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New structural model of a chiral cubic liquid crystalline phase 
Nataša Vaupotič,a,b,*  Mirosław Salamończyk,c,d Joanna Matraszek,c Martin Vogrin,e Damian 
Pociecha,c Ewa Goreckac,*

We have studied properties of novel thermotropic mesogenic materials that exhibit both an achiral double gyroid (  𝐼𝑎3𝑑

symmetry) and chiral cubic phase (previously assigned the  symmetry). We argue that in the chiral cubic phase 𝐼𝑚3𝑚

molecules form micelles and channels arranged into continuously interconnected hexagons. From the x-ray diffraction 
experiment supported by modelling, exact positions of hexagons and their connections were deduced and showed to be 
embedded on a WP (degenerated Neovius) minimal primitive surface. The elastic energy of such a structure is close to the 
one of the double gyroid phase, which is in agreement with a very low enthalpy change observed at the phase transition. 
We also argue that the chirality of the phase is related to the lack of mirror symmetry of non-flat hexagons accompanied by 
an alternating inclination of molecules in the neighbouring segments of hexagon; the chirality of individual hexagon is 
amplified on the whole hexagon network by steric effects. 

In soft matter, phases that contain three dimensional (3D) 
organization of channels have attracted a lot of interest, both 
due to their complexity as well as potential applications, for 
example as mechanically resistant materials [1], in photovoltaic 
[2], photonic devices and as optical metamaterials [3]. To date, 
most of the studies related to the continuous phases have been 
carried out for polymers and lyotropic systems, in which the 
formation of such phases was mainly attributed to the 
separation of chemically incompatible entities [4]. Continuous 
phases are less frequent for thermotropic mesogenic materials 
where the formation of one or more continuous networks is 
believed to be due to a mismatch between the volumes 
necessary to accommodate chemically incompatible molecular 
parts: alkyl chains and aromatic cores [5]. Typically, continuous 
phases exhibit cubic symmetry, which makes their properties 
isotropic, despite of their complexity. The most common cubic 
continuous phase is a double gyroid phase. This phase consists 
of two entangled continuous networks (a bi-continuous phase) 
of opposite chirality, related to each other by an inversion 
symmetry [6]. The gyroid structure is one of the most complex 
self-assembled continuous structures in nature [7]. The two 
networks are in fact two systems of channels, each made of 
linear units interconnected through flat three-fold junctions 
(nodes), the planes of adjacent nodes being twisted by  ~70
degrees (Fig 1). The phase is achiral and belongs to the space 

group . What seems to be unique for the gyroid structure 𝐼𝑎3𝑑
built from rod-like mesogenic molecules is a helical orientation 
of molecules along the channels [8-10]. The sense of molecular 
rotation is defined by the helical structure of channels - if 
molecular long axes are oriented perpendicular to the node-
plane, then they have to twist between the nodes with the 
sense uniquely defined by the sense of rotation of adjacent 
junctions (Fig. 1). Another type of a cubic continuous phase, that 
turned out to be chiral [9], has been discovered in several 
materials [11-12], and based on the X-ray diffraction (XRD) 
studies, it was proposed to have a tri-continuous structure [13] 
or one continuous network that encloses micelles formed by 
the remnant molecules not included in the hexagonal network 
[14] (Fig. 2).

Figure 1. Structure of the  phase: (a) Structure of the  phase and a scheme of 𝑰𝒂𝟑𝒅 𝐼𝑎3𝑑
the repeating unit involving two neighboring nodes (marked in green), the junctions in 

adjacent nodes being twisted by  deg (yellow arrows are normal to the node ≈ 70

planes). In the inset, the system of channels is viewed along the  and  [100] [111]
directions, channels drown in red and blue are mirror inverted to each other. (b) 

