imbalance in the amount of available information about
the neutral and cationic species on one hand, and anions on the
other hand. This has been slowly changing, and in recent years
more and more attention shifted to the negative species3,4 pri-
marily motivated by two facts: First, the linear species CN−,
C3N−, and C5N− were among the first molecular anions detected
in outer space.5,6 Second, CN− has a high abundance in the at-
mosphere of Titan and can lead to production of large anionic
species observed there.7,8

In the present study we focus on the simplest cyanopolyyne,
cyanogen NCCN. Neutral cyanogen has been identified in Ti-
tan’s atmosphere.9 Its direct spectroscopic identification in outer
space is challenging due to its lack of polarity, but its presence
is strongly supported by the detection of protonated cyanogen
(NCCNH+) 10 and its polar isomer isocyanogen (CNCN).2 NCCN
is then one of the possible precursors of the CN− anion in the
astro-environments which motivates our interest in its anion
chemistry.
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Electronically bound anions of various cyanogen isomers were
theoretically explored by Nsangou et al.11 Here we investigate
electronic states embedded in the continuum (resonances). These
short-lived states were previously experimentally probed by elec-
tron transmission spectroscopy12 and by dissociative electron at-
tachment spectroscopy.13–15. Theoretically, Sebastianelli and Gi-
anturco16 carried out single-center expansion scattering calcula-
tions, and Michelin et al.17 computed integral scattering cross
sections with the Schwinger variational method.

Our experimental tool is electron energy loss spectroscopy. The
resonances formed in electron collisions with a target molecule
typically lead to an enhancement of vibrational excitation cross
sections. Monitoring excitation functions of the individual vibra-
tional modes is thus a sensitive probe for the formation of tran-
sient anions.

In order to interpret the data, we explore the continuum states
by two theoretical approaches, the regularized analytic continua-
tion (RAC) method and the complex adsorbing potential (CAP)
method. Using the latter method, we also construct a local
diatomic-like model for the CC stretch excitation via the lowest
shape resonance. It is shown that this “pseudodihalogen” model
is too drastic a simplification to reproduce the oscillatory struc-
tures visible in the measured cross section.

2 Experimental methods and results
The cyanogen sample was prepared by a modified literature pro-
cedure18 in which an aqueous solution of potassium cyanide
(11.6 g in 50 ml of water) was poured onto 22.3 g of copper(II)
sulphate pentahydrate powder at a temperature rising from 50◦C
to 90◦C. Evolving cyanogen was passed through a Dimroth con-
denser to remove the water vapor. Then it was captured in a flask
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cooled down by a mixture of dry ice and acetone to a tempera-
ture of -78◦C. Subsequently, the frozen cyanogen was resublimed
in vacuum (< 1 mbar) into a lecture bottle. Its purity was checked
by electron-impact mass spectrometry and determined to be bet-
ter than 98%.

The electron scattering measurements were performed on the
electrostatic electron energy loss spectrometer with the hemi-
spherical monochromator and the analyser. All the present data
were recorded at a fixed scattering angle of 135◦. The resolu-
tion was around 18 meV in the energy loss mode. The energy
of the incident beam was calibrated on the 19.365 eV He−(2S)
resonance. The absolute elastic cross section was determined by
the relative flow method using helium as the calibrant gas. The
elastic cross section is accurate within ± 15 %. The vibrationally
inelastic cross sections were calibrated against the elastic cross
section. They have only indicative absolute values - as will be
seen, the individual energy loss peaks are not fully resolved. For
the overlapping peaks, we did not attempt to fit the individual
contributions.

In the experiment, the vibrational modes of neutral cyanogen
are excited. The frequencies of these modes are known from op-
tical spectroscopy19 and listed in Table 1 (the bending modes are
doubly degenerate). Fig. 1 shows electron energy loss spectra at
four different incident energies. In this type of measurement, the
incident energy Ei is kept fixed and the residual energy of the
scattered electrons Er is scanned. The signal is plotted as a func-
tion of the electron energy loss ∆E = Ei−Er. The peak at 0 eV
energy loss thus corresponds to elastic scattering, while the peaks
at higher energy losses are related to the excitation of specific vi-
brations. All the normal modes are visible in the spectra (with
different relative intensities at different energies), apart from the
v3 CN asymmetric stretch excitation which is practically invisible
in our spectra.

