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Tight binding models accurately predict band struc-
tures for copolymer semiconductors
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Conjugated polymers possess a wide range of desirable properties including accessible band
gaps, plasticity, tunability, mechanical flexibility and synthetic versatility, making them attractive
for use as active materials in organic photovoltaics (OPVs). In particular, push-pull copolymers,
consisting of alternating electron-rich and electron-deficient moieties, offer broad optical absorp-
tion, tunable band gaps, and increased charge transfer between monomer units. However, the
large number of possible monomer combinations to explore means screening OPV copolymers
by first-principles quantum calculations is computationally intensive. If copolymer band structures
could be rapidly computed from homopolymer data, potential materials could be screened more
efficiently. In this work, we construct tight binding models of copolymer band structures with pa-
rameters determined by density functional theory (DFT) calculations on homopolymers. We use
these models to predict copolymer valence and conduction bands, which compare well to direct
DFT calculations of copolymer band structures.

1 Introduction
Conjugated polymers are the subject of intensive research, mo-
tivated by their potential applications in semiconducting de-
vices.1–3 The conjugated backbone of these polymers enables
conductivity along the polymer chain. Organic photovoltaics are
solar cells that employ conjugated polymers as photoactive ma-
terials; potential advantages over their inorganic counterparts in-
clude flexibility, reduced weight, low-cost production by polymer
synthesis,4 and convenient processing by roll-to-roll printing.5,6

Alternating donor-acceptor or “push-pull” conjugated polymers
have been a focus of recent development for organic photo-
voltaics. Their optical and electronic properties, including absorp-
tion spectra and HOMO/LUMO levels, can be tuned by controlling
the intramolecular charge transfer from donor to acceptor moi-
eties. Rational design of the molecular structures of constituent
polymers has been enabling for rapid advances in material prop-
erties and device performance.7

Solar cells using homopolymers in the donor phase and PCBM
([6,6]-phenyl-C61-butyric acid methyl ester) in the acceptor
phase delivered only limited power conversion efficiencies.8,9

These performance limits have been attributed to the narrow ab-
sorption spectra of the homopolymers, and their non-ideal fron-
tier molecular orbital energies.10,11 In the past five years, device
efficiencies have more than doubled,12 in part by tuning elec-
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tronic properties of conjugated copolymers to optimize the over-
lap of electronic absorption with the solar spectrum.13

Combining different monomer units in an alternating copoly-
mer provides a potent way to tune electronic properties like the
absorption spectrum, by taking advantage of the broad variation
in frontier orbitals and band gaps afforded by different monomer
structures. Development of push–pull narrow band gap copoly-
mers as donor materials has enabled power conversion efficien-
cies of over 11 percent.14–18

Synthesis of new alternating copolymers is time consuming; the
parameter space we can explore in designing new copolymers is
large, and prohibitive to fully explore experimentally.19,20 As a re-
sult, computational screening of copolymers before synthesis and
testing is an appealing option.21 Several groups have used high–
throughput computational approaches to aid the discovery of or-
ganic materials with promising properties.21–23 Most such efforts
calculated properties of small molecule analogs, because comput-
ing the electronic structure of a large oligomer can be computa-
tionally expensive.

Several studies describe how to extrapolate energy gaps for
conjugated oligomers to the limit of infinite chains.24–31 These
methods can predict frontier orbital energies and band gaps for
conjugated polymers, which are of primary interest in choos-
ing donor and acceptor materials, or compatibility with elec-
trodes in a working device. However, extrapolation methods
can be time-consuming because they require calculations on large
oligomers.24,25,31 Also, they do not provide information on band
structure beyond the band gaps, which are needed for calcula-
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tions of polaron and exciton structure and transport.
Ideally, a computational screening method for push-pull alter-

nating copolymer structures would predict copolymer electronic
properties directly from the choice of monomers, without ex-
trapolating from electronic structure calculations on alternating
oligomers. To achieve this, we exploit and extend tight-binding
models, which have been successful in describing the conduction
and valence bands of homopolymer organic semiconductors.32–34

Tight binding models provide a semi-empirical description of
the quantum mechanics of extended systems. In a tight binding
model, the full set of electronic degrees of freedom is greatly re-
duced, by retaining only a few local states on a set of sites to
describe valence and conduction electrons. For an organic semi-
conductor, a natural choice of states and sites are the local HOMO
and LUMO orbitals on the constituent monomers.

The tight binding Hamiltonian is appealingly simple: for each
site, there is an onsite energy for an electron to occupy a state on
the site, and a hopping matrix element for the electron to hop to
an adjacent site. For chains in crystals or amorphous melts, there
are smaller hopping matrix elements that couple sites on a given
chain to nearby sites on other chains. The onsite energies and
hopping matrix elements can vary as the polymer configuration
changes. Distortions of monomer shapes can change the onsite
energies; dihedral twists can reduce the hopping matrix elements
along a chain; and hopping matrix elements between chains vary
strongly with distance between monomers.

Because tight binding models have so few electronic degrees of
freedom and such a simple Hamiltonian, they can be used to treat
much larger systems, describe the effects of disorder, and model
physical phenomena that are inaccessible to first-principles elec-
tronic structure calculations. In previous work, our group has
used tight binding models to predict the effects of dihedral dis-
order on absorption spectra;32 the size of polarons stabilized by
interactions with polarizable media;33 and the structure of exci-
tons in bulk, at interfaces, and in applied electric fields.34

To use a tight binding model, its parameters must be fitted,
either to experiment or first-principles calculations. In previous
work, Mesta et al.35 have used tight binding models to predict
electronic and optical properties of donor-acceptor polymers us-
ing tight binding parameters determined from DFT calculations
on monomers and dimers, which are computationally inexpensive
even when using hybrid (B3LYP) functional. The onsite energies
are determined from monomer HOMO and LUMO levels, while
the hopping matrix element between moieties is determined by
observing the splitting of energy levels in the dimer as compared
to the monomer.

