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Study of permeability of small organic molecules across lipid membranes plays a significant role
in designing potential drugs in the field of drug discovery. Approaches to design promising drug
molecules have gone through many stages, from experiment-based trail-and-error approaches, to
the well-established avenue of quantitative structure–activity relationship, and currently to the stage
guided by machine learning (ML) and artificial intelligence techniques. In this work, we present a
study of permeability of small drug-like molecules across lipid membranes by two types of ML models,
namely the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN)
models. Molecular descriptors and fingerprints are used for featurization of organic molecules. Using
molecular descriptors, LASSO model uncovers that the electro-topology, electrostatic, polarizability,
and hydrophobicity/hydrophilicity properties are the most important physical properties to determine
the membrane permeability of small drug-like molecules. Additionally, with molecular fingerprints,
LASSO model suggests that certain chemical substructures can significantly affect the permeability
of organic molecules, which closely connects to the identified main physical properties. Moreover,
DNN model using molecular fingerprints can help develop a more accurate mapping between molec-
ular structures and their membrane permeability than LASSO models. Our results provide deep
understanding of drug-membrane interactions and useful guidance for inverse molecular design of
drug-like molecules. Last but not least, while the current focus is on the permeability of drug-like
molecules, the methodology of this work is general and can be applied for other complex physical
chemistry problems to gain molecular insights.

1 Introduction
Permeability of small drug-like molecules across lipid membranes
characterizes one of the most important physicochemical proper-
ties of potential drugs1–6. Study of passive permeation of drug
molecules, driven by concentration gradient, is of great signifi-
cance to understand the molecular mechanism behind, and most
importantly, to facilitate new drug design in pharmaceutical ap-
plications7–9.

The most widely adopted metric to evaluate permeability is the
partition coefficient of a molecule, which is physically related to
potential of mean force (PMF) and local diffusivity across lipid
membranes by the following inhomogeneous solubility-diffusion
model2,10:

P−1 =
∫

z

exp(G(z)/kBT )
D(z)

dz (1)

where P is the permeability coefficient, kB and T are the Boltz-
mann constant and absolute temperature, and G(z) and D(z) are
the PMF profile and local diffusivity distribution along the direc-
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tion of membrane thickness z, respectively. Another common met-
ric is to evaluate PMF alone since diffusion is a physical process
mainly driven by concentration gradient while relatively insensi-
tive to molecular types11,12. Therefore, in computer simulations,
the distribution of diffusivity across lipid membranes is assumed
to be the same for small organic molecules for simplicity12.

There are several different ways to quantify membrane perme-
ability. Experimental measurements of the partition coefficient
of small organic molecules across certain membranes can be car-
ried out by, for example, high-performance liquid chromatogra-
phy (HPLC)14 and shake-flask method15. However, experimental
measurements are very time- and cost-consuming, which makes
them intractable by doing one-by-one screening of massive candi-
dates of molecules. Additionally, they can hardly provide passive
transport mechanism at molecular level16. Furthermore, since
the chemical space of potential drug-like molecules is extremely
large, as is approximated to contain 1060 ∼ 10100 molecules17–20,
a study of small range of organic molecules in the whole chemi-
cal space is not universal and heuristic. As a result, experimental
methods are not suitable for high-throughput screening (HTS)12,
which is the most common approach to predict pharmacokinetic
properties and screen potential drugs in pre-clinical drug devel-
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Fig. 1 Computational methods for drug-membrane interactions. a: coarse-grained molecular dynamics (CGMD) simulations in which three examples
of organic molecule are first mapped to their corresponding Martini representations, as indicated by the numeric indexes. The umbrella sampling
method13 is then used to quantify their potential of mean force (PMF) profiles across lipid membranes (for simplicity only one profile is displayed); b:
The machine learning (ML)-assisted approach in which the organic molecules are firstly converted to their molecular fingerprints and/or descriptors.
These features are then used by ML models to predict free energy barriers across lipid membranes. It’s assumed that ML models are established by
training on the existing CGMD data.

opment21.