Channels of the  phase decorated with rod-like molecules; molecules along each 𝐼𝑎3𝑑
line connecting two nodes form short helices with the sense uniquely defined by the 
sense of rotation of the adjacent junctions.
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Figure 2. Current models of the chiral cubic phase: (a) Model with one continuous 

network and micelles and (b) tri-continuous model with the  symmetry. In both 𝐼𝑚3𝑚
cases the blue network is shown only within the unit cell, the micelle and the octagon in 
the center of the blue network also belong to the unit cell while the structures in the 
corner of the unit cell are shown in full, although belonging partially to the neighboring 

unit cells. c) Recently proposed tri-continuous model with the  symmetry. Only the 𝐼23
inner and the middle grid are shown. The outer grid consists of the inner pattern 
transferred to all the corners.

The proposed continuous network, being characteristic for both 
models, is consistent with an increase of the crystallographic 
unit cell parameter from  to  molecular lengths, observed ~2 ~3
upon a transition from the double gyroid to the chiral cubic 
phase [15]. The structure with micelles is in line with the 
findings of the maximum entropy method [14] and density 
fluctuations study [16]. This cubic phase was, at first, assigned 
to have the  symmetry, but due to its optical activity, it 𝐼𝑚3𝑚
does not possess a center of inversion so its symmetry is lower. 
We shall call this phase the chiral cubic ( ) phase. A common 𝐶𝐶
characteristic of both models of the CC phase (Fig. 2) is a 
continuous network formed by a system of channels that meet 
in three-way junctions to form eight interconnected hexagons 
in the unit cell. This system of hexagons is assumed to be 
embedded on the Schwarz minimal surface [15,17]. The optical 
activity has been attributed to the formation of helices by a 
mechanism similar to the one in the  phase, where it 𝐼𝑎3𝑑
results from a different orientation of molecules in the 
neighboring nodes [9]. By assuming the same sense of rotation 
of molecules along the sides of hexagon, two type of junctions 
are formed in the each hexagon, three with perfect and three 
with imperfect match in molecular orientation [9]. However, 
there is no specific reason why the helicity of each hexagon 
should be uniform; because the double gyroid phase is achiral, 
hexagons can be formed from equal amounts of left and right-
handed segments. Indeed, by assuming that molecules are 
oriented in the direction “perpendicular” to each junction, 
where “perpendicular” means in the direction obtained by the 
sum of the unit vectors along the three channels forming the 
junction, careful inspection shows that there are three left and 
three right-handed helices within each hexagon, the structure 
thus being essentially achiral. In ref. [18] this problem is 
overcome by a continuous rotation of molecules on each 
micelle, which makes the micelles chiral. Such an arrangement 
would cause a strongly non-uniform density of micelles, which, 
to some extent can be observed also in the reconstruction of 
the electron density map from the XRD data, but the density 
inhomogeneity of micelles is very weak.
Just recently, a new structural model of the chiral cubic phase 
was proposed by the (co-)authors of the first tri-continuous 
structure [19]. The model still consists of three continuous grids 

but the connections in the inner and outer grid are chosen such 
that all the junctions are three-fold (Fig. 2). The obtained 
symmetry is , so the middle grid was structured such that it 𝐼23
also has the  symmetry. All the grids can be of either the 𝐼23
same or different chirality, based on a similar reasoning as in 
[9]. The structure is argued to give a very good agreement 
between the experimental measurements and model 
predictions. The reconstruction from experimental XRD 
intensities with phases of the peaks obtained from the model is 
indeed in good agreement with the model, but this is valid also 
for the previous models. The problem arises in a comparison of 
the model and experimental XRD intensities. Neither the first 
[20] nor the latest [19] tri-continuous model would give the 

 peak as the second highest in intensity. We also point out (004)
that such a model requires a significant rearrangement of 
molecules compared to the structure of the  phase from 𝐼𝑎3𝑑
which the chiral phase evolves. This should be accompanied by 
a measurable enthalpy changes at the phase transition. 
However, for all the so far observed cases the enthalpy change 
is negligible. 
In this paper we report on new experimental data from a new 
type of polycatenar materials exhibiting sequence of the chiral 
cubic and achiral double gyroid phases. Based on no observable 
enthalpy changes accompanying the phase transition between 
the  and  phase we propose a new model of the  𝐶𝐶 𝐼𝑎3𝑑 𝐶𝐶
phase that gives the elastic energy of the  phase similar to 𝐶𝐶
the one of the double gyroid phase, it gives  a good agreement 
with the XRD data (the highest peaks in the model are also the 
highest peaks observed in experiment), and we offer a new 
origin of chirality that overcomes the above mentioned 
problems of the existing models.

