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Abstract: The development of an efficient and powerful machine learning (ML) model for materials
property prediction (MPP) remains an important challenge in materials science. While various
techniques have been proposed to extract physicochemical features in MPP, graph neural networks
(GNN) have also shown very strong capability in capturing effective features for high-performance
MPP. Nevertheless, current GNN models do not effectively differentiate the contributions from
different atoms. In this paper we develop a novel graph neural network model called GATGNN
for predicting properties of inorganic materials. GATGNN is characterized by its composition of
augmented graph-attention layers (AGAT) and a global attention layer.The application of AGAT
layers and global attention layers respectively learn the local relationship among neighboring atoms
and overall contribution of the atoms to the material’s property; together making our framework
achieve considerably better prediction performance on various tested properties. Through extensive
experiments, we show that our method is able to outperform existing state-of-the-art GNN models
while it can also provide a measurable insight into the correlation between the atoms and their
material property. Our code can found on — https:/ /github.com/superlouis/ GATGNN

Keywords: graph convolutional neural networks; global attention mechanism; deep learning;
materials property prediction, OQMD; materials project

1. INTRODUCTION

Machine learning and deep learning [1,2] have been increasingly used in the field of materials
science on various applications [3-5] such as rechargeable alkali-Ion batteries, photovoltaics, catalysts,
thermoelectrics, superhard materials [6], and superconductors [7]. The two key components of a
machine learning model for materials property prediction are the set of features and the particular
algorithm. Currently, there are two main categories of features that are widely used: the composition
based features [8,9] and structure based features [10-14]. The former has the benefit of being able to
be applied to discover new hypothetical materials while the latter has higher prediction performance
but only applicable to materials with characterized structure information either experimentally or by
computational crystal structure prediction software such as USPEX[15], which, however, can only
predict the structure for relatively simple compositions.

Numerous structural descriptors have been proposed to represent materials such as atom-centered
symmetry functions, Coulomb matrix, smooth overlap of atomic positions, deep tensor neural
networks, many-body tensor representation, and Voronoi tessellation[3]. Nevertheless, each one of
these descriptors have their limitations such as: not being size-invariant by construction, or basing their
representation of infinite crystals on local neighborhoods of atoms in the material [3]. The definition
and exploitation of local atomic environment is also important in developing neural network potential
models[16]. Extensive discussions over these structure descriptors and the characteristics of desired
structural descriptors such as invariance to translation, rotation, and permutation of homonuclear
atoms can be found in recent reviews [3,17].
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Recently, graph neural networks have gained a lot of attention in materials property prediction
[12,14,18] due to high representation learning capabilities and their ability to achieve state-of-the-art
results for various problems of classifying graph entities or graph nodes[19]. Xie et al. [12] figured
among the first researchers to apply graph neural networks to materials property prediction. The
former authors achieved impressive results based on their algorithm and their crystal representation
as graph. Notably, the encoding consists of representing the unit cell of the crystal material as a
graph such that nodes represent the atoms and connecting edges represent the bonds shared amongst
the atoms. A direct benefit of representing the crystal material as a CGCNN-converted graph is the
naturally derived vector characterization of the atoms and edges. Chen et al. [14] improved the
CGCNN model by introducing a global state input including temperature, pressure and entropy. They
also found that the element embeddings in their MEGNet models encode periodic chemical trends and
can be used for transfer learning based training of models for band gaps and elastic moduli prediction
which have limited training data using the embedding learned by models training for formation
energy prediction. In another effort to improve CGCNN, Park et al. [18] proposed an approach to
incorporate information of the Voronoi tessellated crystal structure, explicit 3-body correlations of
neighboring constituent atoms, and an optimized chemical representation of interatomic bonds in the
crystal graphs.

While previous graph neural network models for crystal materials property prediction only
emphasized on capturing local atomic environment, we propose a deep graph neural network
named GATGNN, that is based on a global attention mechanism. The attention mechanism was
first introduced into neural networks for natural language processing (NLP) [5,20]. Basically, attention

is simply a vector which can be used to learn the contribution of different context vector components.

It has been used to replace the recurrent neural networks and has achieved significant successes in
NLP [21-24]. In this model, we first use local attention layers to capture properties of local atomic
environments and then a global attention layer is used to make weighted aggregation of all these atom
environment vectors to create the global representation of the whole crystal structure. This allows
our model to better capture the fact that different atoms in the crystal have different contributions to
the global material property. In materials science, Coley et. al. [13] firstly proposed a global attention
mechanism with graph neural network for chemical reactivity prediction. In their model, the global
attention coefficient of each atom is calculated by learning a reaction probability of that atom to all
other possible (physically possible) matching . In our work, the coefficient of an atom is calculated by
learning either one of 1) its importance based on its location in the graph or 2) its energy contribution
to the crystallization of the material.
The contributions of our work include:

(1) We propose a global attention mechanism with graph neural network for material’s property
prediction.

(2) Benchmark studies have shown the state-of-the-art performance of our GATNN algorithm in a
variety of materials property prediction problems.