However, this approach does not provide information on the
full band structure at the DFT level. As we shall show, DFT band
structures are helpful to validate the approximations made by the
tight binding model, specifically the neglect of interactions be-
tween frontier orbitals other than the HOMO or LUMO most di-
rectly involved in a given band. which is needed to calculate
structure and transport of excitons and polarons.

Alternatively, here as in our previous work we fit onsite
energies and hopping matrix elements by comparing to one-
dimensional band structures for single infinite chains computed

using density functional theory (DFT) for periodic systems.32

These DFT calculations are tractable if the repeating unit of the
chain is not too large.

Since the tight binding model is intended to describe elec-
tronic properties of long chains, intuitively it seems preferable
to fit parameters to periodic DFT calculations for long chains,
which are no more computationally expensive than monomer and
dimer calculations at the GGA level of theory, though they can
become more expensive if exact-exchange is to be included in the
exchange-correlation functional.

In this paper, we present a computational approach to pre-
dict conduction and valence bands for semiconducting alternat-
ing copolymers, without the need for first principles calculations
on the copolymer itself. For tight-binding parameters, we rely
instead on values fitted to band structures for the constituent ho-
mopolymers, computed using DFT with periodic boundary condi-
tions. The hopping matrix elements between different moieties in
the copolymer do not vary tremendously over a range of similar
moieties, and are approximated as the average of values fitted for
the corresponding homopolymers.

To validate this approach, we compare tight binding band struc-
tures for alternating copolymers, predicted using parameters from
fits to band structures for the constituent homopolymers, to peri-
odic plane-wave DFT results for the infinite copolymer. We also
compare to direct tight-binding fits to the DFT copolymer results,
to quantify the error introduced by relying only on homopolymer
parameters.

The paper is organized as follows. First, we present tight bind-
ing models for different homopolymer band structures, with pa-
rameters fit to DFT results. Fig. 1 displays the monomers studied
in this work, which form the constituents of several polymers used
in high performing OPVs. Then, we use these homopolymer tight
binding fits as input to predict copolymer band structures, and
compare them with DFT results for the copolymers.

2 Methods

2.1 Tight binding approximation

The tight binding approximation is a coarse-grained quantum me-
chanical description of the electronic structure of extended sys-
tems, in which local frontier orbitals on a set of sites are con-
nected by hopping matrix elements between adjacent sites to
form valence and conduction bands. For semiconducting poly-
mers, the natural choice for sites are the aromatic or polyaro-
matic monomers that make up the chain. These moieties are quite
rigid and tightly coupled electronically, so their internal electronic
structure is only weakly perturbed by the overall chain conforma-
tion.

A polymer chain is thus modeled as a one-dimensional array of
sites, in which each site represents a monomer. The correspond-
ing tight binding Hamiltonian can be written

H = ∑
k

εkc†
kck−∑

k
tk(c

†
kck+1 + c†

k+1ck) (1)

Here c†
k and ck are creation and annihilation operators for an elec-

tron on site k, εk is the onsite energy on site k, and tk is the hop-
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Thiophene (TH) Pyrrole (PY)

Benzothiadiazole (BT) Phenylene (PH)

Thienothiophene (TT) Fluorene (FL)

Fig. 1 Structure of monomers studied with their labels used in this paper
(grey = C, white = H, yellow = S, blue = N).

ping matrix element that couples adjacent sites k and k+ 1. The
first term in H represents the onsite energy, and the second ac-
counts for stabilization from delocalization by hopping between
sites.

For a single undistorted chain in a uniform environment, the
value of εk depends only on the type of site k; the hopping matrix
element tk likewise depends only on the types of the two sites it
connects. For homopolymers, there is one single onsite energy ε

and one hopping matrix element t. For alternating copolymers,
there are two onsite energies εA and εB, and one hopping matrix
element tAB.

Correspondingly, the wavefunction ψ of an electron on the
chain can be written as a superposition of localized molecular
orbitals:

|ψ〉= ∑
k

ak |φk〉 (2)

Here ak are numerical coefficients, and |φk〉 are the localized
molecular orbitals. The localized orbitals can be written in terms
of creation operators c†

k and a reference state |0〉 as

|φk〉= c†
k |0〉 (3)

Here the reference state represents the chain with all its electrons
except those in the valence band (see below). Finally, the set of
energy eigenvalues and wavefunctions for the system are found
by solving the time-independent Schrodinger equation H |ψ〉 =
E |ψ〉.

In the tight binding model, the full Hamiltonian is replaced
by considering just the valence and conduction electrons. This
coarse-graining makes tight binding models computationally in-
expensive. The singlet filling the HOMO of each monomer con-
tributes two electrons to the valence band. In the ground state

of the chain, the valence band is full and the conduction band
empty.

The valence and conduction bands spread out from the HOMO
and LUMO levels respectively as a consequence of hopping be-
tween adjacent monomers. If the HOMO and LUMO are widely
separated compared to the bandwidth, interactions between the
HOMO and LUMO on adjacent sites can be neglected. In this case,
the valence and conduction bands can be treated independently,
with separate tight binding Hamiltonians of the general form of
Eqn. 1. For some polymers with narrow band gaps, HOMO and
LUMO orbitals of adjacent monomers couple sufficiently that the
tight binding model must couple these orbitals to properly ac-
count for the band structure.

For systems with a discrete periodic symmetry, of which infi-
nite polymer chains are one example, Bloch’s theorem constrains
the form of the wavefunction to be an eigenfunction of the dis-
crete translation operator. For the case of a discrete translational
symmetry in one dimension, this leads to a wavefunction written
as

ψq(r) = ∑
k

eiqk∆
φ(r− k∆) (4)

Here q is the wavenumber, ∆ the distance between adjacent sites
along the chain, φ(r) is a localized wavefunction restricted to the
unit cell (i.e., to within ±∆/2 of the origin), and the sum ∑k runs
over all sites of the infinite chain. Evidently we have

ψq(r+∆) = eiq∆
ψq(r) (5)

which shows that ψq(r) is an eigenfunction of the discrete trans-
lation operator with eigenvalue eiq∆.