Results
Molecules of the studied materials (Fig. 3) have the same 
mesogenic core and they differ in the length of the terminal 
chain (R) at the biphenyl unit.  On heating, the studied materials 
exhibit the CC phase at temperatures below the double gyroid 
phase (Table 1). On cooling, the double gyroid phase deforms 
into a metastable orthorhombic phase [21]. For the studied 
materials, the X-ray diffraction patterns were recorded as a 
function of temperature, which revealed a sequence of 3D-
ordered phases (Fig. 4a). The DSC studies showed no or very 
small enthalpy changes accompanying these transitions (Fig. 
4c), which seems like a general feature [11]. Upon melting the 
crystal, the consecutive phases in the heating scans are:   𝐶𝐶

    .𝐼𝑎3𝑑 𝐶𝑜𝑙ℎ 𝐼𝑠𝑜

Figure 3. Studied materials: molecular structure of the studied materials.
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Table 1. Phase sequences: Transition temperatures for the studied compounds (in ) ℃

and associated enthalpy changes (given in brackets in ) observed in heating scans Jg ―1

for the studied homologues. The   -  transition is not accompanied by a 𝐶𝐶 𝐼𝑎3𝑑 

measurable thermal effect (the enthalpy change is below ), the transition 0.005 Jg ―1

temperatures were obtained from the XRD studies.

R Phase sequence
C4H9  106.5 (19.0)  175  181  185.1 (1.1) 𝐶𝑟 𝐶𝐶 𝐼𝑎3𝑑 𝐶𝑜𝑙ℎ 𝐼𝑠𝑜
C5H11 100.7 (32.3) Cr2 117.1 (1.0)  161  171  180.7 𝐶𝑟 𝐶𝐶 𝐼𝑎3𝑑 𝐶𝑜𝑙ℎ

(0.9) 𝐼𝑠𝑜
C6H13  108.8 (29.8)  176   179  185.9 (1.4) 𝐶𝑟 𝐶𝐶 𝐼𝑎3𝑑 𝐶𝑜𝑙ℎ 𝐼𝑠𝑜
C8H17  83.3 (23.2)  96.5 (8.1)  160.5 (0.1)   174.0 (0.02) 𝐶𝑟 𝐶𝑟2 𝐶𝐶 𝐼𝑎3𝑑

 183.8 (1.1) 𝐶𝑜𝑙ℎ 𝐼𝑠𝑜

In the hexagonal columnar phase ( ), the crystallographic 𝐶𝑜𝑙ℎ

unit cell parameter (column diameter) is consistent with a 
molecular length and in the gyroid and  phases it corresponds 𝐶𝐶
to 2 and 3 molecular lengths, respectively. Both cubic phases 
have zero optical birefringence and the  phase exhibits 𝐶𝐶
domains with a low optical activity,  degree/µm (Fig. 4d). ~ 0.5

Discussion 
The intensities of the experimentally obtained diffraction peaks 
in the  phase are given in Table 2. The highest intensity peaks 𝐶𝐶
are the ones with the Miller indices  equal to  and (ℎ𝑘𝑙) (123)

, which is characteristic for all the so far studied  (004) 𝐶𝐶
phases. The electron density  map is reconstructed from 𝜌(𝑟)
the amplitudes of the form factors ( ) and their phases (|𝐹ℎ𝑘𝑙|

) as𝜙ℎ𝑘𝑙

Figure 4. Experimental data for the compound with R=C6H13 (a) Temperature evolution 
of X-ray diffraction signals observed on heating, (b) XRD pattern taken in CC phase; black 
and red lines show experimental and simulated patterns, respectively. (c) DSC 
thermogram taken on a heating scan; arrows mark temperatures of a phase transition 
detected by the XRD studies. (d) Optically isotropic texture of the CC phase; the domains 
showing optical activity are visible under slightly de-crossed polarizers. 