The spectrum shown in the top panel of Fig. 1 (incident energy
of 0.365 eV) shows a large peak at the incident energy (right-
most peak). This peak corresponds to 100% conversion of the
incident energy to internal energy of the molecule, and emission
of electrons with very low residual energies. Such strong electron
thermalization has been observed in a number of molecules.20–22

Fig. 2 shows the excitation curves of three various energy
losses. Here, the incident energy Ei and the residual energy Er

are scanned synchronously keeping the energy loss ∆E constant.
Zero energy loss (∆E = 0 eV, top panel) corresponds to elastic
scattering. The elastic cross section shows a steep rise at very
low electron energies, and then a number of broad oscillatory
features. The other two panels of Fig. 2 show excitation func-
tions of the asymmetric bend v4 and CC stretch v2. These modes
were chosen since the energy loss spectra in Fig. 1 indicated their
strong excitation at high incident energies. Both show a strong
threshold peak and a sharp resonance around 0.36 eV. This res-
onance shows a pronounced boomerang structure which will be
discussed in section 4. At higher electron energies, the behavior
of the v4 and v2 excitation curves is very different. The bend-
ing mode shows a maximum around 5.3 eV, the CC stretch mode
shows two maxima at 4.1 and 7.3 eV.

Jordan and co-workers12 recorded the transmission electron

Table 1 Experimental vibrational frequencies of NCCN from Ref. 19

Label Mode description Energy (meV)
ν1 CN sym. stretch 288
ν2 CC stretch 105
ν3 CN asym. stretch 267
ν4 asym. bend 62
ν5 sym. bend 29

Fig. 1 Electron energy loss spectra of cyanogen recorded at four different
incident electron energies.

spectrum (ETS) of NCCN and saw two resonances, centered
around 0.58 eV and 5.37 eV, in very good agreement with the
present data (the exact position of the lowest resonance is difficult
to determine due to the oscillatory character of the vibrational
structure, see the discussion at the beginning of section 4). They
assigned these to formation of 2Πu and 2Πg states, respectively.
Based on the virtual orbital ordering, they concluded, that there
should be two other σ∗ shape resonances, the 2Σu lying between
the π∗ states, the 2Σg lying above the 2Πg. Jordan and co-workers
concluded that these are too broad (i.e. they have very short life-
times) to be discerned in a total cross-section measurement such
as ETS. In contrast, the present excitation cross sections not only
reveal the Σ resonances, but, in addition, show the propensity of
each resonance for exciting certain normal modes. Formation of
the 2Πg transient state at 5.3 eV leads to strong excitation of the
asymmetric bending mode, but it does not lead to any consider-
able excitation of the CC stretch. On the other hand, both Σ states
are clearly visible in the CC stretch excitation, similarly as in other
polyynes probed previously.23,24

3 RAC calculations of resonances in NCCN
The regularized analytic continuation (RAC)25,26 belongs to the
class of methods called analytic continuation in coupling constant
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Fig. 2 Excitation curves of three different energy losses, corresponding
to elastic scattering and the excitation of the asymmetric bend and CC
stretch.

(ACCC)27–30. The ACCC methods introduce an attractive pertur-
bation potential V to the molecular Hamiltonian H,

H→ H +λV, (1)

for calculations of electron affinities. The attractive force λV
transfers the resonant state into a bound state making the prob-
lem amenable for standard quantum chemistry calculations. Dif-
ferent choices of the perturbation potential V were explored pre-
viously31–33. In the present study we employ one-electron opera-
tor represented by Coulomb potential distributed evenly over all
the four nuclei

λV (~r) =
4

∑
A=1

λ

|~r−~RA|
, (2)

where ~RA are positions of the two carbon and the two nitrogen
atoms.

Electron affinities in the presence of the perturbation poten-
tial (2) were computed by the CCSD(T) method34,35 as imple-
mented in MOLPRO 2010 package of quantum chemistry pro-
grams36. Dunning’s correlation-consistent basis quadruple-zeta
basis was used37 (cc-pVQZ) to compute all affinities analyzed by
the RAC method, and an example for three typical affinity curves
∆E(λ ) = κ2(λ ) is shown in Fig. 3 for the lowest three resonant
states detected at the equilibrium geometry. Each of the curves
shown in Fig. 3 contains abound 120–150 data points.

We note that while augmentation of the valence basis set with
diffuse functions is normally needed when dealing with anions,
the additional attractive potential λV used in the RAC method
ensures that the excess electron is bound and that the computed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Perturbation strength λ (a.u.)

