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Abstract: In this paper, we develop a theory for describing the thermodynamics, configuration,
and electrostatics of strongly-stretched, pH-responsive polyelectrolyte (PE) brushes in presence of
large salt concentrations. The aim of the paper, therefore, is to study the properties of a PE brush
in a salt concentration regime (namely large concentrations of several molars) that has been hitherto
unexplored theoretically in the context of PE brushes, but can be routinely encountered in molecular
scale simulations of the problem. The brushes are modelled using our recently developed augmented
Strong Stretching Theory (SST), while the effect of the presence of the large salt concentration is
accounted for by including the contributions of three different types of non-Poisson-Boltzmann
(non-PB) effects in the free energy description of the PE brush induced electric double layer (EDL).
These non-PB effects are ionic non-mean-field ion-ion correlations, solvent polarization, and finite
size effect of the ions and water dipoles. We study the individual influences of these different effects
and show that the ion-ion correlations and solvent polarization effect reduce the brush height and
consequentially enhances the monomer density and leads to an electrostatic potential distribution
of the brush induced EDL that has a larger magnitude at near-wall locations and becomes zero at
shorter distances from the wall. The finite size effect, on the other hand, increases the brush height
and therefore, weakens the monomer density and leads to a smaller near-wall magnitude of the EDL
potential that becomes zero at larger distances from the wall. Eventually, we consider the impact
of all the three non-PB effects simultaneously and show that the ion-ion correlation and solvent
polarization effect dominate the size effects and dictate the overall brush configuration and the EDL
electrostatics. We also point out that the influence of all the three non-PB effects becomes largest
for larger salt concentration and smaller bulk pH. Finally, we compare our theoretical predictions
with those obtained from our recently developed all-atom MD simulation model and obtain excellent
match.

I. INTRODUCTION

Functionalizing surfaces by grafting them with charged polyelectrolyte (PE) molecules, in a manner such that they
are tethered to the surface at close-enough proximity so as to form “brush”-like configurations, has been extensively
employed for a large number of applications ranging from ion sensing [1, 2], sensing of biomolecules [3–5], fabricating
current rectifiers [6] and nanofluidic diodes [7], ensuring colloid stabilization [8], developing novel techniques for oil
recovery [9], water harvesting [10], and drug delivery [11], and many more. Several of these applications typically
rely on the ability of these PE brushes to change their configurations as responses to the stimuli present in their
environment (e.g., pH and the salt concentration of their surrounding fluidic medium). Also these applications,
which are relatively recent, have renewed interest in better understanding the theoretical foundations dictating the
thermodynamics, structure, and configuration of the PE brushes. Developing scaling laws, describing the brush height
as functions of the various parameters PE brushes have formed a critical component of such theoretical approaches
[12–19]. Also, much more detailed calculations, providing explicit description of the PE brush-induced electric double
layers (EDLs) through Poisson-Boltzmann (PB) equations that can also account for the pH-responsiveness of the PE
brushes, have been attempted for modelling the PE brushes [20–30]. These models also depend on the manner in
which the brushes are described: i.e., through the use of the Alexander-de-Gennes model (that consider a constant
monomer distribution along the length of the brush) [24–26], or the parabolic model [22, 27], or the strong stretching
theory (SST) model [31–36], or the augmented SST (where the SST model is improved by accounting for the excluded
volume interactions between the brush segments and an augmented form of the mass action law) [37, 38]. Most of
these theoretical studies, however, do not consider the cases where the concentration of the salt in the medium is
significantly large (i.e., several Molars). It is well established that for such large salt concentration, the standard
Poisson-Boltzmann description of the electric double layer (EDL) breaks down [39–42] and one needs to account for
the contributions of other non-Poisson-Boltzmann elements such as the finite ion size effect [39], solvent polarization
effect [43], and the effect of ion-ion correlations [40, 41]. A recent all-atom molecular dynamics (MD) simulation study
from our group [44] probing the behavior of the densely grafted PE brushes has shown that the concentration of the
counterions surrounding the PE brushes can reach several molars/molals, confirming the need to develop a model to
quantify the behavior of the PE brushes in presence of large salt concentration.

In this paper, we provide for the first time a complete theory describing the thermodynamics, configuration, and the
electrostatics of the PE brushes in large salt concentrations. For this purpose, we invoke the recent theoretical model
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of McEldrew et al. [42] for describing the thermodynamics of the electrolytes with very large salt concentrations (or
effectively, the free energy of the EDL induced by the PE brushes). This study by McEldrew et al. [42], which accounts
for three different non-Poisson-Boltzmann (non-PB) effects (namely, the ionic non-mean-field ion-ion correlations, the
solvent polarization, and the finite size effect of the ions and water dipoles) is intended to model the water-in-salt
electrolyte (WISE) systems. In such WISE systems, the added salt is present in such a large concentration that it
outnumbers water by both weight and volume [45, 46]. The model proposed by McEldrew et al. [42] was developed
from the prior theoretical studies on ionic liquids [41, 47, 48]. On the other hand, the PE brushes are described by
our recently proposed augmented SST model [37, 38]. The augmented SST model improves the widely employed
SST model for the PE brushes [31–36] by accounting for two additional effects, namely (a) the excluded volume
interactions between the PE brush segments and (b) an expanded form of the mass action law that allows the PE
chargeable site density to take different values (and not just a fixed value as in the case of the SST model). These
two approaches, one for describing the electrolyte with large salt concentration and another for describing the PE
brushes, are integrated to obtain a semi-analytically tractable free energy functional describing the PE brushes in
large salt concentration. This functional is subsequently minimized to obtain the governing equations that provide a
thermodynamically self-consistent and coupled description of the PE brush configuration (PE brush height and PE
monomer distribution) and the electrostatics of the PE brush induced EDL for the case where the PE brushes are
in a large salt concentration. A few prior studies had attempted to incorporate the effect of the mean-field non-PB
factors (e.g., finite ion size effect or the solvent polarization effect) in description of the PE brushes [50, 51]; however,
these studies suffered from considering a very primitive description of the PE brushes (for example, the brush-free
energies have been totally neglected in these studies).

In our results, we first show the individual influence of the three different non-PB effects in the brush configuration
(brush height and the brush monomer distribution) and the electrostatics of the brush-induced EDL. The ion-ion
correlation effect tends to create local electroneutrality around the brushes: this reduces the bush inter-segmental
repulsion thereby reducing the brush height. The solvent polarization effect, on the other hand, causes additional
screening of the PE charge by ensuring a preferential alignment of the water dipoles: this effect too, therefore, reduces
the PE-brush inter-segmental repulsion and hence decreases the brush height. Since the brush height reduces for the
cases considering ion-ion correlations and solvent polarization effect, the monomer density increases and the EDL
electrostatic potential shows a large magnitude at near-wall locations and becomes zero at much shorter distances
from the wall. On the other hand, the consideration of the finite size effect leads to a smaller available space for
the counterions thereby lowering their entropy; this enforces the brushes, in order to counter this effect, to stretch
out more (i.e., the brush height increases) so as to provide a larger volume to the counterions. Accordingly, with
the finite size effect, the monomer density decreases and the EDL electrostatic potential shows a smaller magnitude
at near-wall locations and becomes zero at much greater distances from the wall. Finally, we consider all the three
effects simultaneously and establish that for the chosen system parameters, the effects of the ion-ion correlation
and solvent polarization overwhelm the effect of the finite sizes and therefore the brush configuration and the EDL
electrostatics obey the same behavior as witnessed for the cases where the ion-ion correlation and solvent polarization
effects are considered. We also point out that the effects of these non-PB factors are maximum for the cases of large
salt concentration and small bulk pH. Furthermore, we demonstrate that for the cases of smaller salt concentration,
the present model recovers the prediction of that of the augmented SST model [37] that does not consider the effect
of large salt concentration. Finally, we compare the findings from the present model with those obtained from our
recent all-atom MD simulation study [44] probing the behavior of densely grafted PE brushes in presence of large
concentration of the ions (counterions) and achieve an excellent match. Overall, to the best of our knowledge, this
study provides the first theory for the behavior of the strongly-stretched PE brushes in large salt concentration.