On the other hand, physics-based molecular dynamics (MD)
simulation provides a tractable way to study drug permeability.
Through MD simulations, the PMF profile and local diffusivity
can be obtained simultaneously, which (when necessary) can be
used to compute the permeability coefficient P using the inhomo-
geneous solubility-diffusion model. For example, using all-atom
MD (AAMD) simulations of the PMF, Kim et. al. were able to ver-
ify the selectivity of certain antibiotics to target only bacteria’s
membrane while does no harm to mammalian membrane in their
molecular design of antibiotics9. However, AAMD modeling of
permeation of drug-like molecules across lipid membranes is ex-
tremely computationally expensive to explore the vast chemical
space2. To deal with this issue, coarse-grained molecular dynam-
ics (CGMD)22–26, by reducing the complexity and degree of free-
dom of the simulation system through coarse-graining, enables
accelerated exploration of the large chemical space with reason-
able computational cost. A brief illustration of CGMD simulation
framework is given in Fig. 1a. With this simulation technique, the
publicly available data of membrane permeability is enriched. For
example, a recent work by Menichetti et. al.12 explored the chem-
ical space of 511,427 small drug-like molecules using CGMD sim-
ulations by considering the coarse-grained degree and hydropho-
bicity of these molecules.

In addition to experimental measurements and MD simula-
tions, statistical methods, such as linear regression, have long
been used to study the quantitative structure–activity relationship
(QSAR) in pharmaceutical engineering27,28. Thanks to the recent
advancements of machine learning (ML) and artificial intelligence
techniques, especially deep learning (DL), deep neural network
(DNN) based methods have been another important workhorse
for permeability prediction. Using of several layers of percep-
trons, DNN can learn any continuous functions29, which is one of
the reasons why it is so powerful and popular nowadays. There-
fore, DL has the potential to find the complex and underlying

relationships between a molecular structure and its permeability
with high accuracy and efficiency. Though DNN-based model are
very advantageous in some situations, other ML methods such as
LASSO model, can still be beneficial in revealing molecular in-
sights in drug-membrane interactions, as will be presented in this
study.

In the development of ML models, the efficiency of ML models
to make new predictions instantaneously with less cost is of great
importance in the mind of the developers. For example, though it
is found that12 acidity pKa and bulk partitioning free energy bar-
rier from water to membrane midplane ∆G have extremely high
correlation with membrane permeability logP, these two descrip-
tors are not readily available to make instantaneous predictions
for new molecules. Rather, expensive computer simulations are
needed to obtain these two descriptors in order to feed into ML
models. Thus, in this work, we aim to link molecular descriptors
and fingerprints30 to the permeability of small organic molecules,
which are easily obtained using popular cheminformatics pack-
ages, e.g. RDKit31.

Moreover, in taking advantage of ML techniques to study drug-
membrane interactions, there are two main questions we are try-
ing to answer. Firstly, what are the main features determining
permeability of small organic molecules across lipid membranes?
Secondly, can an accurate structure–property relationship be con-
structed using ML methods? We find that LASSO and DNN models
are able to answer these two questions, respectively.

In this paper, we adopt two types of ML methods and two dif-
ferent representations of organic molecules to study the drug-
membrane interaction problem as illustrated in Fig. 1b. In
the first scenario, a linear regression method called LASSO32 is
adopted to quickly find the main features (descriptors and chem-
ical substructures) of the molecules. The most important molec-
ular properties and substructures are revealed by the LASSO
model. In the second scenario, the DNN method is employed
to build a more accurate predictive model, in comparison with
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LASSO model, linking molecular structures to permeability prop-
erty for organic molecules. We expect our results can be further
applied to design drug-like molecules with different membrane
permeabilities in the near future.