(3) Ablation experiments have been conducted to demonstrate the advantage of GATGNN.

(4) We have extracted physical insights by examining the learned weights of the GATGNN.

2. METHODS

2.1. Data Collections & Encoding

The Materials Project database is used to collect the properties of all the crystal materials originally
used in the works of CGCNN [12] and MEGNET [3]. For the 46,743 CGCNN materials, we apply the
same encoding that the authors Xie et. al. used to transform the materials into graphs. Notably, we
connect each atom to the 12 nearest atoms in the material, transform the bond distance between each
two atoms to a 41-dimensional feature vector, and apply a 16 dimensional feature vector to encode each
atom feature. On the other hand, we modified the graph constructing parameters for the MEGNET
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inorganic materials. Particularly, for the 69,240 materials used by MEGNET, we connect each atom to
the nearest 16 atoms, transform the bond distance between each two atoms to a 9-dimensional feature
vector, and use the same 16 dimensional feature vector encoding as for CGCNN.

2.2. Augmented Graph-Attention Layer

First, we define a graph as the tuple (V, E, A) where V defines a set of nodes, E a set of edges,
and A the graph’s adjacency matrix. Letting v € V and e € E be the feature vectors of atoms and
edges, we explain the core of our proposed architecture that is based on the Graph Attention (GAT)
Network proposed in 2018 by Velickovice et al. [25]. Introduced as a flexible way to adapt the
attention mechanism in graph neural networks, GAT Networks proposed a viable solution for dealing
with unequal importance of neighboring nodes in graph networks. Making use of the attention
heads and context vectors, the GAT architecture makes it possible to learn the importance of the
information obtained from neighboring nodes. Notably, the GAT network allows each node to weigh
the information from each neighboring node and the learning of these weights can be described by the
following operation:

06,(;() = softmax(g(al(]k))) = softmax(g(aT[W(k)vl(k_l) | W(k)v](.k_l)])) 1)
where a and W define the weight vector and weight matrix of layer k, while v and function g(-) define
a node feature vector and a non-linear function. For two connected nodes i and j, a weight a;; is
calculated after applying the softmax function to the attention coefficient a;; of their connection. The
attention coefficient a;; is learned via linear transformation of the newly transformed feature vectors of
nodes i and j combined by a. Once the attention weights are learned, the updated node feature vector
is calculated by the following convolution,

v — Z a(k)w(k)v](kfl) )
JEN(i)Uj

, where N(i) defines the neighborhood of node i and ¢ the sigmoid function. While GAT networks use
the information characterizing neighboring nodes, the original architecture has the limitation of not
using any available edge information when learning the attention weights. As a solution to the latter
shortcoming, we augmented the original GAT layer. Particularly, we improved the learning capability
of the GAT layer by adding Batch-Normalization layers and augmenting the node features vectors
with the information from their connecting edge as seen below,

v = v | ¢; ®)

fk) defines the augmented feature vector of node i found by combining v; and e;;, the feature
vector of the edge connecting node i and its neighbor j. Henceforth, our adaptation of the GAT network
for our properties prediction comprises multiple augmented-GAT (AGAT) layers, a global feature
pooling layer, and 2 hidden layers. Compared to the properties prediction obtained from applying
the original layer, the results of our AGAT layer improved the prediction performance scores by
an average of 20%. By using the batch-normalization, softplus non-linear activation function, and
the average of 4 attention heads, we further optimized the learning capability of the AGAT layer.
Nonetheless, just the application of the AGAT layers to extract the node features resulted in much
poorer predictive performance than previous models from CGCNN and MEGNET works. Certainly,
graph neural networks provide strong performance when the main goal is the relationship extraction

where v*

in a local neighborhood. However, graph neural networks do not use the position of the nodes within
the entire graph. Corresponding to the theoretical work, the location of an atom with respect to the
structure of the material is critically important and not just to the atoms within the vicinity of its site.
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Inspired by the works of Coley et. al. in which different weights are assigned to varying reactions [13]
, we propose a global attention layer, before the pooling layer as seen in Figurel, that is adapted to
particularly translate the information directly learned from a local neighborhood to information at the
graph level with meaningful interpretability.

[ 2y
® Crystal Material = Encoded Element Composition
or Node cluster Information
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Input Node Feature Global Global Hidden Output
Extraction Attention Pooling Layers

/ Augmented GAT Layer \ Global Information )
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Figure 1. Architecture of our global attention graph CNN model GATGNN. Each model is composed
of either 5 or 7 of our AGAT layers with 64 neurons. After extracting the node features, a global
attention layer is placed before the global pooling of the node feature vectors. Finally, the weighted
sum of the crystal feature vector is afterwards fed to two hidden fully-connected layers before a final
fully-connected layer outputting the predicted property.