For periodic systems like a polymer chain with a single repeat-
ing moiety, and thus a wavefunction of the form Eq. 2, Bloch’s
theorem implies the coefficients ak can be written as plane waves:

ak = aeiqk∆ (6)

where ∆ is the distance between adjacent sites and q is the
wavenumber, ranging from q = 0 to the band edge q = π/∆. The
localized orbital |φk〉 then corresponds to the localized wavefunc-
tion φ(r− k∆).

The tight-binding wavefunction for a given q modulates the lo-
cal orbitals, as can be seen from Eqns. 2 and 6. This modulation
raises or lowers the energy of the state depending on the symme-
try of local orbitals, as described below.

Monomers used in organic semiconductors are often symmetric
under reflection through a mirror plane normal to the chain axis.
The HOMO orbital for such monomers will be either even or odd
under this reflection, with the LUMO having the opposite parity.
Fig. 2 shows the frontier orbitals of thiophene and benzothiadi-
azole. Both moieties are symmetric under reflection; thus, the
frontier orbitals have definite symmetries under reflection, with
both HOMOs odd and both LUMOs even. Similarly, thienothio-
phene is symmetric under inversion, and its HOMO and LUMO
have corresponding even and odd symmetry.

If the local orbital is odd, it changes sign across the monomer.
An unmodulated homopolymer wavefunction (with q = 0) con-
structed from such an orbital (e.g., the thiophene HOMO) will
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have a node on every bond between monomers. These nodes cor-
respond to antibonding interactions between adjacent monomers,
and increase the kinetic energy of the wavefunction. Modulating
the wavefunction (finite q) progressively eliminates these nodes,
which finally disappear at q = π/∆, when adjacent local orbitals
appear in the wavefunction with opposite signs. In the tight-
binding model, this situation corresponds to a negative value of t,
and an energy band that “runs downhill” from q = 0 to the band
edge.

If the local orbital is even (e.g., the thiophene LUMO), an
unmodulated homopolymer wavefunction constructed from this
orbital will have no nodes between monomers, corresponding
to the lowest possible kinetic energy for this band. As the
wavenumber increases, nodes are progressively introduced be-
tween monomers, increasing the kinetic energy. At the band edge,
the amplitude changes sign on every other site, so that every bond
between monomers has a node. This situation corresponds to a
positive value of t, and a band that “runs uphill”.

Thiophene (TH)

Benzothiadiazole (BT)

Thienothiophene (TT)

Fig. 2 Frontier orbitals of some selected monomers

Likewise, for alternating copolymers, the frontier orbital sym-
metries of the two alternating monomers determine the direction
that the bands run. Because there are now two moieties in the
unit cell, there are two bands for a given pair of frontier orbitals
(the HOMOs, say), formed respectively from modulations of the
symmetric and antisymmetric superpositions inside the unit cell.
As for the case of homopolymers, the resulting bands run uphill
or downhill in energy as q increases from zero, depending on
whether the increasing modulation adds or removes nodes from
the wavefunction.

2.2 ab initio calculations
As described above, we fit tight-binding model parameters to DFT
results for one-dimensional band structures of homopolymers and
copolymers. Band structures are computed for periodic unit cells
of polymer chains using plane-wave DFT, using the Vienna Ab-
initio Simulation Package (VASP), with the GGA PW91 functional
and an energy cut-off of 450 eV. One-dimensional band structures

are computed for chains in ideal all-trans geometries, with unit
cell dimensions in the transverse direction of 20Å, large enough
so that chains interact negligibly with their periodic images.

Solubilizing side chains do not significantly affect the band
structure, so they are replaced with hydrogens for simplicity. All
the polymers are geometrically optimized, and 45 k-points along
the Γ-X direction are used to compute the 1d band structure. All
energy levels are referenced to the vacuum potential for consis-
tency.

Non-periodic DFT calculations are perhaps more commonly
used than plane-wave DFT to compute electronic properties of
semiconducting monomers and oligomers. For comparison pur-
poses, we have computed HOMO and LUMO levels of constituent
monomers using Gaussian 09, with the B3LYP functional and 6-
311G(d,p) basis set. All the monomers are geometrically opti-
mized. Though we have not done so in this work, continuum sol-
vent models are available to replace the vacuum between chains,
approximating the interaction of a polarizable dielectric medium
on the DFT band structure of the polymer chain. Parameterizing
the tight-binding model to the resultant “solvated” band struc-
ture would then approximate the role of dielectric screening on
the conjugated polymer electronic structure.

Practical considerations influence our choice of functionals.
B3LYP is a hybrid functional, which includes a portion of exact
exchange. It is available within Gaussian, and is commonly used
for electronic structure calculations on organic molecules. For
plane-wave methods used in codes like VASP, exact exchange is
computationally intense, with 10–100x longer calculation times
than pure GGA functionals.

The valence and conduction bands of the polymer arise from
modulated superpositions of local HOMO and LUMO orbitals re-
spectively. Therefore, we expect the monomer HOMO and LUMO
energy levels to align roughly with the center of conduction and
valence bands of their respective homopolymers. Fig. 3 displays
the widths of homopolymer valence bands (blue) and conduc-
tion (orange) bands from VASP, and the corresponding monomer
HOMO and LUMO levels from Gaussian.

PY PH TH TT FL BT
-8

-6

-4

-2

0

Monomer/homopolymer

E
ne
rg
y
(e
V
)

Fig. 3 Monomer HOMO/LUMO levels (black) and valence and conduc-
tion bandwidths (blue and orange) of corresponding homopolymers, for
polypyrrole (PY), polyphenylene (PH), polythiophene (TH), polythienoth-
iophene (TT), polyfluorene (FL), and polybenzothiadiazole (BT). All ener-
gies relative to an electron in vacuum.

Examining Fig. 3, we see that different monomers have differ-
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ent band gaps, as well as different offsets relative to each other.
For example, polythiophene has a similar band gap compared to
polybenzothiadiazole, but both the conduction and valence band
edges are elevated by about 1 eV. (Throughout this paper, en-
ergy levels are reported relative to an electron in vacuum, so that
different moieties and polymers can be compared on an equal
footing.) Such comparisons are important in the design of push-
pull homopolymers, or interfaces between homopolymers in mul-
ticomponent devices.