2 Computational Method
In a ML-based study, the database, featurization, and ML models
are key ingredients30, which are described in detail in this Sec-
tion.

Fig. 2 Database information. a: count of unimers, dimers, and trimers
in the total database; b: count of unimers, dimers, and trimers in the
selected database (8000 data points in total); c: t-SNE plot of selected
and all unimers in the database; d: distribution of divided clusters of
unimers; e: t-SNE plot of selected and all dimers in the database; f:
distribution of divided clusters of dimers; g: t-SNE plot of selected and
all trimers in the database; h: distribution of divided clusters of trimers.

2.1 Database

The database of this study comes from published litera-
ture12,33,34, where data containing small drug-like molecules
is publicly available. Through coarse-grained Martini model35,
the authors were able to perform high-throughput CG simula-
tions of drug-like molecules across a 1,2-Dioleoyl-sn-glycero-3-
phosphocholine (DOPC) lipid bilayer through umbrella sampling
technique36. In this way, a large number and range of small or-

Fig. 3 Potential of mean force (PMF) distribution. a: the density distri-
bution of PMF of the selected data points; b: the distribution of PMF of
the selected unimers, dimers, and trimers; c: t-SNE plot of the selected
data points; d: spatial distribution of the PMF of selected data points.

ganic molecules have been studied in detail.
The organic molecules, in the form of coarse-grained Martini

beads, are divided into three categories, namely unimers, dimers,
and trimers, each of which has one, two, and three Martini beads,
respectively. The number of molecules in each category is shown
in Fig. 2a. In the current database, unimers and dimers data
are taken from CGMD simulations12, while trimers data is from
CG Monte Carlo (CGMC) simulations33. One issue with the
public data is that in the original CGMD database, the label is
bulk partitioning free energy of water/octanol for unimers and
dimers, but not that of water/membrane. However, these data
can be easily converted to the bulk partitioning free energy of
water/membrane since a linear relation exists between bulk par-
titioning of water/octanol and water/membrane for unimers and
dimers37. Therefore, a big and valid chemical database contain-
ing large number of molecules and associated permeability values
(∆G) is obtained for current ML-based study.

To have a direct visualization of the chemical space and PMF
distribution, using representative data points is a more cost-
effective way. Visualization of the total database of 770,231 data
points would otherwise be very time-consuming and exhausting.
Therefore, 8000 data points are extracted from the total database
using the K-means clustering technique38 based on similarities
between molecules in the form of Morgan fingerprints in 1024
bit39. Specifically, 1000, 4000, and 3000 data points are selected
from unimers, dimers, and trimers, respectively, as shown in Fig.
2b. During clustering of these molecules, the total data is firstly
be divided into N clusters, and then one data point from each
cluster is selected to form the selected database. Note that we
employed K-means not for finding clustering features of them, but
for data reduction or selection. That is, selecting the representa-
tive and enough candidates for ML model development, which
will be justified more in the following part.

The adopted selection method is superior to a random selec-
tion of data points, which can not guarantee that the selected
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data is uniform and representative of the total data points. Fig.
2c, Fig. 2e, and Fig. 2g are the t-SNE plot40 of selected and
unselected data points from each category of unimers, dimers,
and trimers. Fig. 2d, Fig. 2f, and Fig. 2h are the cluster dis-
tributions of unimers, dimers, and trimers. One can see that the
distribution is nearly uniform in each category, which confirms
that the selected data are uniform and representative. In plotting
the t-SNE figures using scikit-learn package41, the fingerprints of
organic molecules are transformed by principal component anal-
ysis (PCA) using 50 dimensions first and then followed by the
nonlinear t-SNE transformation to ensure reasonable overall vari-
ance42.