II. THEORETICAL FORMULATION

We consider pH-responsive, polyelectrolyte (PE) brushes present in a highly concentrated electrolytic solution. The
PE molecules are grafted to a planar substrate with a small-enough lateral separation (` = 30nm between the adjacent
grafted PE chains) that ensure that the PE molecules attain a “brush”-like configuration, as shown in Fig. 1. In
this study, we attempt to develop for the first time a theoretical model for the the thermodynamics, configuration,
and the electrostatics of the PE brushes in such large salt concentration. Accordingly, our model will combine the
formulation of McEldrew et al. [42] (who employed the asymmetric lattice model for studying the thermodynamics of
large-concentration electrolytes) and our recently developed augmented SST for the PE brushes [37].
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FIG. 1: Schematic representing the PE brush grafted on a planar substrate. We employ an asymmetric lattice model to describe
the thermodynamics of the mobile ions and solvent dipoles.

We start by expressing the grand canonical free energy functional (Ω) of the system (assuming that the system is
in a thermal and a chemical equilibrium with the bulk),

Ω =

∫
V

fe + fbrush + fion −
∑
i

niµi

 dV, (1)

where V is the volume, fe is the electrostatic energy density associated with the electric field developed around the
charged PE brushes, fbrush is the PE brush free energy density, fion is the free energy density of all the mobile ionic
species surrounding the PE brushes, ni (i=+, −, H+, OH−, and w, representing the electrolyte cation, electrolyte
anion, H+ ion, OH− ion, and water dipoles, respectively) is the number density of the mobile species i, and µi is the
corresponding chemical potential (obtained from the chemical configuration of the bulk). As a next step, following
McEldrew et al. [42], we make use of the Legendre transform for replacing the free energy density of the mobile ions
and water dipoles and the contribution due to their chemical potentials with an equivalent thermodynamic pressure
(P ) as:

P =
∑
i

niµi − fion. (2)

As a result, eq.(1) reduces to:

Ω =

∫
V

(fe + fbrush − P ) dV. (3)

Henceforth, we shall consider that there is no variation of any quantity parallel to the planar substrate. Therefore,
the above integral gets expressed as:

Ω = A

∫
(fe + fbrush − P ) dx, (4)

where A is the area of the substrate and x denotes the direction perpendicular to the substrate. Below, we shall
derive the expressions of the individual free energy (or free energy density) terms.

Electrostatic free energy of the electric field developed around the PE brush system
This differential form of this energy (δFe) can be expressed in terms of the corresponding free energy density (fe) as:

δFe = δ

∫
V

fe dV =

∫
V

E · δD dV, (5)
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where E = −∇ψ (ψ is the induced EDL electrostatic potential) and D are the electric field and the displacement
field, respectively. Following McEldrew et al. [42], one can express the displacement field as:

D = ε0εrE + P pol + PBSK , (6)

where, ε0 is the permittivity of vacuum, εr is the permittivity of the solvent, Ppol represents the contribution associated
with the polarization of the dipoles in the developed electric field, and PBSK (described by the Bazant-Storey-
Kornyshev theory [41]) is the contribution associated with the polarization field induced by the presence of the
correlated ions in the system. Ppol and PBSK can be expressed as [42]:

Ppol = nwpwL(βpwE), (7)

PBSK = −ε0εrl
2
c∇2E, (8)

where nw is the number density of the water dipoles, pw is the dipolar moment of the free dipoles, (L) is the Langevin
function, β = 1

kBT
is the inverse of thermal energy, and lc is a lengthscale associated with the ion-ion correlations effect

[41]. Finally, using eqs.(6,7,8) in eq.(5) and obtaining a variational integral of δFe from 0 to Fe under the constraint
∇ ·D = ρe [where ρe = e(n+ − n− + nH+ − nOH−) is the volume charge density of mobile ions], we can write (the
detailed steps are provided in McEldrew et al. [42]; we repeat them in Appendix A for the ease of understanding of
the readers):

Fe =

∫
V

fedV =

∫
V

[
ρeψ −

ε0εr
2

(|∇ψ|2 + l2c |∇2ψ|2)− nw
β

ln

(
sinh(βpw∇ψ)

βpw∇ψ

)]
dV. (9)

Expression for the thermodynamic pressure P defined in eq.(2)

For obtaining the thermodynamic pressure function (P ) of the electrolyte system, we consider an asymmetric lattice
model for the electrolyte [42]. Accordingly, we use a grand canonical partition function to represent a 5-component
system (4 species of mobile ions and water)

Ξ =
∞∑

χ+=0

∞∑
χ−=0

∞∑
χH+=0

∞∑
χOH−=0

∞∑
χw=0

eβµ+χ+eβµ−χ−eβµH+χH+ eβµOH−χOH− eβµwχwQ(χ+)Q(χ−)Q(χH+)Q(χOH−)Q(χw).

(10)
Here, Q represents the canonical partition function of each species, and can be expressed as, Q(χj) = ωje

−βεjχj , with
the energy given by Ej = εjχj [42] and χj represents the number of lattice sites occupied by species j. In line with the
models of Han et al. [49] and McEldrew et al. [42], we assume that the different species/components fill the lattice in
a manner such that the configuration of each species is equivalent to the occupation of χj lattice sites out of a total of

Nt available sites (per unit volume), so that ωj = Nt!
χj !(Nt−χj)! . Finally, using the fact that the pressure P in a grand

canonical ensemble is related to the partition function as, PVL = kBT lnΞ (where VL = NtvH+ is the total available
lattice volume), we can obtain (see Appendix B for the detailed derivation):

P =
kBT

vH+

ln


(({1 + ξOH−e

βµ̃OH−
}ξH+/ξOH−

+ ξH+eβµ̃H+

)ξ+/ξH+

+ ξ+e
βµ̃+

)ξ−/ξ+
+ ξ−e

βµ̃−

ξw/ξ−

+ ξwe
βµ̃w


1/ξw

,

(11)
where, ξj = vj /vH+ (vj is the volume of an individual element of species j and we non-dimensionalize with the
volume of smallest species, vH+) and µ̃j = µj − εj .