The monomer HOMO levels align well with the centers of the
corresponding valence bands; however, some of the LUMO levels
do not align well with the conduction band centers. This may re-
sult from the different functionals used in VASP (GGA PW91) and
Gaussian (B3LYP) for band structure and monomer calculations
respectively.

More generally, DFT calculations are known to display system-
atic errors in their predictions for the energies of unoccupied or-
bitals, with disparities between values from different functionals.
As a result, band gaps from DFT methods can be unreliable, and
are often too small compared to experiment.36–38

Improved values of excited state energies for monomers and
oligomers can be obtained from a variety of computational meth-
ods that go beyond DFT. These include 1) time-dependent DFT
(TDDFT),39,40 2) multi-configuration self-consistent field (MC-
SCF) methods,41,42 and 3) calculations based on the Bethe-
Salpeter equations (BSE) in the GW approximation. BSE+GW
calculations can give reliable results for excited states of organic
molecules, but are computationally costly and impractical for
large molecules.43,44. TDDFT methods are widely used for ex-
cited state properties, but can exhibit shortcomings when applied
to extended systems45–48, depending on the functional used. MC-
SCF methods employ states consisting of multiple Slater determi-
nants, which can mix occupied and unoccupied states. In prin-
ciple, as the number of determinants increases, MCSCF meth-
ods approach the exact solution of the many-electron problem;
in practice, the set of states treated this way is limited to a few
orbitals nearest the HOMO-LUMO gap. Generally speaking, post-
DFT calculations on monomers can be used to get improved val-
ues of the HOMO-LUMO gap, which can be used to fit tight-
binding onsite energies.

In contrast, the bandwidths of the unoccupied conduction
bands depend ultimately on overlap integrals between orbitals on
adjacent moieties, which are probably well represented in stan-
dard ground-state DFT calculations. As a result, tight-binding
hopping matrix elements fitted to DFT band structures may be
reasonably accurate, even if the band gap is incorrect.

In this work, we focus on the ability of the tight-binding model
to describe homopolymer and copolymer band structures, and the
degree to which parameters derived from homopolymer DFT cal-
culations can predict copolymer band structures. Thus, for sim-
plicity here we neglect any systematic errors in DFT band struc-
tures, and fit tight-binding models to DFT band structures as if
they were completely correct. Our tight-binding band gaps there-
fore echo any systematic errors in the DFT results, and can be
improved by advances in the underlying DFT methods.

3 Parameterization of tight binding models
In this section, we present a sequence of tight binding models
for polymers of increasing complexity. In the simplest case, the
HOMO-LUMO energy difference is large enough that HOMO or-
bitals on a given monomer only couple to HOMOs on adjacent
monomers, not to adjacent LUMOs (and likewise, LUMO orbitals
only couples to adjacent LUMOs). This leads to a separate tight
binding models for the conduction and valence bands.

If the HOMO-LUMO gap is comparable in size to the hop-
ping matrix element, then hopping from the HOMO on a given
monomer to the adjacent LUMO becomes significant. This leads
to a tight binding model in which HOMO and LUMO bands mix,
and are computed together. In this section, we give examples
of homopolymers for which HOMO-LUMO coupling is important,
and show how it qualitatively changes the shape of the bands.

In either case, we adjust the tight binding parameters ε and t
to fit the DFT band structures. Choosing parameters so that tight
binding and DFT bands agree at the band edges gives excellent
agreement across the entire band, with no need for a least-squares
fit of the bands with respect to the tight binding parameters. We
quantify the error in the tight binding model by calculating the
root mean square difference between the tight binding and DFT
predictions, integrated over the valence and conduction bands.

Tight binding models for copolymers can be constructed in two
ways: 1) fit all parameters directly to DFT band structure calcula-
tions, or 2) use tight binding fits to homopolymers to generate
the necessary parameters. In the latter case, we need a phe-
nomenological recipe for the hopping matrix elements between
adjacent monomers of different type, which are not present in
the corresponding homopolymers. We obtain reasonable results
by simply averaging the two homopolymer hopping matrix ele-
ments to obtain the hopping matrix element between alternating
comonomers.

3.1 Homopolymers

Fig. 4 depicts a simple tight binding model for a homopolymer.
The infinite chain consists of a 1-dimensional sequence of re-
peating sites, each with the same onsite energy ε, and identical
hopping matrix elements t between sites. For the simple case of
noninteracting HOMO and LUMO levels, we write separate tight
binding models for the valence and conduction bands.

With a wavefunction of the form Eqn. 2, and Bloch’s theorem
Eqn. 6, the wavefunction can be written

ψq = ∑
j

eiq j∆c†
j |0〉 (7)

For an undistorted infinite chain, the tight-binding Hamiltonian
Eqn. 1 takes the form

H = ε ∑
k

c†
kck− t ∑

k

(
c†

k+1ck + c†
k−1ck

)
(8)

The time-independent Schrodinger equation Hψq = E(q)ψq leads
to

E(q) = ε−2t cos(q∆) (9)

Journal Name, [year], [vol.],1–13 | 5

Page 5 of 13 Physical Chemistry Chemical Physics



The dispersion relation Eqn. 9 is a cosine band. The wavenum-
ber q runs up to q = π/∆, which gives a wavefunction envelope
eiq j∆ that oscillates in sign between adjacent sites. The bandwidth
is 4t, and the band is centered on the onsite energy ε. The cosine
band spreads out from the local orbital and its energy, as a result
of hopping between adjacent moieties. If the hopping matrix el-
ement t is reduced to zero, the band flattens into disconnected
localized states, with energies all equal to ε, independent of q.

Although a homopolymer can be represented in a tight-binding
model as a repeating sequence of a single monomer, for DFT cal-
culations we must take a larger unit cell to accommodate the al-
ternation of right-side-up and upside-down monomers in an all-
trans chain. For example, an all-trans polythiophene chain con-
sists of alternating monomers in which the sulfur points up or
down (see Fig. 5a). To represent such a chain in periodic bound-
ary conditions, the unit cell must contain two monomers.