Fig. 3 plots the PMF distribution of the selected data points.
Fig. 3a is the distribution of all categories, while Fig. 3b is the
individual distribution of each category. There are two main ob-
servations. Firstly, the overall PMF distribution for each category
is nearly symmetric about zero value and in a bimodal shape;
secondly, the range and shape of the distribution for each cat-
egory are different. Unimers are in a narrow and concentrated
range, while the distribution curves are wider and more uniform
for dimers and trimers. Fig. 3c is the t-SNE plot of all the se-
lected data points. One can see that unimers are more widely
distributed than dimers and trimers. Fig. 3d is the corresponding
PMF distribution, which is consistent with the observations in Fig.
3b.

2.2 Feature representation

In term of molecular featurization, different methods have been
widely used to predict partition coefficients, which mainly fall
into two classes: substructure-based and property-based fea-
tures43. Though graph-based representation is an emerging
molecular representation and seems to have huge potential in
ML model development, it still uses atomic and pair properties
to form the molecular featurization44.

In a substructure-based representation method, the simplified
molecular-input line-entry system (SMILES) notation45 for an or-
ganic molecule is usually adopted, which is then used to generate
molecular fingerprints carrying the substructure information of
the molecule. Note that SMILES is a specification in the form of a
line notation for describing the structure of chemical species us-
ing short ASCII strings46. The advantage of this representation is
that it converts the molecular formula into a text form that can be
processed by a computer. For example, SMILES form can not only
be converted into fingerprint vectors39 or molecular-graph-based
vectors44; but also be employed directly as input features in ML
models, e.g. grammar variational autoencoder47.

On the other hand, property-based features or so-called molec-
ular descriptors48,49, which can be obtained either by experi-
ments or theoretical computations, are mathematical representa-
tions of spatial, physical, and/or chemical information of organic
molecules. Utilization of molecular descriptors has facilitated de-
velopment of QSAR in pharmaceutical engineering field50–53. In
this work, molecular descriptors and fingerprints are chosen as
molecular features for small organic molecules.

Currently, there are many cheminformatics packages that

can easily generate molecular fingerprints and descriptors from
SMILES form of a molecule, such as RDKit31. Use of RDKit is
made in this work to generate Morgan fingerprints in 1024 bits
and all descriptors that are available in the package (200 in total)
for molecular featurization.

Fig. 4 Performance comparisons of LASSO model using molecular de-
scriptors. a, using shuffled selected data points; b: using original ordered
data points.

2.3 ML algorithms and model training
To develop QSAR, ML regression algorithms have been widely
applied which define a mapping function f = f (x;w) from input
variables x (molecular featurization) to output variables f (free
energy barrier values in present work), where w are the associ-
ated weights in this regression function. In general, the input and
output variables can be scalar, vector or tensor. A ML algorithm
determines the weights by minimizing the loss function, such as
the mean squared error (MSE) between predicted values and true
values, on a given data named ‘training data’. The minimization
process is the process of training, in which the model keeps up-
dating the weights until the minimum loss is obtained. In differ-
ent ML models, the mapping functions and loss functions may be
designed differently, which differentiates various ML models.

In this work, LASSO model and DNN model are adopted. The
LASSO model, implemented using scikit-learn package42, is able
to find the main features (molecular descriptors and fingerprints)
since the use of a regularization can shrink the unimportant fea-
tures and leave only important features. Thus, it can prevent the
model from overfitting the data. Moreover, it helps to explain
the PMF distribution given in Fig. 3 and to provide molecular
insights into drug permeability across lipid membranes; the DNN
model, implemented using Tensorflow platform54 and taking ad-
vantage of a large data set, is able to build a more accurate link
between molecular structures and their permeabilities. In train-
ing the LASSO model, since increasing the data size does not nec-
essarily improve the performance of regular ML models such as
linear regression55, only the selected 8000 data points are used
for model development. While in training the DNN model, all
data points are used.