Expression for the free energy of the PE brushes
Here we describe the brushes following our newly developed augmented Strong Stretching Theory (SST) model (see
our previous paper [37] for the detailed derivation). Here we repeat the key equations for the sake of continuity. The
total free energy associated with the PE brushes can be expressed as:∫

V

fbrush dV =

∫
V

(fels + fEV + fbrush,ion + fbrush,elec) dV, (12)
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where fels is the elastic free energy of the brush, fEV is the excluded volume free energy of the brush, fbrush,ion is
the free energy of the brush associated with its degree of ionization, and fbrush,elec is the electrostatic free energy
associated with the charges on the brush. We consider a SST description, where the electrostatic repulsion between the
charged monomers of the PE brushes ensures that the PE chains are strongly stretched. We consider the equilibrium
brush height H to be the maximum height of the PE monomers from the substrate. Additionally, the system is divided
into two regions: the interior of the brush (0 ≤ x ≤ H) comprising of all the PE molecules and the exterior to the
brush (H < x ≤ ∞). Hence, using the notation of Zhulina et al. [52], we can write:∫

V

fels dV =
3kBT

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx, (13)

∫
V

fEV dV =
kBTσ

a3

∫ H

0

fconc[φ(x)]dx, (14)

where, E(x, x′) = dx
dn is the elastic stretching of a PE chain at a distance x from the substrate and whose end is located

at the coordinate x′. The quantities p, σ and a are the chain rigidity, the grafted area per chain (`2) and the Kuhn
length of the PE chain, respectively. Also, φ(x) is the monomer distribution profile of a PE chain, and fconc[φ(x)]
is the non-dimensionalised free energy contribution from the excluded volume interactions, per unit volume. Finally,
g(x′) is the normalized distribution function of the PE chain ends, defined as:∫ H

0

g(x′) dx′ = 1. (15)

Furthermore, we can express fbrush,elec as:∫
V

fbrush,elec dV = −σ
∫ H

0

eψnA−φ dx, (16)

where nA− represents the local number density of the PE charge, e is the electronic charge, and ψ is the electrostatic
potential. Here, the negative sign indicates that the charge on the PE chains is negative. The negative charge on
these PE chains is a result of the ionization of the PE chain of the form HA→ H+ + A−. Hence, nA− is a function
of the H+ ion number density (nH+) and will be derived later. Finally, following Zhulina and Borisov [31], we write
the free energy of ionization of the brush molecules, based on mixing entropies of the protonated and deprotonated
PE monomer units as well as energy of dissociation associated with the emergence of additional H+ ions, as:∫

V

fbrush,ion dV =
kBTσ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−
γ

)
+

nA−
γ ln

(
nA−
γ

)
+

nA−
γ

(
µ0
H++µ0

A−−µ
0
AH

kBT
+ ln(nH+,∞)

)]
dx

=⇒
∫
V

fbrush,ion dV =
kBTσ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx,

(17)
where, Ka is the ionization constant of the PE monomer ionization reaction HA→ H+ + A−, NA is the Avogadro

number and K ′a = 103NAKa. The dissociation constant, Ka = exp
(
− µ0

H++µ0
A−−µ

0
AH

kBT

)
, where µ0

i represents the

standard chemical potential of species i. Also, nH+,∞ = 103−pH∞NA is the bulk number density of the H+ ions (pH∞
is the bulk pH) and γ (1/m3) is the density of chargeable sites on the PE chains.
Therefore, using eqs.(13,14,16,17) in eq. (12) we can obtain the overall free energy of the brush as:∫

V

fbrush dV =
3kBT

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx +
kBTσ

a3

∫ H

0

fconc[φ(x)]dx − σ

∫ H

0

eψnA−φ dx

+
kBTσ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx.

(18)

Finally, we should point out that the free energy of the brushes should be obtained in the presence of two constraints
expressed as:

N =

∫ x′

0

dx

E(x, x′)
, (19)
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N =
σ

a3

∫ H

0

φ(x)dx, (20)

where N is the number of monomers per chain.

Final expression of the grand canonical free energy functional Ω expressed in eq.(4)

Using eqs.(9,11,18,19,20) in eq.(4), we get the final expression for the grand canonical free energy functional Ω as:

Ω = A

∫
V

[
eψ(n+ − n− + nH+ − nOH−)− ε0εr

2
(|∇ψ|2 + l2c |∇2ψ|2)− nw

β
ln

(
sinh(βpw∇ψ)

βpw∇ψ

)
− P

]
dx

+
3kBT

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx +
kBTσ

a3

∫ H

0

fconc[φ(x)]dx − σ

∫ H

0

eψnA−φ dx

+
kBTσ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

+ λ1

[ σ
a3

∫ H

0

φ(x)dx−N
]

+

∫ H

0

λ2(x′)dx′
[ ∫ x′

0

dx

E(x, x′)
−N

]
,

(21)

where λ2 and λ1 serve as the Lagrange multipliers accounting for the constraints expressed in eq.(19) and eq.(20),
respectively.

Minimization Procedure
In order to get the differential equations governing the problem, we first need to find the PE brush equilibrium
state. For that purpose, we employ variational calculus and minimize the free energy terms for the PE brushes (w.r.t
E(x, x′), g(x′), and nA−) in eq.(21). This minimization (the procedure has been described in detail in our previous
paper [37] as well as in the Appendix C) yields:

E(x, x′) =
π

2N

√
x′2 − x2, (22)

∫ x′

0

[
3E(x, x′)

2a2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx = 0,

(23)

nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) , (24)

φ(x) =
ν

3ω

[{
1 + κ2

(
λ3 − x2 + α

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))ln(1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))

−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

]
.

(25)

In eq.(25), κ2 = 9π2ω0

8N2pa2ν2
0

, ρ = 8a2N2p
3π2 , λ3 = −λ1ρ = −λ1

8a2N2p
3π2 , and α = 8N2epa5

3π2kBT
. Also, it is useful to note (as has

been explained in details in Appendix C), to obtain eq.(25), we use the following virial expansion of fconc:

fconc[φ(x)] ≈ ν0φ
2 + ω0φ

3 + ... , (26)
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where ν0 and ω0 are the virial coefficients.

We now, have all variables in terms of ψ (except the equilibrium brush height, H0 and the Lagrange multi-
plier, λ3). Hence, all of this culminates with the governing equation for the ψ, that is obtained by taking the variation
of eq.(21) with respect to ψ and setting it to zero, yielding (with ψ′ = dψ/dx):

ε0εr

(
1− l2c

d2

dx2

)d2ψ

dx2
+

d

dx

(
nwpwL(βpwψ

′)
)

+ e

(
n+ − n− + nH+ − nOH−

− K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ν
3ω

[{
1 + κ2

(
λ3 − x2 + α

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))ln(1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))

−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

])
= 0 (0 ≤ x ≤ H),

ε0εr

(
1− l2c

d2

dx2

)d2ψ

dx2
+

d

dx

(
nwpwL(βpwψ

′)
)

+ e (n+ − n− + nH+ − nOH−) = 0 (H ≤ x ≤ ∞).

(27)
To solve these ODE’s we need to first find an expression for the number density (nj) of each of the mobile species (we

already have the concentration of the PE charge, nA−). For this purpose, we shall use nj = ∂P
∂µj

∣∣∣
T,µi6=j

. [where P is

defined in eq.(11)], yielding:

nw =
1

vH+

eβ(µw+Λ)

D1
,

n− =
1

vH+

eβ(µ−+eψ)(D2)ξw/ξ−−1

D1
,

n+ =
1

vH+

eβ(µ+−eψ)(D2)ξw/ξ−−1(D3)ξ−/ξ+−1

D1
,

nH+ =
1

vH+

eβ(µH+−eψ)(D2)ξw/ξ−−1(D3)ξ−/ξ+−1(D4)ξ+/ξH+−1

D1
,

nOH− =
1

vH+

eβ(µOH−+eψ)(D2)ξw/ξ−−1(D3)ξ−/ξ+−1(D4)ξ+/ξH+−1(D5)ξH+/ξOH−−1

D1
.