𝜌(𝑟) = ∑
ℎ,𝑘,𝑙

|𝐹ℎ𝑘𝑙|cos (𝑞 ⋅ 𝑟 + 𝜙ℎ𝑘𝑙),

where  is a scattering vector. In a general case, structure 𝑞
factors are complex numbers. From a standard X-ray 
experiments only information related to the amplitude of the 
structure factors is available (a square root of the signal 
intensity), while the information about the structure factor 
phase is lost. For structures with a center of inversion the phase 

 can be only  or ; however, for a structure without the 𝜙ℎ𝑘𝑙  0 𝜋
inversion symmetry, the peak  can have any phase (123)
between  and  and if the symmetry is low enough then 0 𝜋
permutations of the Miller indices do not give equivalent peaks 
[19].  Because no enthalpy change is observed upon the phase 
transition from the double gyroid to the chiral cubic phase, we 
focus on the structural models with the middle grid made of 
hexagons, as their side can be made equal to the length of the 
connections between the neighboring nods in the double gyroid 
phase. All the possibilities of combination of phases of the 

 peak for structures with the symmetry  or  (123) 𝐼432 𝐼43𝑚
have already been studied in detail and the corresponding 
density maps are shown in [20]. It is shown that the electron 
density maps reconstructed with a general phase of the  (123)
peak are closely related to the electron density maps obtained 
for the  symmetry structure. However, large deviation of 𝐼𝑚3𝑚

 from 0 and  values introduce degrees of distortion, which 𝜙123

are not physically plausible. We thus assumed that the phase 
 is close to either  or . For the reconstruction of the 𝜙123  0 𝜋

electron density distribution in the  phase (Fig. 5) the four 𝐶𝐶
highest intensity signals were taken ( , ,  and (123) (004) (024)

), the first two already giving the major properties of the (222)
structure. The structure factor of the peak  was taken to (123)
be negative ( ) and the structure factors of peaks  𝜙123 = 𝜋 (024)
and  positive. Regardless of the sign of the  signal, (222) (004)
there are micellar objects in the corners and in the middle of 
the unit cell and a continuous network of channels composed of 
hexagonal units between them.

Table 2. X-ray studies of the  phase: Experimental intensities ( ) of the peaks with 𝑪𝑪 𝐼(𝑒𝑥𝑝)
ℎ𝑘𝑙

Miller indices , multiplicity of the peaks ( ) and intensities ( ) obtained from (ℎ,𝑘,𝑙) 𝑀 𝐼𝑀2

model 2. Parameter values: coordinates of the generating point (0.151,0.151,0.425)𝑎𝐶𝐶

;  , , , .𝑟𝑚 = 0.22𝑎𝐶𝐶 Δ𝑟𝑚 = 0.05𝑎𝐶𝐶 𝑟𝑐 = 0.075𝑎𝐶𝐶 𝜌𝑐𝑐/𝜌𝑚 = 0.3

(ℎ,𝑘,𝑙) 𝑀 𝐼(𝑒𝑥𝑝)
ℎ𝑘𝑙 𝐼𝑀2

011 12 0.03
002 6 0.03
112 24 0.002 0.06
022 12 0.001 0.02
013 24 0.007 0.06
222 8 0.057 0.001
123 48 1 1
004 6 0.26 0.25
114 24
033 12

0.03 0.004

024 24 0.06 0.16
233 24 0.04
224 24 0.005 0.08
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Figure 5. Structure of the  phase: (a) The electron density map reconstructed from 𝑪𝑪

the experimental data by assuming the phases of the  and  being both .  (123) (004) 𝜋
The scheme of the middle network considered in: (b) model 1 and (c) model 2. The rods 
forming the hexagons are colored blue and the connecting rods are plotted in black. In 

model 1, we match the lengths ( ) of the rods in hexagons with the rods connecting the 𝑙
hexagons as well as the angles among the three rods meeting in a junction (red points). 
In model 2, apexes of the hexagons are connected to either centers of the edge of a cube 
or the center of its face. 