In development of the ML models, it is found that the order
of training data significantly affects the performance of ML mod-
els in term of stability and robustness, as shown in the box plot
of Fig. 4. It is important to see that the performance of LASSO
model using ordered data varies significantly, compared to the
shuffled data. Note that the original data in the referenced litera-
ture were stored orderly from simple to complex molecules. Thus,

4 | 1–10Journal Name, [year], [vol.],

Page 4 of 10Physical Chemistry Chemical Physics



data shuffle technique is adopted in training both ML models. To
avoid overfitting of the data and construct an accurate ML model,
various advanced techniques are selected. Specifically, in building
the LASSO model, the n-fold cross-validation technique56 is em-
ployed to develop a stable model with less variance of prediction
ability; while in building the DNN model, train/test/validation
data split, dropout, early stopping57 and checkpoints techniques
are applied to select the best model during training.

3 Results

3.1 LASSO model reveals molecular features affecting mem-
brane permeability

In training the LASSO models, molecular descriptors and finger-
prints are used for molecular featurization separately. 10-fold
cross-validation technique is applied to ensure development of
a stable model with less variance of prediction capability.

Fig. 5 Performance of LASSO model using molecular descriptors and
10-fold cross-validation. a, b: the R2 correlation score and MSE score of
the LASSO model using only selected database; c, d: R2 correlation score
and MSE score for LASSO model using only main molecular descriptors
and total molecular descriptors on the total database.

Fig. 6 Performance of LASSO model using molecular fingerprints and
10-fold cross-validation. a, b: the R2 correlation score and MSE score of
the LASSO model using only selected data points.

The R2 correlation and mean squared error (MSE) score of the
LASSO model using molecular descriptors are plotted in Fig. 5a
and Fig .5b. It can be seen that the performance of the LASSO
model is comparable on training dataset and test dataset. Addi-

Table 1 The main molecular descriptors and associated weights found
by LASSO model.

Mol. Des. Abs. wt. ratio Mol. Des. Abs. wt. ratio
FpDensityMorgan3 0.212 PEOE_VSA2 0.027
SMR_VSA3 0.086 PEOE_VSA6 0.026
VSA_EState9 0.070 fr_allylic_oxid 0.026
PEOE_VSA1 0.066 VSA_EState8 0.025
SlogP_VSA2 0.065 PEOE_VSA8 0.023
VSA_EState4 0.065 EState_VSA5 0.019
SlogP_VSA5 0.038 SMR_VSA5 0.018
EState_VSA8 0.030 EState_VSA1 0.018

tionally, the deviations of scores are very small. Thus, the LASSO
model obtained is stable and robust.

With the trained model at hand, important molecular descrip-
tors are found by analyzing the weights of the LASSO model.
There are 200 total weights associated with 200 molecular de-
scriptors. All weights are ordered by the ratio of their absolute
weights to the total absolute weights. It is found that only 39
weights are nonzero, which means they have roles in the perme-
ation process. Among these nonzero weights, 16 weights take up
over 80% (about 81.13%) of the total absolute weights, the molec-
ular descriptors associated to which are called main molecular
descriptors, as listed in Table. 1. To confirm the validity of these
main molecular descriptors, the results of using only the 16 main
molecular descriptors and 200 molecular descriptors on the total
database are compared, as shown in Fig. 5c and Fig. 5d. As can
be seen that using only 8% of the total molecular descriptors gives
comparable performance of the LASSO model, indicating that us-
ing main features for ML model development is a cost-effective
way, especially when a very large database is involved.

Further analysis of these main molecular descriptors58 indi-
cates that the electro-topological, electrostatic, polarizability, and
hydrophobic/hydrophilic properties of organic molecules are the
crucial factors influencing permeation process. This is consistent
with the like-likes-like principle59. Since lipid bilayer core is hy-
drophobic, small molecules are less favorable to permeate if they
are more polarized and hydrophilic. Therefore, when doing large
scale screening, these four molecular properties can be selected as
the most important values to assess their permeability properties.