(28)

In the above equations, Λ = kBT ln(sinh(βpwψ
′)/βpwψ

′) is the free energy associated with the dipolar fluctuations
in an electric field and

D5 = 1 + ξOH−e
β(µOH−+eψ),

D4 = D
ξH+/ξOH−
5 + ξH+eβ(µH+−eψ),

D3 = D
ξ+/ξH+

4 + ξ+e
β(µ+−eψ),

D2 = D
ξ−/ξ+
3 + ξ−e

β(µ−+eψ),

D1 = D
ξw/ξ−
2 + ξwe

β(µw+Λ).

(29)

To use the above equations, we need to know the values of the chemical potential of the mobile species, µj . This is
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obtained by forcing the ion distributions to be equal to the bulk concentrations in the limit of x→∞, yielding:

µOH− =
1

β
ln

[
nOH−,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+ − ξOH−nOH−,∞vH+

]
,

µH+ =
1

β
ln

[
nH+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

]
+

ξH+

ξOH−
ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+ − ξOH−nOH−,∞vH+

]
,

µ+ =
1

β
ln

[
n+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

]
+

ξ+
ξOH−

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+ − ξOH−nOH−,∞vH+

]
+

ξ+
ξH+

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

]
,

µ− =
1

β
ln

[
n−,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+

]
+

ξ−
ξOH−

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+ − ξOH−nOH−,∞vH+

]
+

ξ−
ξH+

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

]
+

ξ−
ξ+
ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

]
,

µw =
1

β
ln

[
nw,∞vH+

1− ξwnw,∞vH+

]
+

ξw
ξOH−

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+ − ξOH−nOH−,∞vH+

]
+

ξw
ξH+

ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+ − ξH+nH+,∞vH+

]
+

ξw
ξ+
ln

[
1− ξwnw,∞vH+ − ξ−n−,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+ − ξ+n+,∞vH+

]
+

ξw
ξ−
ln

[
1− ξwnw,∞vH+

1− ξwnw,∞vH+ − ξ−n−,∞vH+

]
.

(30)

where, nj,∞ represents the bulk number density of the species j.

In order to solve the governing ODEs, we need to know the boundary conditions for our problem. We use
the following boundary conditions for ψ:

(ψ)x=H− = (ψ)x=H+ ,
(dψ
dx

)
x=H−

=
(dψ
dx

)
x=H+

,
(dψ
dx

)
x=0

= 0,
(d3ψ

dx3

)
x=0

= 0, (ψ)x→∞ = 0,
(d3ψ

dx3

)
x→∞

= 0.

(31)
The last thing we require is to find the equilibrium structure of the PE brushes themselves (equilibrium height H0).
This requires that we know λ3, which can be obtained by substituting eq.(25) in eq.(20). Hence, we use the following
procedure: For a given guess of the equilibrium height (H0), we use our set of equations to obtain φ, ψ, and λ3. This
gives us the distribution of all charged species in our system (nj), which can then be used to calculate the net charge
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(qnet) in the system using qnet = eσ
∫∞

0
(n+ − n− + nH+ − nOH− − φnA−)dx. The true equilibrium brush height, H0,

can then be obtained by enforcing the condition that (qnet)H=H0
= 0.

III. RESULTS

Having established a more generic formulation for describing the thermodynamics, configuration, and electrostatics
of the PE brushes in large salt concentrations, we now provide a few results to understand the effects of the different
non-PB terms (employed to account for the effects of the large salt concentrations) on the electrostatics and the
resulting brush structure. We first point out the effect of each of the non-PB effects individually (this is ensured by
mathematically “turning on” only one of the non-PB effect at a time) on the PE brush structure (quantified by the
brush height and the monomer distribution) and the induced EDL (characterized by the variation of the corresponding
EDL electrostatic potential) and compare these results with those obtained from the case where the PE brushes are
described by the augmented SST of Sachar et al. [37] without any non-PB term. Finally, we study the influence of
all the different non-PB effects “turned on” simultaneously.

A. Effect of ion-ion correlation

FIG. 2: Variation of the equilibrium brush height, H0, with salt concentration (c∞, expressed in M , with c∞ = n∞/(103NA)
and n∞ is the bulk number density of the salt having the units of 1/m3) for various pH∞ values. Here, “IC” refers to the
case where only the ion-ion correlations, among the different non-PB effects, have been accounted for to describe the EDL
electrostatics, while the PE brushes are described using the augmented SST [37]. On the other hand, “SST” refers to the case
where the EDL electrostatics is modelled using the standard PB model (i.e., we consider no non-PB term) and the PE brushes
are modelled using the augmented SST [37]. Parameters used in this work are kB = 1.38 × 10−23J/K, T = 300K, pKa = 3.5,
a = 1nm, ` = 30nm, γ = 1/a3 (1 polyelectrolyte chargeable site per Kuhn monomer), N = 400, pKw = 14, p = 1, ν0 = 0.5,
ω0 = 0.1, e = 1.6 × 10−19C, ε0 = 8.854 × 10−12F/m, εr = 79.8, pOH∞ = pKw − pH∞, n+,∞ = n∞, nH+,∞ = 103NA10−pH∞ ,

nOH−,∞ = 103NA10−pOH∞ , n−,∞ = n∞ + nH+,∞ − nOH−,∞, nw,∞ = 103NA(1000ρw − 58.44c∞)/18, where ρw is the density
(in g/cc) of the bulk electrolyte salt solution and is expressed as a function of the salt concentration [53], and lc = 0.3 nm.

We first investigate the effect of the ion-ion correlations (IC) on the brush configuration and the induced EDL
electrostatics. The extent of influence of these interactions are determined by the length scale lc dictating the
correlation. In our case, since we consider relatively large salt concentrations, we chose lc to be of the order of the
radius of the ions that are correlated. We choose NaCl as the salt; accordingly, we choose lc = 0.3 nm, which is similar
to the size of the first hydration shell of these ions species [54, 55]. Fig. 2 shows the variation of equilibrium PE brush
height with the bulk salt concentration for two different bulk values of pH: 3 and 4. The brush height decreases in
presence of ion-ion correlations and the extent of this decrease becomes more severe at larger salt concentration and
smaller bulk pH (or pH∞). Ion-ion correlations tend to create local electroneutrality around the charged segments of
the PE brush owing to the localization of more counterions near the brush segments. This leads to effectively lower
inter-segmental electrostatic repulsions in the brushes over longer distances (∼ greater than Kuhn length) causing
a shorter brush height. At larger salt concentration, there are more counterions localized near the brushes: the
ion-ion correlation effect affects a larger number of ions in the vicinity of the brushes triggering a more enhanced
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electroneutrality effect. This justifies why the effect of ion-ion correlation in reducing the brush height (for a given
pH∞) is more prominent at a larger salt concentration. On the other hand, for a smaller pH∞, there is a larger
concentration of H+ ions both in the bulk as well as near the PE brushes; therefore, the ion-ion correlation effect
now acts on a larger number of H+ ions. Hence the ion-ion correlation induced creation of local electroneutrality
effect in the vicinity of the brushes becomes more prominent for a smaller pH∞ at a given value of salt concentration,
leading to a more prominent decrease in the brush height. Also, for a larger pH∞, the brush is almost completely
ionized, which implies that the effect of brush ionization is quite large as compared to the ion-ion correlations thereby
reducing the difference between the cases of with and without the ion-ion correlation.