A two-site unit cell gives “folded” cosine bands, as shown in Fig.
4. For the simplest comparison of tight binding model predictions
to DFT results, we recast the tight-binding model with a two-
site unit cell. (Since the two systems are physically the same,
the results are completely equivalent to those obtained with the
single-site unit cell.)

Є Є
t

��� ��� ��� ���

-�

-�

�

�

�

�Δ

�
(�
�)

Fig. 4 Tight binding model for homopolymers and corresponding band
structure.

For the two-site unit cell, Bloch’s theorem dictates a wavefunc-
tion of the form

ψq = ∑
j

e2iq j∆
(

c†
2 j + eiq∆c†

2 j+1

)
|0〉 (10)

Here j indexes the unit cells; within each unit cell are two sites,
with indices 2 j and 2 j + 1. The width of the unit cell is now
2∆, where ∆ is still the distance between adjacent sites. The
wavenumber q now runs up to π/(2∆).

The Hamiltonian for the two-site model can be written in ma-
trix form as

H =

[
ε −2t cos(q∆)

−2t cos(q∆) ε

]
(11)

The two eigenvalues are

E(q) = ε±2t cos(q∆) (12)

Eqn. 12 gives the “folded cosine” shape evident in Fig. 4.
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Fig. 5 Homopolymer band structures from DFT (blue) and tight binding
models (red), with unit cells shown above each graph, for polythiophene
(a), polyphenylene (b), polypyrrole (c), and polythienothiophene (d).

Fig. 5 shows DFT band structures for four different homopoly-
mers (blue) and corresponding tight binding model fits (red). For
the folded cosine bands of Eqn. 12, the band center equals the
onsite energy ε, and the band width equals 4t. The fits here are
performed by adjusting the valence and conduction ε and t so
that the highest and lowest energies (at q = 0) coincide with DFT
results. Evidently, the bands are well described by folded cosines.

Table 1 presents the tight-binding parameters used in Figs. 5
and 8. The signs of hopping matrix elements t in the table reflect
the symmetries of the constituent frontier orbitals. The values
of t for thienothiophene and benzothiadiazole are smaller than
for the other moieties, perhaps because the HOMO and LUMO
orbitals are delocalized over a larger molecule, and so have less
amplitude on the carbon where they overlap with the adjacent
orbital on the bond between monomers.

The DFT band structures capture all the energy states of the
polymer, some of which are missing from the tight binding band
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Table 1 Tight binding parameters (in eV) used in Figs. 5 and 8; for ben-
zothiadiazole, the model includes HOMO-LUMO coupling

valence conduction
monomer ε t ε t tHL
thiophene -6.29 0.97 -1.72 0.8

pyrrole -5.62 0.95 -0.96 0.52
phenylene -6.57 0.83 -1.3 0.88

thienothiophene -5.84 0.71 -2.44 0.46

benzothiadiazole -6.16 0.55 -3.63 0.27 0.5

structures. In particular, the DFT band structures all exhibit very
flat bands (and therefore nearly localized states) around -6eV,
which are not present in the tight binding model. These states
must be very weakly coupled to the valence bands, since the co-
sine shape of the valence bands are not much perturbed even at
energies near -6 eV where the two states become nearly degener-
ate. Since the states are far from the Fermi level, and do not par-
ticipate in the backbone conjugation that gives rise to extended
states of interest for hole transport, we are justified in ignoring
them in the tight binding model.

We can identify the origin of these states by plotting the energy-
filtered electron density, as shown in Fig. 6 for polythienothio-
phene. Evidently, the electron density in this energy range is pri-
marily associated with the sulfur atoms, and corresponds to the
lone pair on sulfur.

Fig. 6 Energy-filtered electron density for localized state around -6 eV
in polythienothiophene, with charge density ranging from a minimum of
0.04 (blue) up to 0.3 (yellow-green).

3.1.1 HOMO-LUMO coupling.

Frontier orbitals on a given monomer may interact with more
than one orbital on adjacent monomers. In such cases, the tight
binding model must include additional hopping matrix elements
to accurately predict the resulting band structures, which are not
cosine-shaped. Fig. 7 presents a schematic of the tight binding
model for a homopolymer with HOMO-LUMO coupling.

The corresponding Hamiltonian can be written as

H =


εh −2th cos(q∆) 0 2ithl sin(q∆)

−2th cos(q∆) εh 2ithl sin(q∆) 0
0 −2ithl sin(q∆) εl −2tl cos(q∆)

−2ithl sin(q∆) 0 −2tl cos(q∆) εl


(13)

In Eqn. 13, the matrix elements of H are presented in a basis in
which the entries in order are site 1 HOMO, site 2 HOMO, site 1
LUMO, site 2 LUMO. Without the HOMO-LUMO coupling terms

tl

th

Єh
Єh

Єl
Єl

thl

Fig. 7 Tight binding model for a homopolymer with HOMO-LUMO cou-
pling.

along the “reverse diagonal”, H would be block diagonal, with
independent blocks for the HOMO and LUMO bands.

Polybenzothiadiazole has a rather low HOMO-LUMO gap, such
that the LUMO on a given monomer couples with the HOMO on
the adjacent monomer. (There is never coupling between HOMO
and LUMO on the same monomer, because these states are or-
thogonal.) As shown by the black lines in Fig. 3, the HOMO-
LUMO gap of BT (2.9 eV) is the lowest of all the monomers we
studied, lower than that of TT (3.7 eV). Further, the band struc-
ture of polybenzothiadiazole (Fig. 8) shows a clear non-cosine na-
ture. Including HOMO-LUMO coupling, the tight-binding model
accurately describes the band structure of polybenzothiadiazole,
as shown in Fig. 8. The shape of the bands are distinctly different
from folded cosines, and a tight-binding model without HOMO-
LUMO coupling between adjacent monomers would give a very
poor fit to the DFT bands.