These main molecular descriptors derive certain understand-
ings of the drug-membrane interaction problem to some extend.
However, they are too general to reveal molecular level insights.
Specifically, it would be better if decisive substructures can be
known. Towards this goal, the LASSO model is again adopted
while molecular fingerprints are used as the input features of the
ML model. Morgan fingerprints with 1024 bits and 2-bond length
as the radius are generated for the selected 8000 data points. 10-
fold cross-validation is also employed to obtain stable model. The
R2 and MSE scores are plotted in Fig. 6. Again, comparable per-
formances of the LASSO model on both training dataset and test
dataset are observed for R2 and MSE metrics, which confirms the
stability of the trained LASSO model.

Following the similar procedure as the previous analysis of
molecular descriptors, we can also extract important informa-
tion of molecular substructures influencing the permeability of
small organic molecules across lipid membranes. It should be
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noted that since a radius of two is used to generate the Morgan
fingerprints, the substructures here only represent the chemical
environments with at most two-bond length. Namely, only 0-
bond (atom), 1-bond, and 2-bond connectivity information are
captured. For hydrophobicity property evaluation, this radius is
large enough; while for other properties, the size of the radius
may need to change accordingly.

Fig. 7 Main substructures found by LASSO model in certain bit positions
(the labeled integer value), in which blue dots without label in center
and non-labeled nodes are carbon atoms. Atoms with grey bonds are 0-
bond (atoms) substructures indicating their bonding information; while
atoms with black bonds are the captured 1-bond (first nearest neighbor)
information.

From the above LASSO model, only 17 weights are nonzero,
which correspond to 17 bit positions, the bit index of which are
33, 90, 128, 147, 222, 283, 294, 342, 378, 623, 650, 656, 694, 725,
807, 881, and 935. Using proper molecules which have bit-on
value, viz. 1, in these 17 bit positions by the RDKit package, the
main substructures can be directly visualized. It is found that
although the mapping from bit position to substructure is not
strictly one-to-one, there is still a prevailing substructure for each
bit position with very high percentages of presence. Here we only
plot these substructures that are shared by most of the eligible
molecules. For example, there are 5939 molecules in the selected
database (8000 in total) that have values of 1 at bit position 33.
Among them, 5897 molecules (about 99.3% presence rate) map
to the primary carbon atom as shown in Fig. 7.

By the same procedure, there are 14 unique substructures iden-
tified, including 11 distinct chemical environments of carbon, ni-
trogen, and oxygen atoms and three different bonds (bit position:
283, 294, and 222 which are two methyl groups connected to the
secondary and tertiary carbon atoms, and one alcohol group),
as shown in Fig. 7. These substructures indicate that they are

critical to determine the membrane permeability of small organic
molecules. This is consistent with domain knowledge2 and can be
explained qualitatively in the following way. Molecules dominant
in nitrogen- and oxygen-based substructures have more signifi-
cant polarizability and hydrophilicity. Therefore, they are more
similar to water and are restricted to pass through lipid mem-
branes. Thus, these molecules should have high free energy bar-
riers. While alkanes, which are dominant in carbon-based sub-
structures, are favorable to permeate across lipid membranes and
consequently have low (negative) free energy barriers.

Fig. 8 Organic molecules with highest (left two columns) and lowest
(right two columns) free energy barriers from the selected database.

To further demonstrate the importance of these substructures,
10 molecules with highest free energy barriers and another 10
with lowest free energy barriers are taken from the selected
database, as shown in Fig. 8. The left two columns of molecules
have the highest free energy barriers (difficult to permeate);
while the right two columns of molecules have the lowest free en-
ergy barriers (easy to permeate), which are clearly differentiated
by the main substructures found using LASSO model. One can see
that molecules in the left two columns are dominant by oxygen
and nitrogen substructures; while the molecules in the right col-
umn have only carbon substructures. This observation is in excel-
lent agreement with the findings of the substructures. The reason
of selecting these 20 molecules rather than a random selection of
molecules is to differentiate the roles of these main substructures.
That is, when random molecules comprised of both nitrogen (or

6 | 1–10Journal Name, [year], [vol.],

Page 6 of 10Physical Chemistry Chemical Physics



oxygen) and carbon atoms are selected (their free energy barriers
are intermediate), it would be difficult to tell these substructures
are important since their effects are neutralized.