FIG. 3: Monomer density profiles for various salt concentration values for (a) pH∞ = 3, and (b) pH∞ = 4. Here the cases
shown by solid lines (-) and dashed lines (- -) represent the cases of “IC” and “SST”, respectively. Please see the caption of
Fig. 2 for the definition of “IC” and “SST” cases. All other parameters are identical to those used in Fig. 2.

FIG. 4: Transverse variation of electrostatic EDL potential for various salt concentration values for (a) pH∞ = 3, and (b) pH∞
= 4. Here the cases shown by solid lines (-) and dashed lines (- -) represent the cases of “IC” and “SST”, respectively. Please
see the caption of Fig. 2 for the definition of “IC” and “SST” cases. All other parameters are identical to those used in Fig. 2.

In Fig. 3, we elucidate the effect of the ion-ion correlation in affecting the monomer distribution (φ) as a function
of the salt concentration and pH∞. Commensurate with the fact that the brush height with the consideration of
the ion-ion correlation effects show the maximum difference for the cases of large salt concentration and small pH∞
(i.e., the conditions that ensure larger number of ions), the effect of the ion-ion correlations in altering φ is most
prominent for larger salt concentration and smaller pH∞. Incorporating the ion-ion correlation effect yields smaller
brushes (or denser brushes, i.e., brushes with lesser heights) as compared to those from the SST (without ion-ion
correlation effects) [37]. A smaller brush height implies that the monomers are denser locally. This trend (showing
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larger monomer concentration for the case that accounts for the ion-ion correlation effect, particularly for the condition
of larger salt concentration) is readily witnessed in Figure 3. Insets to the figures have been provided to quantify the
small differences in the φ variations for the cases of with and without the ion-ion correlation for pH∞ = 4 [see Fig.
3(b)].

Fig. 4 provides the dimensionless electrostatic potential (ψ̄) of the PE brush induced EDL. Variation of ψ̄ for
the case considering the ion-ion correlations show significant difference with respect to the case without the ion-ion
correlations for pH∞=3 and for larger salt concentrations; this difference is much smaller for smaller salt concentration
and pH∞=4. The smaller brush heights for the case considering ion-ion correlations (an effect that is augmented for
large salt concentration and small pH∞) implies that that the corresponding electrostatic potential becomes zero at
shorter distances from the wall. A smaller brush height also means that the charge density of the monomer per unit
volume increase, leading to a larger magnitude of ψ̄ near the wall. For the case of pH∞=4, the electrostatic potentials
are almost indistinguishable between the cases of with and without the ion correlation effect.

B. Effect of solvent polarization

FIG. 5: Variation of the equilibrium brush height, H0, with salt concentration for various pH∞ values. Here, “POL” refers
to the case where only the solvent polarization effect, among the different non-PB effects, has been accounted for to describe
the EDL electrostatics, while the PE brushes are described using the augmented SST [37]. On the other hand, “SST” refers
to the case where the EDL electrostatics is modelled using the standard PB model (i.e., we consider no non-PB term) and the
PE brushes are modelled using the augmented SST [37]. We consider pw = 1.85 D, while all other parameters are identical to
those used in Fig. 2.

We next consider the effect of the solvent polarization. We choose water with a dipolar moment of pw = 1.85 D as
our solvent. Polarization of the solvent molecules acts as a mechanism for the solvent molecules to realign and hence
be better able to screen the PE charges. Therefore, by considering the effect of the solvent polarization one would
expect a more enhanced screening effect of the EDL (in terms of the screening of the charges on the PE brushes). This
is equivalent to considering a more compressed EDL, or equivalent to considering that the PE brush inter-segmental
repulsions are screened over much shorter distances. Such screening would obviously imply a significant lowering
of the impact of the PE brush inter-segmental electrostatic repulsion (in particular for the case of a smaller pH∞).
This, in turn, would lead to much smaller brush height as compared to the case where the solvent polarization effects
have not been considered (see Fig. 5). Such solvent polarization effect induced lowering of the brush height is also
enhanced for the cases of large salt concentration and low pH∞. At a larger pH∞, the more enhanced ionization of
the PE brushes leading to a larger brush charge and hence a large PE brush inter-segmental repulsion dominates the
effect of the solvent polarization, leading to a weakened effect of the solvent polarization at a larger pH∞. At large
salt concentration, where the existing EDL screening effect is already magnified, the effect of solvent polarization in
further enhancing the screening effect becomes larger leading to such augmented solvent-polarization-driven reduction
of the brush height.

We next plot the monomer distribution profiles in Fig. 6 for different bulk salt concentrations and pH∞, elucidating
the effect of the solvent polarization. Just like in Fig. 3, we observe an increase in the dimensionless monomer density,
owing to the reduction in brush height for the case that considers the solvent polarization effect. Also, the insignificant
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impact of the effect of the solvent polarization for larger pH and smaller salt concentration makes the difference in
the monomer distribution (between the cases of with and without the solvent polarization) negligible.

Finally, Fig. 7 provides the normalized electrostatic potential, ψ̄, and we observe that for pH∞=3 and higher salt
concentrations, ψ̄ for the case considering solvent polarization effect diverges from that not considering this effect; on
the other hand, for pH∞=4, the variation of ψ̄ for these two cases (cases with and without considering the effect of
solvent polarization) are indistinguishable. Also stemming from the fact that the brush height is smaller for the cases
of pH∞ = 3 and large salt concentration, we find ψ̄ becoming zero at shorter distances from the wall and showing a
large magnitude at near-wall locations (where, due to the compression of the brushes, there is a larger concentration
of the charged monomers).

FIG. 6: Monomer density profiles for various salt concentration values for (a) pH∞ = 3, and (b) pH∞ = 4. Here the cases
shown by solid lines (-) and dashed lines (- -) represent the cases of “POL” and “SST”, respectively. Please see the caption of
Fig. 5 for the definition of “POL” and “SST” cases. All other parameters are identical to those used in Fig. 5.

FIG. 7: Transverse variation of electrostatic EDL potential for various salt concentration values for (a) pH∞ = 3, and (b) pH∞
= 4. Here the cases shown by solid lines (-) and dashed lines (- -) represent the cases of “POL” and “SST”, respectively. Please
see the caption of Fig. 5 for the definition of “POL” and “SST” cases. All other parameters are identical to those used in Fig.
5.

C. Effect of finite sizes of the ions and dipoles

The final non-PB effect that we consider is the finite size effect for all mobile species (ions and water dipoles) in
the system. For us to include the finite size effect by using the model described in the theory section of this paper,
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we first need to obtain certain parameters (which are summarized in the caption of Fig. 8). We expect that the
consideration of the finite size effect will enforce a lesser available volume to accommodate the counterions, which
in turn decreases the entropy of the counterions; to counter this effect, the brushes stretch out more (and hence
undergoes an increase in height) so that a larger space can be provided to the counterions. We indeed observe such an
effect of the consideration of the finite ion and dipole sizes (see Fig. 8). Here, unlike the cases that consider either the
ion-ion correlations (see Fig. 2) or solvent polarization (see Fig. 5), the difference between the cases with and without
the non-PB effect (namely, the finite size effect of the ions and dipoles) is not significantly large even for larger salt
concentration and small pH∞. A possible reason for this could be that the bulk salt concentration is still not large
enough to cause a massive size effect.