0

5

10

15

20

E
le

ct
ro

n
 a

ff
in

it
y

 ∆
E

 (
eV

)

2
Σ

u

1
2
Π

u

1
2
Π

g

Fig. 3 Computed vertical electron affinities ∆E(λ ) for the lowest three
resonant states observed computationally at the equilibrium geometry.
In the case of the 12Πu resonance, the high number of data points (150)
displays as a smooth thick line.

affinities have substantial values (see Fig. 3). Thus, the basis set
is only needed to describe compact wave functions and helps,
in fact, to eliminate weakly bound Rydberg states that could be
supported in the perturbation field (c.f. analysis in 2).

The RAC method25 is based on the inverse variant of the more
general ACCC approach. In the present study the RAC [3/1] Padé
approximation26 was employed for the function λ (κ):

λ
[3/1](κ) = λ0

(κ2 +2α2κ +α4 +β 2)(1+δ 2κ)

α4 +β 2 +κ(2α2 +δ 2(α4 +β 2))
, (3)

where λ0,α,β ,δ are the fitting parameters yielding the resonance
energy Er = β 2−α4 and the resonance width Γ = 4α2|β |.

Potential energy curves computed along the C-C bond distance
are shown in Fig. 4. The molecule is kept at a linear geometry
with its C-N bond lengths fixed at the neutral equilibrium value
of 1.161 Å. Data shown in Fig. 4 demonstrate that the 2Σu curve
exhibits a minimum around R = 2.3 Å, where R denotes the C-C
bond length. Gerade and ungerade 2Σ states become degenerate
at larger distances (not shown in Fig. 4, while the degeneracy of
the 2Π states is already visible in the displayed data.

Six resonant potential curves explored by the RAC method are
shown in Fig. 4. Resonant states 12Πu, 2Σu, and 12Πg can be
identified as shape resonances, while 2Σg, 22Πg, 22Πu are core-
excited resonances as summarized in Tab. 2.

In the current context, the RAC method can safely determine
the core-excited resonances only in regions close to their crossing
with the neutral curve where they have reasonably small ener-
gies and widths. For shorter C-C distances these resonances rise
steeply in energy and width. The RAC method becomes unsta-
ble for such high-lying states (for R < 1.8Å) and the resonances
quickly dissipate into the continuum.

A second limitation of the current RAC method is related to
its inherent one-state design, in other words, a much more com-
plicated Padé approximant would be needed to account for two
states undergoing a crossing. This limitation is apparent for the
two pairs of the Π resonances 12Πu–22Πu and 12Πg–22Πg, which
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Table 2 Dominant configuration-state functions (CSFs) for the states presented in Fig. 4. Occupation numbers of the highest occupied orbitals are
given for the four symmetries. The fully occupied core 1-4σ2

g 1-3σ2
u is not listed in the table.

State
Dominant CSFs

Resonance type
5σg 1πu 2πu 4σu 5σu 1πg 2πg

1Σg 2 4 0 2 0 4 0 neutral target
2Σu 2 4 0 2 1 4 0 shape
2Σg 1 4 0 2 2 4 0 core-excited
12Πu 2 4 1 2 0 4 0 shape
22Πu 2 3 0 2 2 4 0 core-excited
12Πg 2 4 0 2 0 4 1 shape
22Πg 2 4 0 2 2 3 0 core-excited
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Fig. 4 Potential energy curves along the C-C bond length. Black line
shows the dissociation curve of the neutral ground state. Respective
anion curves are shown by red (2Σu), orange (2Σg), cyan (2Πg), and blue
(2Πu) lines. Vertical widths of these curves in autodetachment region
correspond to the resonance widths Γ.

Table 3 Positions and widths of the shape resonances at equilibrium C-C
distance (ordered by the computed resonance energy).

Resonance 12Πu
2Σu 12Πg

2Σg

Energy Er (eV) 0.220 4.3 5.6 -
Width Γ (eV) 0.006 1.2 1.1∗ -
Expt. (eV) 0.36 4.1 5.3 7.3
∗ unstable continuation,Γ inaccurate

should undergo avoided crossings around 2.3 Å and 2.0 Å, respec-
tively. Here, we show a diabatic picture, which can be obtained
with the RAC method.

Resonance positions and widths computed at equilibrium ge-
ometry are listed in Tab. 3. The resonance listed at 7.3 eV is
clearly visible in the experimental data, however it is not seen
by the theory. A resonant state at such high energy is well out-
side a scope of the RAC method combined with the ground-state
method employed here – CCSD(T).

The resonances described theoretically in this section were pre-
viously analyzed by quantum scattering calculations16. A single-
center expansion with an optical potential was used to describe
the electron-molecule interaction. In such a one-particle model
only shape resonances are visible as sharp changes in the scat-
tering eigenphases or as peaks in the computed cross sections.