The finding of substructures can also help explain the distribu-
tion of free energy barriers in Fig.3b. For unimers with just one
bead, the free energy barriers are mostly either negative (more
lipid-like) or positive (more water-like) with small absolute val-
ues. Thus, the distribution of unimers tends to be in a narrow
range and sharp bimodal. While for dimers and trimers with
more constituents of single beads, the combinations of unimers
with small negative or positive values forming dimers and trimers
give rise to wider range and flattened bimodal distribution. It is
seen that the range of dimers is approximately twice of that of
unimers. Distribution of trimers are even much wider and more
flattened than that of dimers, since they are longer and have more
combinations. But there is no three-times relation of the range
for trimers and unimers, which indicates simple linear combi-
nation alone is not enough to explain the properties of complex
molecules by using properties of single constituents.

3.2 DNN model leads to accurate prediction on membrane
permeability

DNN model is very powerful in learning latent complex structure–
property relationships. Nevertheless, it can easily overfit data.
To avoid overfitting and obtain a precise model, the early stop-
ping (with certain epochs patience), and dropout (rate=0.5) tech-
niques are applied. The train-test-validation split ratio adopted in
this work is 90-5-5 since the size of the database is very large.
The DNN model is first trained and tested on the training and
test dataset, and then validated by the unseen validation dataset.
During model training, checkpoints are set to save the best model.

The input of DNN model are 1024-bit fingerprints; the out-
put is a single node of the free energy barriers ∆G. Two hidden
layers with 600 and 100 nodes with rectified linear unit (ReLU)
being the activation function are employed. The loss function is
MSE between train and test dataset, while the evaluation met-
ric is mean absolute error (MAE) between predicted ∆G and true
value on the validation dataset. These values are recorded to log
the learning curves of the DNN model.

Fig. 9 plots the performance of the DNN model. As is seen from
Fig. 9a that the model trained at about epoch 11 has compara-
ble ability on both training dataset and test dataset, at which the
model is saved as the best model. Fig. 9b is the prediction of the
∆G values of the trained DNN model on the validation dataset.
Higher correlation between molecular structures in the form of
fingerprints and the permeability is established, compared to that
obtained by LASSO models.

4 Discussion
With LASSO and DNN models, we are able to identity main
molecular features affecting permeability of small drug-like
molecules across membrane, i.e., important physical descriptors
and substructures, and to develop a relatively accurate correla-
tion function between a molecular structure and its permeabil-
ity (∆G). One can see the model performance of LASSO using

Fig. 9 Performance of the DNN model. a: loss evolution for training and
test dataset during training process; b: the predictability of the trained
DNN model on free energy barrier ∆G using the validation dataset.

molecular descriptors is better than that using molecular finger-
prints. It suggests that molecular descriptors are more suitable
for ML model development than fingerprints in a linear regres-
sion model. In addition, One can notice that only eleven 0-bond
(atoms) and three 1-bond substructures stand out by the LASSO
model using molecular fingerprints. However, this never means
that other substructures (e.g. 2-bond substructures) are not im-
portant at all. The LASSO model can actually capture 2-bond sub-
structures, but their presence rate is much lower than these iden-
tified substructures, due to their less commonly presence. These
fourteen substructures are discovered merely from the selected
8000 molecules, in terms of membrane permeability. If different
numbers or types of molecules are adopted to feed into LASSO
model for evaluation of other properties, main substructures may
vary to some degree.

Fig. 10 Free energy barriers of three representative commercial drug
molecules.