Indeed, one indication that HOMO-LUMO coupling should be
included in the tight binding model is the non-cosine shape of the
DFT valence and conduction bands. For the homopolymers stud-
ied in this paper, thiophene, thienothiophene, pyrrole, phenylene
and fluorene all exhibit cosine-shaped conduction and valence
bands, and thus do not require HOMO-LUMO coupling. More
mechanistically, when the HOMO-LUMO gap is small enough that
the hopping matrix elements are comparable to the gap, then we
expect HOMO-LUMO coupling may play a role. This is evidently
the case for polybenzothiadiazole; in the next section, we find
that some copolymers containing benzothiadiazole also exhibit
HOMO-LUMO coupling to adjacent monomers.

3.1.2 Accuracy.

The accuracy of tight binding models is quantified by computing
the root mean squared (RMS) difference between the tight bind-
ing and DFT band structures, integrated over the branch of the
folded conduction and valence bands nearest the band gap, from
q = 0 to the band edge. DFT band structures are computed at 45
k-points along Γ−X from q = 0 to the band edge; for the RMS
error, tight binding energies are computed at the same k-points.
Table 2 presents RMS error results for five homopolymers stud-
ied here. The small RMS errors reflect the close overlap of tight
binding and DFT bands evident in Figs. 5 and 8.
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Fig. 8 Polybenzothiadiazole band structure from DFT (bands) and tight
binding (red).

Table 2 Root mean squared error (in eV) of tight binding band structures
versus DFT

monomer valence conduction
thiophene 0.11 0.09

pyrrole 0.09 0.06
phenylene 0.08 0.07

thienothiophene 0.06 0.12
benzothiadiazole 0.01 0.03

3.2 Alternating copolymers
Alternating copolymers consist of two different monomers alter-
nating in sequence along the polymer chain. Push-pull copoly-
mers are alternating copolymers in which the two constituent
monomers are respectively “electron rich” (or “donor”) and “elec-
tron poor” (or “acceptor”). That is, they have HOMO and LUMO
levels shifted with respect to each other, so that the donor moiety
has higher energy levels than the acceptor.

In the simplest case for alternating copolymers, the HOMO or-
bital on a given monomer couples only to the HOMO on adja-
cent comonomers, and likewise for the LUMO orbitals. The corre-
sponding tight binding model has two sites in the unit cell, with
different onsite energies. A single hopping matrix element cou-
ples the alternating moieties. (See Fig. 9.)

The reflection symmetries of frontier orbitals on the two
comonomers again dictate the orientation of the bands. If the
HOMO orbitals on the two comonomers have the same symmetry,
the unmodulated state (q = 0) has the lowest and highest ener-

Є Є
t

1 2

Fig. 9 Tight binding model for an alternating copolymer

gies, corresponding to the symmetric and antisymmetric combi-
nation of HOMOs within the two-monomer unit cell. Whereas,
if the monomers have opposite symmetries, modulations at the
band edge (q = π/∆, where ∆ is now the total length of the two-
monomer repeating unit) yield the lowest and the highest ener-
gies.

When the comonomer frontier orbitals have the same symme-
try, the Hamiltonian can be written

H =

[
ε1 −2t cos(q∆)

−2t cos(q∆) ε2

]
(14)

The resultant band structure is a folded cosine, similar to the two-
site representation of a homopolymer, but with a gap opened at
band edge q = π/∆ because of the different onsite energies (see
Fig. 10a).

When the comonomer frontier orbitals have opposite symme-
try, the Hamiltonian takes the form

H =

[
ε1 2it sin(q∆)

−2it sin(q∆) ε2

]
(15)

The resultant band structure is now an inverted folded cosine,
with a gap opened at q = 0 by the different onsite energies (see
Fig. 10b).
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Fig. 10 Tight binding band structures for alternating copolymers, for
comonomers with the same (left) and opposite (right) orbital symmetries.

The most direct way to determine parameters for copolymer
tight binding models is to fit them to DFT band structures. Tight
binding band structures computed in this way are shown as red
curves in Fig. 11 for four representative alternating copolymers.
In each case, the onsite energies ε1 and ε2 and hopping matrix
element t for the conduction and valence bands were adjusted so
that the tight-binding predictions coincide with DFT results at the
band edges. The average onsite energy sets the band center, the
hopping matrix element controls the bandwidth, and the differ-
ence in onsite energies sets the small gap.

The tight-binding predictions are quite close to the DFT bands,
with the expected interventions of localized states far from the
Fermi level. These appear as sharp, nearly flat features in the
full DFT band structure, but are not included in the tight-binding
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Fig. 11 Copolymer band structures from DFT (blue), from copolymer
tight-binding models fitted to DFT results (red), and from copolymer tight-
binding models with parameters taken from homopolymer fits (green).

model.
Fig. 11c and d displays results for alternating copolymers

thiophene-co-phenylene and pyrrole-co-phenylene. As can be
seen from the figures above the respective graphs, for these
copolymers the periodic repeating unit for an all-trans chain
requires that the unit cell must contain two repeats of the
monomers (i.e., ABAB). This leads to a “doubly folded” band. In
the tight-binding model for these copolymers, we have likewise
written a four-site unit cell, and computed the bands accordingly.
The small band gaps induced by different onsite energies of the
two comonomers now appear at q = 0.

Alternatively, we can parameterize tight binding models for
copolymers by using values for onsite energies from fits to cor-
responding homopolymers. We also need the hopping matrix el-
ement between unlike comonomers, which is not directly avail-
able from homopolymer fits. We estimate this hopping matrix el-
ement simply by averaging the hopping matrix element between
like monomers, which is available from homopolymer fits, as

tAB = 1/2(tAA + tBB) (16)

Fig. 11 shows tight binding predictions using parameters de-

rived from homopolymer fits for band structures of several
alternating copolymers (green curves). In most cases, the
homopolymer-derived band structures are nearly as close to the
DFT results as the explicitly fitted tight-binding band structures.
In particular, bandwidths from the simple averaging approxima-
tion Eqn. 16 are quite close to the DFT bandwidths. Table 3 re-
ports the tight binding parameters used to generate the results of
Fig. 11.