The qualitative agreement between the observations made by Se-
bastianelli et al. 16 and the present negative ion curves shown in
Fig. 4 is good. A corresponding discussion can be summarized in
two points:

• The 12Πu and 12Πg shape resonances were reported16 at
1.34 eV and 7.76 eV, respectively, at somewhat higher ener-
gies than observed experimentally or calculated here. More-
over, the authors also explored the behavior of these reso-
nances when the C–C bond length is stretched. They found
the resonances not to cross the neutral curve at larger C–
C bond distances, in agreement with the curves shown in
Fig. 4.

• No equilibrium resonance parameters are reported in Ref.16

for the 2Σu resonance. However, the authors report a
very low-lying (0.12 eV) resonance of 2Σu symmetry at a
stretched C–C bond length of 1.8 Å that becomes a bound
state at even larger C–C bond distances. Our computed 2Σu

resonance shown in Fig. 4 crosses the neutral curve at a C–C
bond length of 1.77 Å.

4 One-dimensional model for CC stretch excitation
cross section

Based on the spectra reported in Figs. 1 and 2 of section 2 as
well as on the RAC calculation (section 3) is it clear that the
low-energy 12Πu resonance possesses a relative long lifetime and
accordingly shows pronounced coupling to the vibrational mo-
tion of the molecule, which leads in turn to sharp (boomerang)
structures in the cross sections. In contrast, the higher-lying res-
onances possess much shorter lifetimes, the excess electron does
not remain trapped on the timescale of the vibrational motion,
and the structures in the cross sections are very broad .

A magnification of the threshold region of the ∆E = 105 meV
excitation cross section (c.f. Fig. 2), which clearly shows the
boomerang structure due to the 12Πu resonance, is displayed in
Fig. 5. At this low energy the oscillatory structure is superimposed
on the threshold peak. We assign the vertical resonance position
by approximately subtracting the smooth threshold contribution
and choosing then the strongest boomerang peak at 0.36 eV. We
caution that this value should be taken with a grain of salt as as-
signing resonance positions in a broad vibrational structure over-
lapping with a threshold peak is not straightforward.
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Fig. 5 Red line: Experimental differential cross section at 135◦ for
CC stretch excitation. Dashed black line: Cross section for vibrational
excitation of the CC stretch mode computed with a one-dimensional
model (see supplemental information). The vertical scales are arbitrarily
shifted.

In general, modeling the observed vibrational structures, re-
quires dynamics on a seven dimensional complex potential energy
surface. That seems overambitious as a first step, and we decided
to test the drastic assumption of neglecting intermolecular vibra-
tional relaxation (IVR). In other words, we modeled NCCN as a
collection of oscillators that remain uncoupled on the timescale of
the scattering event so that no energy may be exchanged between
vibrational modes. Then the structures in the ∆E = 105 meV ex-
citation curve (the CC stretching curve in Figs 2 and 5) can be
computed by considering the CC stretch only. In chemical terms,
an CN group is a pseudohalogen, and we model NC-CN as a pseu-
dodihalogen.

The detailed implementation of this pseudodihalogen model is
described in the supplemental information and the resulting cross
section is the dashed line in Fig. 5. However, before discussing
the results of the model, let us consider some intermediate re-
sults needed to set up the model, namely, typical values of the
resonance parameters, Er and Γ, obtained with the CAP method,
which can be compared with the RAC results and the experiential
assignment of the maximum of the boomerang structure (Tab. 3).

For the CAP method, we present two pairs of ranges (see
Tab. 4). The first range shows how much the results depend
on the choice of equilibrium structure. The experimental gas
phase geometry as well as geometries optimized with the B3LYP
and CCDT(T) method and AUG-cc-pVDZ and AUG-ccpVTZ basis
sets were considered. Sampling from these geometries, the reso-
nance position is fairly robust, yet the CAP values are somewhat
smaller than the RAC value and the experimental center of the
boomerang structure. In view of the expected precision of the
method, the agreement is satisfactory. Sampling from the same
geometries, the width changes by less in absolute terms but by
a huge amount in relative terms. The range includes the RAC
width.

The second range shows the variation of the resonance param-
eters along the CC stretch coordinate and the two extreme values

Table 4 Resonance position and width of the 12Πu resonance state
in the Franck-Condon zone. All results have been obtained with the
CAP/SAC-CI method using an AUG-cc-pVTZ basis augmented with an
even-scaled (4p1d) set. The ranges given are due to different sampling
of the “vertical” geometry.