By considering the size of the network segments and micelles, 
it was estimated that approximately 60% of molecules form the 
hexagon network and the rest form the micelles. If the structure 
factor of the peak  is negative, single spherical or slightly (004)
distorted spherical micelles are present. The distortion was 
previously considered to be due to a chiral arrangement of 
mesogenic cores on the periphery of a micelle [16]. For a 
positive sign of the  peak one obtains groups of smaller (004)
micelles, which were considered as an indication of an 
octahedral arrangement of linear segments [13, 20].
A common characteristic of both electron density maps (for the 
negative and positive sign of the structure factor of the peak 

) is a network that is built of linear segments connected (004)
by 3-fold junctions to form hexagons. The length and diameter 
of the segments are similar to those forming helical channels of 
the  phase. By comparing the maps obtained with either a 𝐼𝑎3𝑑
negative or positive phase of the  signals (at a high density (004)
cut-off), it can be seen that the one with a negative sign of the 

 signal provides a more uniform density along the (004)
hexagon network (Supplementary Figure 1). In what follows we 
shall consider only the structure with one continuous network 
and micelles (the one being in line with the findings of the 
maximum entropy method [14] and density fluctuation studies 
[16]), from which it follows that (i) the structure is stabilized if 
the phases of the  and  peaks are equal and (ii) the (123) (004)
volume occupied by higher density regions is less than half of a 
unit cell if both phases are  . To have a more detailed insight in 𝜋
the structure of the  phase, we constructed a model by 𝐶𝐶
assuming that the continuous network structure itself is 
centrosymmetric (thus having the  symmetry), while the 𝐼𝑚3𝑚
arrangement of molecules on the network is such as to lead to 
some remnant optical activity. Such arrangement, however, 
should not affect significantly the electron density distribution 
and, as a result, the non-resonant XRD response. Thus, a model 
of the continuous network was constructed, in which the 
positions of the nodes were generated from an arbitrary point 
inside a unit cell by its crystallographic equivalents for the 𝐼𝑚3

 symmetry and the nodes were connected by linear segments 𝑚
(rods). By a suitable choice of the generating point, one can 
match the lengths of the rods connecting the nodes as well as 
the angles between the rods. There are two possibilities to find 

the coordinates of the nodes and connections that fit the  𝐼𝑚3𝑚
symmetry: (1) the edges of the hexagons are of the same length 
as the distances between the nearest apexes of the neighboring 
hexagons and (2) the edges of the hexagons are of the same 
length as the distances from the hexagon apexes to the centers 
of the unit cell faces or edges (Fig. 5). 
In the first case, apexes of the neighboring hexagons are directly 
connected through linear segments, while in the second case, 
the connections are through additional nodes, which results in 
the whole network being built of interconnected hexagons. For 
case (1) there are two solutions. We discard the one in which 
the angles between linear segments are 90 deg. The other 
generating point has coordinates ,  (0.181, 0.181, 0.407)𝑎𝐶𝐶

 being the unit cell length in the  phase. In this model 𝑎𝐶𝐶 𝐶𝐶
(Model 1) the length of the hexagon edges is , very 0.181𝑎𝐶𝐶

close to the value  used in [13], the angle between the 0.183 𝑎𝐶𝐶

rods meeting in each hexagon apex is . For case (2), 118.6 deg
there is only one solution (Model 2) with the generating point 
at ; the length of the hexagon edges is (0.151,0.151,0.425)𝑎𝐶𝐶