FIG. 8: Variation of equilibrium brush height, H0, with salt concentration for various pH∞ values. Here, “Ster” refers to
the case where only the finite size effect, among the different non-PB effects, has been accounted for to describe the EDL
electrostatics, while the PE brushes are described using the augmented SST [37]. On the other hand, “SST” refers to the
case where the EDL electrostatics is modelled using the standard PB model (i.e., we consider no non-PB term) and the PE
brushes are modelled using the augmented SST [37]. We consider vH+ = 3.4866 × 10−30 [56] (where vH+ denotes the volume
of H+ ion, which is the smallest species in our lattice model and occupies just one lattice site), ξ+ = v+/vH+ = 39.3674,
ξ− = v−/vH+ = 26.3731, ξw = vw/vH+ = 3.1779, ξH+ = 1, and ξOH− = vOH−/vH+ = 3.7143 [55, 56]. All other parameters
are identical to those used in Fig. 2.

FIG. 9: Monomer density profiles for various salt concentration values for (a) pH∞ = 3, and (b) pH∞ = 4. Here the cases
shown by solid lines (-) and dashed lines (- -) represent the cases of “Ster” and “SST”, respectively. Please see the caption of
Fig. 8 for the definition of “Ster” and “SST” cases. All other parameters are identical to those used in Fig. 8.

Figures 9 and 10 show respectively the dimensionless monomer density and the electrostatic potential (ψ̄), elu-
cidating the effect of considering the finite size effect. The monomer distribution has smaller magnitude, since the
brush heights were slightly larger, for the case with finite ion sizes. Of course, only for the cases of largest bulk salt
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concentration (2 M, 4 M) and pH∞ = 3, we see some difference in the monomer distribution between the cases of
with and without the finite size effect. For other salt concentration and pH∞ combinations, this difference between
the cases of with and without the finite size effect becomes insignificant. On the other hand, the larger brush size
and the weaker monomer distribution implies that for the case that considers the finite size effect, the electrostatic
potential goes to zero at distances further away from the wall and has a weaker magnitude at near-wall locations (see
Fig. 10).

FIG. 10: Transverse variation of electrostatic EDL potential for various salt concentration values for (a) pH∞ = 3, and (b)
pH∞ = 4. Here the cases shown by solid lines (-) and dashed lines (- -) represent the cases of “Ster” and “SST”, respectively.
Please see the caption of Fig. 8 for the definition of “Ster” and “SST” cases. All other parameters are identical to those used
in Fig. 8.

FIG. 11: Transverse variation of electrostatic EDL potential for various salt concentration values for (a) pH∞ = 3, and (b)
pH∞ = 4. Here the cases shown by solid lines (-) and dashed lines (- -) represent the cases of “MSST” and “SST”, respectively.
Please see the caption of Fig. 12 for the definition of “MSST” and “SST” cases. All other parameters are identical to those
used in Fig. 12.
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D. Effect of all the different non-PB contributions considered simultanoeusly

FIG. 12: Variation of equilibrium brush height, H0, with salt concentration for various pH∞ values. Here, “MSST” refers to the
case of modified augmented SST: for this case all the three different non-PB effects (ion-ion correlation, solvent polarization,
and finite ion and dipole size) have been considered simultaneously to describe the EDL electrostatics, while the PE brushes are
described using the augmented SST [37]. On the other hand, “SST” refers to the case where the EDL electrostatics is modelled
using the standard PB model (i.e., we consider no non-PB term) and the PE brushes are modelled using the augmented SST
[37]. Here we use lc = 0.3 nm, pw = 1.85 D, vH+ = 3.4866 × 10−30 [56], ξ+ = v+/vH+ = 39.3674, ξ− = v−/vH+ = 26.3731,
ξw = vw/vH+ = 3.1779, ξH+ = 1, and ξOH− = vOH−/vH+ = 3.7143 [55, 56]. All other parameters are identical to that used
in Fig. 2.

Finally, we provide the results showcasing the impact of all the three different non-PB effects (ion-ion correlation,
solvent polarization, and finite ion and dipole size) considered simultaneously on the brush configuration (quantified
through the variation of the brush height and the monomer distribution) and the brush-induced EDL (quantified
through the variation of the EDL electrostatic potential). We denote this case (the one that considers all the three
different non-PB effects) as the modified augmented SST (or MSST). The equilibrium brush height shows a net reduc-
tion due to the consideration of the non-PB effects: both the ion-ion correlation as well as the solvent polarizability
effect cause a significant reduction in the brush height and dominate the effect of the consideration of finite sizes
(that only causes a weak increase in the brush height). Commensurate with the variation where the individual effects
were considered in isolation, we find that the reduction in the brush height is maximum for the cases of larger salt
concentration and smaller pH∞. This in turn translates to a larger magnitude of dimensionless monomer densities
(see Fig. 13) and an electrostatic potential distribution (see Fig. 11) that has a large magnitude at near-wall locations
and becomes zero at shorter distances from the wall. Also, very much like the case of the height variation, these
distinct trends in the monomer and electrostatic potential distribution become observable for the cases of large salt
concentration and small pH∞.
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FIG. 13: Monomer density profiles for various salt concentration values for (a) pH∞ = 3, and (b) pH∞ = 4. Here the cases
shown by solid lines (-) and dashed lines (- -) represent the cases of “MSST” and “SST”, respectively. Please see the caption
of Fig. 12 for the definition of “MSST” and “SST” cases. All other parameters are identical to those used in Fig. 12.

IV. COMPARISON WITH ALL-ATOM MD SIMULATION RESULTS

In this section, we compare the results (the brush height) from our present theoretical model with those obtained
from our recent all-atom molecular dynamics (MD) simulation study on PE brushes [44]. The system probed by
the all-atom simulations consist of fully ionized Polyacrylic acid (PAA) brushes neutralized by counterions. The
MD simulations probed different values of chain lengths (quantified by the number of backbone Carbon atoms) and
grafting densities (quantified by the lateral separation between adjacent chains). We provide results for the brush
height predicted from our present theory and that obtained from the atomistic simulations (see Table 1) and we
observe a most outstanding match (discussed in more details later).

In order to make a one-to-one comparison of our theoretical results with the simulations, we make a few assumptions.
Firstly, we consider each C-C bond in the PAA backbone (along with the attached pendant groups) (as represented
in the all-atom MD model) as one Kuhn segment in the present theoretical model. This gives us a Kuhn length of
a = 1.53Å and the number of Kuhn segments equal to the number of C-C bonds (along the backbone of the individual
PAA chains) for using in our theoretical model. For example, a chain having 29 backbone Carbon atoms in the MD
simulation will contain 28 backbone C-C bonds and thus 28 Kuhn segments. Of course, with such considerations
we neglect the effect of the strong angular and torsional constraints along the PAA backbone. Moreover, since fully
ionized PAA chains contain a carboxylate group on every alternate backbone carbon atom, we set the density of
polyelectrolyte chargeable sites to γ = 0.5/a3.