These newly identified main substructures can be further ver-
ified by commercial drugs qualitatively, as shown in Fig. 10. As
is seen from this figure that nitrogen- and oxygen-based substruc-
tures are dominant in these drug molecules. Thus, these drugs
have positive free energy barriers, i.e. difficult to pass through
lipid membranes. This result is promising for inverse molec-
ular design of drug-like molecules. For inverse molecular de-
signs, generative models are usually adopted for molecular gen-
eration60,61. In the case of molecular design with good mem-
brane permeability (lower free energy barrier ∆G), generated
molecules with more carbon-based substructures will be given re-
wards, while molecules with more oxygen- or nitrogen-based sub-
structures will be given penalties, through reinforcement learn-
ing technique62. Consequently, new molecules are generated
towards desired range of membrane permeability. It has to be
noted that for real drug design, other properties such as solubil-
ity, melting point, hydrophobicity, inhibitory activity and toxicity
are also very important, and must be considered simultaneously
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as a multi-objective optimization problem.
Though the correlations in both LASSO models are not high,

they can help identify important molecular features affecting per-
meability of small molecules across lipid membranes as discussed
above. Since no single method alone can solve all the questions, a
method can be useful at certain aspects provided that the findings
by the method are properly verified and consistent with domain
knowledge. Therefore, we suggest that if one wants to find main
features within the problems of interest in qualitative sense, the
LASSO model might be useful; or if one wants to build a higher
correlation model to make predictions, the DNN model is a better
choice. Furthermore, one can even use LASSO as a pre-processing
tool on the database to get some useful insights from the problem
beforehand, and feed these findings by LASSO model into the
DNN model to develop a better predictive model.

Interestingly, it is seen that the performance of LASSO model
using total database is worse than that using selected 8000 data
points. We believe it is due to the feature of the database. Though
there are many molecules contained in the database, the free en-
ergy barriers are not numerically computed one by one. Rather,
they are computed by Martini coarse-graining. For example, there
are only 26 unique unimer bead types in the database, while there
are 92458 small molecules mapped to these 26 bead types. For
molecules mapped to the same bead type, they have the same
free energy barrier, i.e. there are 26 unique free energy barriers of
these 92458 small molecules. This is reasonable from a physical
perspective since different molecules can be similar and thus have
similar free energy barriers. However, from the perspective of ML
model development, it is not a good thing since these molecules
are like repeated data points. This issue can also be reflected from
both Fig. 8 and Fig .9. As shown in the left two columns of Fig.
8, there are many molecules with the same positive free energy
barriers (∆G = 10.52). While in Fig .9b, there are many differ-
ent predicted free energy barriers corresponding to the same true
values of ∆G. It leads to very significant vertical patterns in the
positive region of ∆G. This issue is especially worthy of notice
since currently CGMD simulation is a main computational source
to provide big data for data-driven studies such as this work. Pos-
sible solution to improve the ML model includes pre-processing of
the data before model development. For example, one can only
use representative data, rather than the total data for model de-
velopment; and perhaps it is better to use Martini bead types as
input features of ML models. We leave it for future studies, as it
is not the scope of present study.

5 Conclusion
In this work, two types of ML models, namely LASSO and DNN
models, are used to investigate the drug-membrane interaction
problem. LASSO model using molecular descriptors reveals that
electro-topological, electrostatic, polarizability, and hydropho-
bic/hydrophilic properties of a molecule are critical properties to
determine its membrane permeability. Additionally, using molec-
ular fingerprints integrated with the LASSO model, 14 unique
substructures are identified, which are in excellent agreement
with the main molecular descriptors and domain knowledge. Last
but not least, using DNN model, a relatively higher correlation be-

tween molecular structures and membrane permeability is devel-
oped. These findings can help us understand the physical problem
of drug-membrane interaction and provide guidance for inverse
molecular design of drug-like molecules in the near future.
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