 and the angle between the linear segments is 0.226𝑎𝐶𝐶 118.5 
. Both models give almost planar 3-fold junctions of deg

channels (in the  phase the junctions are exactly planar); 𝐼𝑎3𝑑
however, Model 2 gives the length ( ) of the channels within the 𝑙
hexagons almost equal to the length of the channels in the 𝐼𝑎3

 phase (  in the  phase and  in the 𝑑 𝑙 = 0.34 𝑎𝐷𝐺 𝐶𝐶 𝑙 = 0.35 𝑎𝐷𝐺 𝐼𝑎
 phase, where  is the unit cell parameter of the double 3𝑑 𝑎𝐷𝐺

gyroid phase), while in Model 1 the length of channels within 
the hexagons is , much lower than in the  𝑙 = 0.27 𝑎𝐷𝐺 𝐼𝑎3𝑑
phase.
The form factor of the unit cell is calculated as follows (details 
are given in the Supplementary Information). Micelles of a 
medium radius  and thickness  are placed in the corners 𝑟𝑚 Δ𝑟𝑚

of the unit cell and in its center. The connections between the 
nodes are modelled by cylinders, their length being given by the 
length of the connecting rods. The densities of the micelles ( ) 𝜌𝑚

and the cylinders of the middle network ( ) are assumed to be 𝜌𝑐

equal, while the density of the cylinders connecting the hexagon 
apexes with the additional junctions on the edges or faces of 
the unit cell is lower ( ), as concluded from the experimentally 𝜌𝑐𝑐

obtained electron density maps (Supplementary Figure 1). 
There are thus three fitting parameters ( , , ) for Model 𝑟𝑚 Δ𝑟𝑚 𝑟𝑐

1 and four fitting parameters ( , , , ) for Model 2. The 𝑟𝑚 Δ𝑟𝑚 𝑟𝑐 𝜌𝑐𝑐

fitting parameters are adjusted in order to yield the calculated 
relative diffraction signal intensities matching those obtained 
experimentally; results are collected in Table 2, but only for 
model 2. Model 1 does not give any, even remotely, satisfactory 
match,  as it  is impossible to obtain a proper intensity ratio even 
between the two highest peaks  and . The same (123) (004)
problem was encountered for the structure with octagons in the 
outer and inner networks [13]; no satisfactory match has been 
found [19], as the model intensities of the  and  (013) (024)
peaks were calculated to be (much) higher than the intensity of 
the  peak. The fitting parameters of Model 2 are strongly (004)
restricted by the lowest-angle peaks, resulting in a narrow range 
of model parameters matching the observed intensities. From 
Table 2 we see that Model 2 gives a good match to the 
experimentally observed intensities. Its only flaw seems to be 
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that it predicts a too low intensity value for the  peak. (222)
Experimentally, the  peak is one of the four highest peaks (222)
(see Table 2), but still, much lower than the peaks  and (123)

.  (004)
Interestingly, the proposed model shows that the minimal 
surface on which the hexagon network is embedded is closer to 
the Neovius surface (Fig. 6a) rather than the previously 
suggested Schwarz primitive one [15,17] (Fig. 6b). In fact, the 
best fit is given by a degeneration of the Neovius surface known 
as the WP-surface (Fig. 6c). The WP surface is also in line with 
the prediction of micellar structures in the corners and center 
of the unit cell. The micelles correspond to the translation of 
each point on the minimal surface in the direction 
perpendicular to it. 

Figure 6. The hexagon network of the  at the minimal surface: the hexagon network 𝑪𝑪
of Model 2 placed on the (a) Neovius surface, (b) Schwarz primitive surface and (c) WP 
surface.