Our second assumption relates to the quantification of an equivalent bulk salt concentration for the MD simulations.
The simulations have some fundamental differences from the theoretical model as the simulations consider the effect
of the counterions explicitly. In fact, the cation concentration within the brushes in our MD simulations was primarily
due to the presence of the explicit counterions. We had added 0.1 M NaCl salt in the simulation box as well (for our
MD simulation study [44]), but its concentration within the brushes was negligible in comparison to the counterions.
On the other hand, our theoretical model involves the effects of a bulk salt concentration but does not consider
the counterions (in the vicinity of the PE brushes) separately. Thus, in order to make an appropriate comparison
between the two systems, we have ensured that the cation (or counterion) concentration within the brushes is equal
for the two cases (i.e, the case studied by the MD simulations and the present case). This was achieved by varying
the bulk salt concentration in our theoretical model (for each value of chain length and grafting density) until we
obtained an average cation concentration within the brushes (for our theoretical model) that is nearly identical to
the counterion concentration within the brushes obtained from the simulations. Of course, the anion concentration
within the brushes is negligible due to the presence of negative charges on the PE functional groups and the fact that
the brushes are extremely densely grafted and hence can be ignored. The final bulk salt concentration values used
in the theoretical model as well as the average cation (counterion) concentrations within the brushes for the present
theory (MD simulations of Ref. [44]) are provided in Table 1 and as one could see, we work with almost identical
concentration values (for the two cases).

Finally, in order to enforce complete ionization of the PE functional groups in our model, we set pH∞ � pKa.
This was done to be consistent with the MD simulations that considered fully ionized PAA chains.

Page 16 of 22Physical Chemistry Chemical Physics



17

From Table 1, we observe an excellent match between the brush heights predicted by our MSST model and the
all-atom MD simulations. In fact, the brush heights differ by less than 5% for all the different combinations of
parameters that were considered. This level of agreement with the MD simulation results is remarkable, considering
the sophistication involved in such atomistic simulations that considered an all-atom framework where each atom
of the brushes, water and the mobile ions were modelled explicitly. This allows the simulations to attain levels of
accuracy that are beyond the capabilities of any mean field continuum model. Despite that, our theoretical results
are in outstanding agreement with the MD simulation results. This not only validates our model but also testifies its
potential in capturing non-PB effects to an extent that is unprecedented in the continuum modelling of PE brushes.

Number of Grafting Bulk salt Average counterion Average cation Brush Brush

carbon Density concentration used concentration within concentration within Height (Å) Height (Å)

atoms (N) (σg) for the MSST PE brushes for PE brushes for obtained in obtained using the

(1/σ2) model [c∞ (M)] Ref. [44] (M) the MSST model (M) Ref. [44] MSST model

29 0.05 0.1 3.38 3.43 25.56 24.92

29 0.1 0.6 6.04 6.00 28.99 29.50

49 0.05 0.3 3.47 3.46 44.25 45.40

49 0.1 1.25 6.19 6.21 50.43 50.91

69 0.05 0.5 3.57 3.62 61.98 62.86

69 0.1 1.5 6.32 6.30 70.53 72.86

TABLE I: Comparison of brush heights obtained from the MSST model developed in this paper and all-atom MD simulations
of Ref. [44] for various values of the number of carbon atoms (N) and grafting density (in units of 1/σ2, where σ = 3.5Å is the
Lennard Jones size parameter). The values of bulk salt concentration (c∞ in M) used in MSST model, the equivalent average
cation concentration within the brushes for the MSST model, and the average counterion concentration for the MD simulations
are also provided. Please note for a given N and σg value, we consider such a value of the bulk salt concentration that yields
nearly identical values of cation concentration and counterion concentration for the MSST model and the MD simulations,
respectively. Only under such circumstances, we could compare that height values obtained from the present MSST model and
the all-atom MD simulations. Other parameters used in the MSST model are as follow: Kuhn length, a, of 1 C-C bond length
equivalent to 1.53Åand the density of chargeable sites (γ) equal to 0.5/a3.

V. CONCLUSIONS

In this paper, we develop for the first time a detailed theoretical model for describing the thermodynamics, con-
figurations, and electrostatics of the pH-responsive, PE brushes in presence of a large salt concentration. The theory
combines our recently developed augmented SST [37] for describing the PE brushes with the model proposed by
McEldrew et al [42] that accounts for the appropriate non-PB effects [non-mean-field electrostatic ion-ion correla-
tions, solvent polarization, and the finite size (ion and water dipole) effects] for describing the free energy of the
large-concentration electrolytes. Our results point out that these different non-PB effects compete with each other
and eventually ensure, in a scenario where the ion-ion correlation and the solvent polarization effects outweigh the
influence of the finite size effect, the PE brush height decreases, thereby increasing the monomer density and inducing
an EDL electrostatic potential distribution that has a larger magnitude at near-wall locations and becomes zero at
shorter distances away from the wall. Furthermore, we also discover that the influence of the non-PB effects are
maximum at large salt concentrations and small bulk pH. Finally, we are able to validate our model by comparing its
findings with those of our recent all-atom MD simulation study.

In the end, we would like to add a few points regarding the limitations of the present theory. Here we account for
the ion-ion correlations only between the mobile ions (i.e., the EDL ions). Such a consideration overlooks the effect of
the possible correlation between the static charged functional groups of the PE brushes and the EDL ions (especially
the counterions). To the best of our knowledge, no theory exist that accounts for such a correlation; however, it is
definitely worthwhile to investigate in future if such a correlation between the charges of the PE brushes and the
counterions can be of any consequence in the thermodynamics, configuration, and electrostatics of densely grafted
brushes in large salt concentrations. Secondly, we do not consider the ion-partitioning effect, which stems from a
possible mismatch between the solvent permittivities inside and outside the PE brushes and have been known to
have some effect on the overall electrostatics of the brush-induced EDL [57].
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Appendix A: Detailed derivation of eq.(9)

Eq.(5) expresses δFe in terms of δD. Using eqs.(6,7,8), we can write:

δD =
δPpol
δE

δE + ε0εrδE − ε0εrl
2
cδ(∇ · ∇)E. (A1)

Using eq.(A1) along with the vector identity∇·∇E = ∇(∇·E)−∇×(∇×E) = ∇(∇·E) (since∇×E = −∇×∇ψ = 0),
we can re-write eq.(5) as:

δFe =

∫
V

[
δPpol
δE

E · δE + ε0εrE · δE − ε0εrl
2
cE · ∇δ(∇ ·E)

]
dV. (A2)

The vector identity, E · ∇δ(∇ ·E) = ∇ · (Eδ(∇ ·E)) −∇ ·Eδ(∇ ·E), can then be used, where divergence theorem
can be employed so that the first term on the right hand side of the equation vanishes because of zero electric field at
the substrate and at infinity. Therefore, eq.(A2) reduces to:

δFe =

∫
V

[
δPpol
δE

E · δE + ε0εrE · δE + ε0εrl
2
c∇ ·Eδ(∇ ·E)

]
dV. (A3)

We next take the variational integral of δFe from 0 to Fe and enforce the condition, ∇ · D = ρe [where ρ =
e(n+ − n− + nH+ − nOH−) is the volume charge density of mobile ions] using a Lagrange multiplier λ, to yield:

Fe =

∫
V

nw
β

(
βpw∇ψL(βpw∇ψ)− ln

(
sinh(βpw∇ψ)

βpw∇ψ

))
+
ε0εr

2

(
|∇ψ|2 + l2c |∇2ψ|2

)
+ λ(ρe −∇ ·D)

 dV. (A4)

Substituting eq.(6) in eq.(A4) and using the Frechet functional derivative, δFe

δψ = lim
ε→0

Fe(ψ + εψ0δε)− Fe(ψ)

εψ0
= 0, we

obtain λ = ψ; hence eq.(A4) reduces to eq.(9).