For poly thienothiophene-co-phenylene (Fig. 11b), the gaps
at q = 0 are far off from the DFT results. One possible reason
for this is that the DFT band structures show intervening states
around -1.5eV and -6eV that apparently couple to some extent
with the extended states. These localized states were not in-
cluded in the tight-binding model, which hampers its ability to
account for the shape of the bands. However, prediction for the
band structure near the Fermi level are quite encouraging; both
the homopolymer-fitted and explicitly fitted tight binding models
follow the DFT results very closely in the most relevant part of the
band structure.

Table 3 presents the tight-binding parameters for alternating
copolymers studied here. For each copolymer, the first row of val-
ues corresponds to predictions from homopolymer fits, while the
second row (in italics) are obtained from direct fit of the copoly-
mer tight binding model to DFT bands. In nearly all cases, the
parameters are quite close, reflecting the close agreement in Fig.
11 of the direct fit (red curves) and homopolymer-derived pre-
dictions (green curves) to the DFT valence and conduction bands
(blue curves).

3.2.1 HOMO-LUMO coupling.

In some copolymers, when the LUMO on a given monomer is low,
it may interact with the HOMO on adjacent monomers. This the
case for some push-pull copolymers such as poly thienothiophene-
co-benzothiadiazole, in which the thienothiophene HOMO inter-
acts with both the HOMO and LUMO on benzothiadiazole. Exam-
ining HOMO-LUMO levels in Fig. 3, we can see that the “push”
unit HOMO on all monomers shows a small gap to the “pull”
LUMO on BT, suggesting HOMO-LUMO coupling will be required
for all co-polymer systems including the BT monomer. No other
copolymer systems show a cross-monomer HOMO-LUMO gap less
than the BT homopolymer, suggesting that of the monomers con-
sidered here, only BT-containing copolymers require the inclusion
of HOMO-LUMO coupling. To account for this, we generalize the
tight-binding model to include a hopping matrix element between
the HOMO on one comonomer and the LUMO on the other. The
resulting model is shown schematically in Fig. 12.

The Hamiltonian corresponding to the model of Fig. 12 takes
the form

H =

 ε1 −2t cos(q∆) 2itHL sin(q∆)

−2t cos(q∆) ε2H 0
−2itHL sin(q∆) 0 ε2L

 (17)

Fig. 13 displays results for tight-binding band structures of
two alternating copolymers containing benzothiadiazole, com-
paring DFT results (blue curves) with explicit tight binding fits
(red curves) and homopolymer-parameterized tight binding pre-

Journal Name, [year], [vol.],1–13 | 9

Page 9 of 13 Physical Chemistry Chemical Physics



Table 3 Tight binding parameters (in eV) used in Figs. 11 and 13. For each copolymer, the first set of parameters are from homopolymer-parameterized
models, (hopping matrix elements taken as average of homopolymer values); the second set (italics) are from tight binding model fits to DFT results.
The last two entries include HOMO-LUMO coupling; dashes indicate bands computed without including the LUMO on phenylene or thienothiophene.

valence conduction
monomers εA εB t εA εB t tHL

thiophene / pyrrole -6.29 -5.62 0.96 -1.72 -0.96 0.66
-6.20 -5.70 0.96 -1.57 -1.13 0.71

thienothiophene / phenylene -5.84 -6.57 0.77 -2.44 -1.30 0.67
-6.05 -6.32 0.80 -1.99 -1.78 0.68

thiophene / phenylene -6.29 -6.57 0.9 -1.72 -1.30 0.84
-6.21 -6.61 0.91 -1.80 -1.30 0.83

pyrrole / phenylene -5.62 -6.57 0.89 -0.96 -1.30 0.70
-5.69 -6.45 0.95 -0.81 -1.41 0.80

phenylene / benzothiadiazole -6.57 -6.16 0.69 — -3.63 — 0.5
-6.29 -6.20 0.57 — -3.64 — 0.54

thienothiophene / benzothiadiazole -5.84 -6.16 0.63 — -3.63 — 0.5
-5.68 -6.08 0.64 — -3.94 — 0.54

th Є  h

Є  lthl

Є2

1

1

!2H

!2L
!1

t

tHL

Fig. 12 Tight binding schematic for an alternating copolymer with
HOMO-LUMO coupling.

dictions (green curves), described further below. Only the por-
tion of the band structure corresponding to the thienothiophene
HOMO, benzothiadiazole HOMO, and benzothiadiazole LUMO
are shown; the upper conduction band arising from the thienoth-
iophene LUMO is omitted for simplicity.
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Fig. 13 Band structure for alternating copolymers with HOMO/LUMO
coupling from DFT (blue), explicitly fitted tight binding models (red), and
homopolymer-parameterized tight binding models (green).

In the explicit tight binding fits, the onsite energies ε1H , ε1L,
ε2 (HOMO), tH , and tHL are adjusted to agree with the corre-

sponding DFT bands at the band edges (q = 0 and q = π/∆). The
resulting fits are in excellent agreement with DFT results. The
conduction band (upper curve) for these copolymers has a rather
narrow bandwidth, and a low curvature at the band gap corre-
sponding to a large effective mass, which means these carriers
would be relatively easily localized by inhomogeneous fields.

Parameterizing the copolymer tight binding model with val-
ues derived from homopolymer fits alone is more challenging
when HOMO-LUMO coupling is present. In particular, we must
guess the value of tHL, the hopping matrix element between the
thienothiophene HOMO and the benzothiadiazole LUMO. Here,
we assume tHL is the same as for the benzothiadiazole homopoly-
mer. We use the onsite energies from the respective homopolymer
fits, and use the averaging rule for the hopping matrix element tH
between thienothiophene and benzothiadiazole HOMOs.

The resulting homopolymer-derived tight binding predictions
are shown in Fig. 13 as the green curves (the corresponding pa-
rameters are given in Table 3). These predictions reproduce the
bands nearest the Fermi level reasonably well, but fail to capture
the deeper conduction band more than qualitatively. Still, the
bandwidths and even the band gap of the homopolymer-derived
model are rather close to the DFT results, without the need for an
explicit DFT calculation for the actual copolymer.