Due to a negligible enthalpy change at the phase transition, the 
stabilization of different phases critically depends on the elastic 
energy of the assembly. We model the latter by choosing a 
surface of a constant critical density (iso-electron-density 
surface), such that the volume enclosed by it corresponds to the 
volume occupied by aromatic cores. We assume that other 
contributions to the total energy of the phase remain the same 
at phase transition (which is supported by the enthalpy 
measurements), thus elastic energy plays a deciding role in the 
mechanism of the phase transition. Such an approach does not 
consider the energy due to a possible mismatch (defect) in the 
nodes. The number of three-fold nodes in the double gyroid unit 
cell is 16, which, rescaled to the unit cell of the chiral phase, 
gives 56 nodes. In our model, there are 48 three-fold nodes on 
the continuous grid, 3 eight-fold on the faces and 3 eight-fold 
nodes on the edges. The energy of the three-fold nodes is 
assumed to be the same in the chiral and double gyroid phase. 
The energy of the eight-fold nodes is expected to be higher, but 
the density is lower there. Therefore we assume that the energy 
related to the nodes is comparable in both phases and we 
neglect this contribution.  The Helfrich energy ( ) of the iso-𝜇𝐶

electron-density surface is defined as

𝜇𝐶 = ∫
𝑆
(1
2𝜅

𝐻
(𝐻 ― 𝐻0)2 + 𝜅𝐺𝐾)𝑑𝑆

where  and  are the mean and the Gaussian curvature, 𝐻 𝐾
respectively, and  and  are the corresponding moduli. In a 𝜅𝐻 𝜅𝐺

series of experiments [22-25], it was observed that , 𝜅𝐺 ≃ ― 𝜅𝐻

but as shown in the Supplementary Figure 2, the ratio between 
the magnitudes does not play a role in our computations. By  𝐻0

we denote the natural curvature of the assemblies, which is 
zero for the studied system. The Gauss-Bonnet theorem 
dictates , where  is the genus of the ∫𝑆𝐾𝑑𝑆 = 4π(1 ― 𝑔) 𝑔
surface, thus the Gaussian curvature modulus plays an 
important role only when phase transitions involving the 
change of topology are considered. It was found that the iso-
electron-density surface generated with both structure factors 
(321) and (004) taken negative yields a much better match in 
the elastic energies of the  and  phases, than the surface 𝐶𝐶 𝐼𝑎3𝑑
obtained by taking structure factors of opposite signs. The mean 
and Gaussian energies, together with the total Helfrich energy 
are collected in Supplementary Table 4. The ratio between the 
Helfrich energy of the structure with both the phases being  𝜋
and the structure with the phase of  peak being  is (004) 0
approximately  if the iso-electron-density surface is chosen 0.71
such that it encloses  of the unit cell volume. The ratio varies 1/3
only by few percent if higher or lower density cut-offs are 
chosen (see Supplementary Table 4). The ratio between the 
energy of the  phase reconstructed with both phases being  𝐶𝐶 𝜋
and energy of an equal volume of the  phase is 𝐼𝑎3𝑑
approximately  while it is approximately  if the phase of 1.4 2.1
the  peak is . For the recently proposed model [19], as (004) 0
expected, the ratio (being ) is even higher due to a high 2.9
number of junctions.
Finally, we discuss the origin of optical activity. As already 
mentioned, the optical activity has, so far, been attributed to 
two different mechanisms: (i) chiral structure of the channels 
forming the networks in the tri-continuous model due to the 
helical variation of the long molecular axis along the channel 
between the neighboring nodes, with the chirality of the middle 
network being opposite to the chirality of the inner and outer 
networks [9] and (ii) a continuous rotation of molecules on 
micelles, which makes the micelles chiral [18]. In the first case, 
it is assumed that all the segments of the middle network have 
the same sense of helical rotation. Because the enthalpy change 
at the phase transition between the double gyroid and chiral 
cubic phase in very small, we conclude that the rearrangement 
of molecular position accompanying the transition is as small as 
possible. Because the left- and right-handed networks are 
neighboring in the double gyroid, it can be expected, that one 
hexagon is formed by the same amount of the right- and left-
handed sides. If one draws lines in the direction either 
perpendicular to the nodes formed by three channels or only in 
the direction perpendicular to the two channels from the 
hexagon sides, it becomes evident that there is an equal 
amount of the right and left rotations when going around the 
hexagon.
Therefore we propose an alternative possibility: the symmetry 
breaking is caused by an alternating up-down inclination of 
molecules in the middle of the neighboring segments of each 
hexagon, which has an armchair geometry (Fig. 7).  Such placing 
of molecules on the hexagon sides ensures a better space filling 
of alkyl chains inside the hexagon. Also, it is quite 
straightforward to see, that better packing conditions are 
obtained if the connected hexagons are of the same chirality 
(compare Figs 7a and 7b). We thus suggest, that the chirality 
from an individual hexagon propagates to the neighboring 
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hexagons and as a result large domains of the right and left-
handed hexagonal network are formed.