Er Γ

Verticala 0.12 – 0.14 0.002 – 0.007
Franck-Condon zoneb 0.09 – 0.14 0.0003 – 0.002

a Range from a set of different equilibrium geometries including
experimental, CCSD(T), and B3LYP.
b Range between the classical turning points along the CC stretch
mode using CCSD(T) geometries and normal coordinates.

correspond to the classical turning points of the neutral NCCN
ground state along this mode, which loosely represents the Franck
Condon zone. For this choice of sampling, the variations are as
expected larger: The resonance position varies by a factor of 1.5,
and the width varies by an order of magnitude. Thus, the CAP
method predicts a sharp resonance very close to threshold. The
particular resonance parameters depend strongly on the specific
geometry considered, and consequently, we do not predict a sin-
gle vertical value. Instead the ranges in Tab. 4 offer a better sense
of the resonance position and width in the Franck Condon zone.

The cross section predicted by the pseudodiholgen model
(Fig. 5) is—as expected—unable to describe the intricacies of
the experimental excitation cross section of the CC stretch mode.
In a sense, the model accounts for the contributions of the CC-
stretch mode, while the experimental signal consists of contri-
butions from all modes superimposed on the threshold peak. In
other words, the calculated spacing must correspond to the anion
C–C stretch frequency (105 meV) and its intensity pattern is gov-
erned by a product of two Franck-Condon-like factors as well as
an energy-depend switching function that quickly increases from
zero at threshold to one at the third vibrational peak (see discus-
sion in the supplemental information).

With loving eyes, it may then be possible to associate the pre-
dicted peak at 210 meV with the shoulder in the experimental sig-
nal that represents a peak upon subtraction of the threshold peak.
Similarly, the calculated peak at 105 meV may be entirely hidden
in the experimental threshold signal. For the computed 315 meV
peak the situation is even more murky because the experiment
shows peaks at about 305 meV and 360 meV. The most proba-
ble explanation in this energy range is coupling to the bending
modes resulting in combination modes. But there are clearly far
more peaks in the experimental spectrum than excitations directly
associated with the CC-stretch are able to explain, and models in-
cluding one or both bends will likely be needed to account for the
boomerang structure.

Still, one important conclusion can be drawn from the com-
puted cross section. While the vertical ranges in Tab. 4 suggest
that the highest peak should occur in the 100 to 120 meV energy
region, a proper vibrational analysis reveals an intensity pattern
with a central highest peak at 210 meV and both the 105 and
the 315 meV peak are predicted to have almost the same inten-
sity (the 315 meV peak is slightly more intense). Thus, we can
only repeat that vertical values a few tenth of an eV from thresh-
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old should be approached with caution. Both the precision of the
ab initio method and shifts revealed by a subsequent vibrational
analysis are in this order of magnitude.

5 Conclusions
In conclusion, we probed the resonances in electron collisions
with cyanogen, an important astrophysical molecule. Four pro-
nounced resonances are visible in the experimental cross sections
for vibrational excitation. We assign them to the formation of
12Πu (center at 0.360 eV), 2Σu (4.1 eV), 2Πg (5.3 eV) and 2Σg

(7.3 eV) shape resonances. The regularized analytical continu-
ation method reproduces the positions of the three lowest res-
onances very well. Additionally, it provides information about
core-excited resonances, which typically do not decay into vibra-
tionally excited states of the target molecule and are thus invisible
in the present experiment.

Motivated by the experimental boomerang structure visible in
the region of the lowest 12Πu resonance, we have additionally
constructed a one-dimensional pseudodihalogen-like model fo-
cusing on the CC stretch vibrational coordinate. This model is
designed to predict the direct contribution of the CC-stretch to
the CC-stretch excitation curve. It reveals that the experimental
spectrum is much richer and that mode coupling with the bending
modes must occur on the timescale of the scattering event. Still,
the primitive pseudodihalogen model shows that vertical ener-
gies should be taken with with a grain of salt, and servers as a
first stepping stone to better models that need to include, on the
one hand, a virtual state to describe the threshold region, and, on
the other hand, at least one additional bending mode giving rise
to a Renner-Teller system.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work has been supported by the projects 20-11460S (J.F.)
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24 M. Ranković, P. Nag, M. Zawadzki, L. Ballauf, J. Žabka,
M. Polášek, J. Kočišek and J. Fedor, Phys. Rev. A, 2018, 98,
052708.
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