We again quantify the accuracy of tight binding predictions for
copolymer band structures by computing the RMS error versus
the DFT band structures, averaged over the valence and conduc-
tion bands nearest the Fermi level. These errors are given for a
series of copolymers in Table 4. In nearly all cases, the average
errors are less than 0.2 eV, which makes tight binding predictions
useful for even sensitive electronic properties. The relatively large
error (0.14eV) for the thienothiophene-benzothiadiazole valence
band is partly an artifact, as can be seen from Fig. 13b; because
of the intervening localized state, the band predicted by the tight-
binding model crosses between two different DFT bands around
-6eV.

4 Conclusions
In this paper, we show that valence and conduction bands for ho-
mopolymer and alternating copolymer semiconductors can be ac-
curately predicted using computationally inexpensive tight bind-
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Table 4 Mean squared error for tight binding copolymer band structures versus DFT, from direct fits to DFT (left) and using homopolymer values (right);
see main text for comment on starred value

direct fit homopolymer fit
copolymer valence conduction valence conduction

thiophene / pyrrole 0.11 0.08 0.13 0.08
thienothiophene / phenylene 0.11 0.10 0.06 0.28

thiophene / phenylene 0.12 0.12 0.08 0.10
pyrrole / phenylene 0.15 0.15 0.09 0.10

phenylene / benzothiadiazole 0.01 0.01 0.11 0.05
thienothiophene / benzothiadiazole 0.10 0.02 0.14∗ 0.21

ing models. Tight binding models are useful complements to den-
sity functional theory because they drastically reduce the number
of electronic degrees of freedom, while retaining sufficient chem-
ical and electronic detail to describe the extended states relevant
to charge transport.

We have demonstrated our methods for a variety of copoly-
mers constructed from commonly studied conjugated monomers
including thiophene, thienothiophene, benzothiadiazole, pyrrole,
and phenylene. Though not exhibited here, our approach is also
applicable to copolymers that include conjugated “bridges” of
one or more -C=C- moieties, which are equivalent to acetylene
oligomers. The tight binding approach can describe polyacety-
lene, with an onsite energy and hopping matrix element that
match the homopolymer band structure, and extend to copoly-
mers that contain -C=C- moieties.

We present straightforward schemes for fitting the tight binding
model parameters, which are onsite energies and hopping matrix
elements, by comparison to DFT band structures for homopoly-
mers and alternating copolymers. The particular form of the tight
binding model depends on the proximity of frontier orbital energy
levels on adjacent monomers. In the simplest case, the HOMO
and LUMO levels of adjacent monomers are far apart relative to
the size of hopping matrix elements. Then, we can construct sep-
arate tight binding models for the valence and conduction bands,
which emerge respectively from the monomer HOMO and LUMO
levels. The resulting bands are cosine-shaped.

For copolymers in which the LUMO on one comonomer is suffi-
ciently close in energy to the HOMO on an adjacent comonomer,
hopping matrix elements can couple the LUMO to the adjacent
HOMO. This occurs in particular for “push-pull” copolymers, in
which the differing electron affinities of the alternating moieties
leads to a relative displacement of their HOMO and LUMO lev-
els. This phenomenon can likewise occur even in homopolymers
(such as polybenzothiadiazole), when the HOMO-LUMO gap is
comparable in magnitude to hopping matrix elements.

Among the homopolymers we studied, the BT monomer has the
smallest HOMO-LUMO gap (2.9 eV) and was the only monomer
requiring a HOMO-LUMO coupling. This suggests HOMO-LUMO
coupling between adjacent monomers will be likewise needed in
copolymer systems with cross-monomer HOMO-LUMO gaps less
than or equal to this value. Further testing across more moieties
would be needed to confirm that this criterion is sufficient for
including HOMO-LUMO coupling in the tight-binding model. The
need for HOMO-LUMO coupling is also evident from the “non-
cosine” shape of the valence and conduction bands of these 1D

polymer chains, though we caution that there may be other causes
of non-cosine shapes in systems not studied here.

For polymers in which HOMO-LUMO coupling is relevant, the
appropriate tight-binding model include the corresponding hop-
ping matrix elements. When they are included, tight binding
model predictions for band structures are in very good agreement
with DFT results, even when the shapes of the bands are far from
cosine-shaped.

The most straightforward way to parameterize alternating
copolymer tight binding models is to fit them to copolymer band
structures computed for periodic chains using DFT. Because there
are O(N2) possible copolymers that can be constructed from N
monomers, it would be convenient if tight binding parameters
from fits to homopolymer band structures could be used to make
predictions for copolymers, without having to compute DFT band
structures for each copolymer. We present schemes for doing this,
using the onsite energies obtained from homopolymer fits, and
an averaging approximation for the hopping matrix element be-
tween unlike monomers. Predictions made in this way give good
agreement with DFT band structures for the branches of the con-
duction and valence bands nearest the Fermi level.

In this work, we have provisionally accepted DFT calculations
(here performed using VASP with the GGA PW91 functional) as
the “gold standard” for electronic structure, to explore the poten-
tial for tight binding models to cheaply reproduce these more ex-
pensive calculations. Of course, DFT calculations have their own
limitations, chief among which is a tendency to systematic errors
in predicting the band gap. Evidently, the accuracy of tight bind-
ing models parameterized by comparison to DFT results would be
subject to the same systematic errors.

However, the flexibility of the tight binding model allows us to
adjust onsite energies to reproduce the experimental band gap, or
higher-level calculations of monomer HOMO and LUMO levels. In
particular, more accurate (and computationally expensive) “post-
DFT” methods can be used for computing the energy levels of
monomers or oligomers, which can be used to obtain improved
values of onsite energies for use in tight binding models.

Finally, we emphasize that well-parameterized tight binding
models have broad application to predict electronic properties of
homopolymer and copolymer systems, including absorption spec-
tra of disordered chains, excitons at donor-acceptor interfaces,
transport in 2d crystalline lamellae, and structure and transport
of polarons and excitons. All these important applications are
computationally feasible for tight-binding based theories, but are
challenging or inaccessible to DFT calculations because of large
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system sizes, need for averaging over disorder, or coupling to the
surrounding medium.
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