Appendix B: Detailed derivation of eq.(11)

We start with eq.(10) and apply the conditions Q(χj) = ωje
−βεjχj , Ej = εjχj , ωj = Nt!

χj !(Nt−χj)! , ξj = vj /vH+ ,

and µ̃j = µj − εj to reduce eq.(10) to:

Ξ =

Nt/ξw∑
χw=0

ωwe
βµ̃wχw ·

(Nt−ξwχw)/ξ−∑
χ−=0

ω−e
βµ̃−χ− ·

(Nt−χw−ξ−χ−)/ξ+∑
χ+=0

ω+e
βµ̃+χ+ ·

(Nt−χw−ξ−χ−−ξ+χ+)/ξH+∑
χH+=0

ωH+eβµ̃H+χH+

·
(Nt−χw−ξ−χ−−ξ+χ+−ξH+ )/ξOH−∑

χOH−=0

ωOH−e
βµ̃OH−χOH− .

(B1)
The summations in the partition function can then be evaluated using the binomial theorem, assuming a progressive
filling of the lattice sites with each species. Accordingly, eq.(B1) reduces to

Ξ =


(({1 + eβµ̃OH−

}ξH+/ξOH−
+ eβµ̃H+

)ξ+/ξH+

+ eβµ̃+

)ξ−/ξ+
+ eβµ̃−

ξw/ξ−

+ eβµ̃w


Nt/ξw

. (B2)

Given that PVL = kBT lnΞ, where VL = NtvH+ , we can finally write from eq.(B2)

P =
kBT

vH+

ln


(({1 + eβµ̃OH−

}ξH+/ξOH−
+ eβµ̃H+

)ξ+/ξH+

+ eβµ̃+

)ξ−/ξ+
+ eβµ̃−

ξw/ξ−

+ eβµ̃w


1/ξw

, (B3)
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or, by taking constants out of µ̃j , we can write,

P =
kBT

vH+

ln


(({1 + ξOH−e

βµ̃OH−
}ξH+/ξOH−

+ ξH+eβµ̃H+

)ξ+/ξH+

+ ξ+e
βµ̃+

)ξ−/ξ+
+ ξ−e

βµ̃−

ξw/ξ−

+ ξwe
βµ̃w


1/ξw

,

(B4)
which is eq.(11).

Appendix C: Detailed minimization procedure for the terms of fbrush

We first consider the variational minimization of the terms of fbrush (i.e., perform the variational minimization
w.r.t E(x, x′), g(x′), and nA−), yielding:

δ

∫
V

fbrush dV =
3kBT

2pa2

[ ∫ H

0

g(x′)dx′
∫ x′

0

δE(x, x′)dx+

∫ H

0

δg(x′)dx′
∫ x′

0

E(x, x′)dx
]

+ λ1
kBTσ

a3

∫ H

0

δφ(x)dx

− kBT
∫ H

0

λ2(x′)dx′
∫ x′

0

δE(x, x′)

E2(x, x′)
dx+

kBTσ

a3

∫ H

0

(δfconc
δφ

)
δφdx

− σ
∫ H

0

[
eφnA−δψ + eφψδnA− + eψnA−δφ

]
dx

+
kBTσ

a3

∫ H

0

δφ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

+
kBTσ

a3

∫ H

0

δnA−φ

[
− 1

γ
ln
(

1− nA−

γ

)
+

1

γ
ln
(nA−

γ

)
+

1

γ
ln
(nH+,∞

K ′a

)]
dx,

(C1)
where the variational of φ is expressed as:

δφ(x) =
a3

σ

∫ H

x

[ δg(x′)

E(x, x′)
− g(x′)δE(x, x′)

E2(x, x′)

]
dx′. (C2)

Using eq.(C2), we can re-write eq.(C1) as:

δ

∫
V

fbrush dV = kBT

∫ H

0

dx′
∫ x′

0

δE(x, x′)

[
3g(x′)

2pa2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)

]
dx

+ kBT

∫ H

0

dx′δg(x′)

∫ x′

0

[
3E(x, x′)

2pa2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx

+
kBTσ

γa3

∫ H

0

δnA−φ

[
− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)]
dx.

(C3)
From the fact that δ

∫
V
fbrush dV = 0 (dictated by the equilibrium condition) and that δE(x, x′) 6= 0, δg 6= 0 and

δnA− 6= 0, we arrive at the following equations that govern the brush structure:

3g(x′)

2a2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)
= 0,

(C4)
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∫ x′

0

[
3E(x, x′)

2a2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−

γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx = 0,

(C5)

− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)
= 0

=⇒ nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) . (C6)

Eq.(C5) is eq.(23) and eq.(C6) is eq.(24).

Subsequently, rearranging the terms in eq.(C4), we obtain:

E(x, x′) =
√
U1(x′)− U2(x), (C7)

with

U1(x′) =
2a2

3

λ2(x′)

g(x′)
, (C8)

U2(x) =
2a2

3

(
− δfconc

δφ
− λ1 +

ea3ψ

kBT
nA− −

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
− nA−

γ
ln
(nA−

γ

)
− nA−

γ
ln
(nH+,∞

K ′a

))
. (C9)

For any PE chain, the stretching/extension at the chain end is E(x′, x′) = 0, and the chain end location (x′) itself is
a continuous function with values between 0 and H. Therefore, U1(x′) = U2(x′) = U(x′) = U(x). Hence,

E(x, x′) =
√
U(x′)− U(x). (C10)

Using the normalization condition of eq.(19) to the above equation, one subsequently arrives at an integral equation
for U(x′) which is satisfied if:

U(x) =
π2x2

4N2
, (C11)

which in turn leads to:

E(x, x′) =
π

2N

√
x′2 − x2. (C12)

Eq.(C12) is eq.(22).
Eq.(23) gives us an additional integral equation, given below, that is to be satisfied by this choice of U(x).∫ x′

0

[
E(x, x′)− U(x)

E(x, x′)

]
dx = 0. (C13)

We next use the following dependence (virial expansion) of fconc (contribution to the free energy due to excluded
volume interaction) on φ:

fconc[φ(x)] ≈ ν0φ
2 + ω0φ

3 + ... , (C14)

where ν0 and ω0 are called virial coefficients. Using eq.(C14) to obtain δfconc

δφ in eq.(C9) and using the condition

U2(x′) = U(x) and eq.(C11), we finally obtain from eq.(C9) the following equation connecting the monomer distribu-
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tion φ to the electrostatic potential ψ:

φ(x) =
ν

3ω

[{
1 + κ2

(
λ− x2 + α

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))ln(1− K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

))

−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

]
.

(C15)

Eq.(C15) is the same as eq.(25) and the different terms of eq.(25) are provided below eq.(25).
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