Figure 7. Origin of optical activity: The arrangement of molecules between the nodes of 
non-flat hexagons with an armchair conformation ensures a broken chiral symmetry of 
the structure. a) Two chiral conformations of the hexagon, one being the mirror image 
of the other. b) Two hexagons of the same chirality. Because the molecules in the nearest 
channels from different hexagons are tilted in the same direction this gives more space 
for aliphatic tails.

Conclusions
We studied the chiral cubic phase formed by new polycatenar 
materials. A good agreement among the experimental results 
and theoretical modelling is obtained only in the case of a 
structure with one continuous network into which micelles are 
embedded. Based on a negligibly small enthalpy change at the 
phase transition between the double gyroid and chiral cubic 
phase we propose that the continuous network is made of 
hexagons, the sides of which are equal to the distance between 
the neighboring junctions in the double gyroid phase. The 
hexagons are placed on the WP (deformed Neovius) and not on 
the Schwarz minimal surface, as considered previously. Such a 
structure, together with the additional channels connecting the 
hexagon edges to the centers of the unit cell faces and edges 
gives a good agreement of the model and experimental XRD 
signal intensities, which could not be achieved when hexagons 
with smaller sides were chosen [20] nor in the case of structure 
with the  symmetry [19]. We estimated the elastic energy of 𝐼23
the proposed structure and showed that it is comparable to the 
energy of the double gyroid phase. Finally, we proposed that 
the optical activity is caused by an alternating up-down 
inclination of molecules in the middle of the neighboring 
segments of the hexagon that has an armchair geometry. With 
such an arrangement, more space is achieved for tails both 
within one hexagon as well as between the neighboring 
hexagons in the continuous network. The ultimate knowledge 
on the molecular arrangement in the chiral cubic phase can 
probably be given by the resonant soft x-ray scattering which 
only recently proved to be a proper tool to unmask the 
molecular structure in the double gyroid phases [26].

Methods

The initial X-ray diffraction studies for all materials were 
performed with the Bruker Nanostar system (CuKα beam 
formed by cross-coupled Goebel mirrors and three-pinhole 
collimator, Vantec 2000 area detector). Samples were prepared 
as droplets on a heated surface. For chosen materials, 
additional X-ray measurements were carried out on the SAXS 
beam line (7.3.3) at the Advanced Light Source, Lawrence 
Berkeley National Laboratory at the wavelength 0.12398 nm. 
Samples were placed on a heating plate as droplets. The 
scattering intensity was recorded using the Pilatus 2M detector. 
Optical studies were performed by using the Zeiss Axio Imager 
A2m polarizing microscope equipped with a Linkam heating 
stage. Samples were observed in glass cells of various 
thicknesses: from  to  μm. Calorimetric studies were 1.8 10
performed with a TA DSC Q200 calorimeter, samples of mass 
from  to  mg were sealed in aluminum pans and kept in 1 3
nitrogen atmosphere during measurement, both heating and 
cooling scans were performed with a rate of  K/min.5 ― 10
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