2.3. Crystal Global Attention mechanism

In this work, two types of global information (GI) are used as additional inputs to construct the
Global Attention Layer: a feature vector characterizing the entire crystal graph and a feature vector
denoting the crystal node’s location in the graph. To represent the feature vector characterizing the
entire graph, we used the crystal’s elemental composition E (a vector that maps the ratio amount of
each element). On the other hand, we represent node i’s location in the graph by its cluster a: Ci,
obtained by feeding its coordinates either the Spectral-Clustering or the K-Means algorithm. In our
experiments, only three clusters were used, which shows the best performance in our experiments.

Then, the global information is propagated to the node feature vectors vi?) output by the last AGAT

i
layer as defined in table 1. Depending on the choice of the global information, the GI method of
propagation differs on either concatenation or deconvolution.
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Table 1. Description of the global information used and the different propagation method throughout

the nodes.
Global Information (GI) GI Propagation Formulation Method
Identifier
Graph’s elemental Composition E | Concatenation with node vl(p ) = vl(p) Il E GIM-1
feature
Fixed Cluster Unpooling vfp ) = Yiec v](p) GIM-2
Node i's Cluster Random Cluster | v/ = Y0, v/ 5 G, #C}, | GIM3
Unpooling
Concatenation of graph’s vl(p l=¢ I vl(p ) | Ci GIM-4

pooled feature vector
G, node features, and
one-hot encoding of node
clusters

For the choice of the crystal’s elemental composition E, the GI propagation method consists of
(p)
i

of the propagation method of the elemental composition. For using the node’s location as global
information, we propose two new strategies. The first strategy defines the concatenation of the pooled
(p)
: i

encoded cluster information of each node C.. The combination of the nodes’ feature vector and cluster
information with G, is then fed to a single feed-forward layer which outputs a new feature vector

encoding the node’s location.

concatenating E to the feature vector of each node v;"’. Figure 2 provides an illustration of the schema

feature vector of the crystal graph G (eq. (2.3)), the feature vector of each node v;"’, and the one-hot

Input Node Feature Concatenation with Global Attention Mechanism Graph with Structure
Composition Encoded Vector aware node

@EED:I
. . . . Context Vector . . |
* = ® = o X e - e

Figure 2. Illustration of the global information propagation for the material’s elemental composition
through the nodes of the crystal. Each crystal node’s feature vector is concatenated with the composition
encoded vector, which outputs a context vector after forwarded to two fully connected layers

3yl
G ZV 4)

Our last strategy for propagating each node’s position throughout the entire crystal, illustrated
in Figure 3, is based on our operations of pooling and unpooling the cluster features of the graph
nodes. Upon separating the crystal nodes into clusters, we apply our cluster-pooling operation,
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which is the summation of the feature vector of all nodes belonging to that specific cluster. The next
operation, the cluster unpooling or deconvolution, consists of replacing the feature vectors of each
node by cluster-pooled feature vectors. Each node’s feature vector can be replaced either randomly or
non-randomly (fixed). In the fixed unpooling method, each node’s feature vector is replaced by the
summed feature vector of the cluster that node belongs to. On the other hand, the random unpooling
method defines the method in which each node’s feature vector is replaced by the summed feature
vector of any cluster that the node did not belong to. Essentially, our proposed global attention layer
relies on the distribution of a meaningful and universal information though all the nodes in the crystal
graph. Once all of the graph nodes’ feature vectors are updated, they are fed to a feed-forward neural
network with two fully connected layers and a softmax layer outputting a coefficient vector c¢. Notably,
that coefficient vector ¢ contains all the corresponding coefficient c; for each node i in the graph. Finally,

(p)

each c¢; is then multiplied by the corresponding feature vector v, of the matching node.

Input Clustering Cluster-Pooling* Unpooling Global Attention Mechanism  Graph with Structure
aware node
Fixed
A
B_ O A
~A
~ Cluster-A A Bo —0
Cluster-B ,, \ \\ BB e ‘ \
[ AN “el® T, s L contotVectsr @ @
- | @) - or N e
NP0 N [TTTTT ™~ Random g |
L \ \
o ° - » :
—Cluster-C )
as N of
<8

Figure 3. Illustration of two propagation methods for the node’s cluster. The Cluster-Pooling * defines
the aggregation of the feature vectors of all nodes that belong to each of the three clusters. The clusters
feature vectors are redistributed through the all the nodes in the unpooling method, which is either
fixed or random. After feeding the crystal graph with updated node feature vectors, a context vector
is output. The context vector, which contains the weight relating to each node’s location, is then
multiplied with the input crystal node feature vectors to provide a graph with Structure aware nodes.

2.4. Model Construction and Training

To construct our models, we used the open-source library of Pytorch [26] and its geometric deep
learning extension of Pytorch-geometric [27]. A model for each designated property was trained
for a total of 500 epochs using early-stopping with a patience parameter 150. The additional model
hyper-parameters describe a learning rate initiated at 5 - 10~ which later reduces to 5 - 10~* and then
to 5105, a batch-size of 256, 5 or 7 of our AGAT layers with 64 neurons, 4 attention-heads, the Glorot
uniform weight initialization, the SmoothL1loss as loss function, and the AdamW optimizer.

The separation of the data into training, testing, and validation sets were carried as described
in the original works [12,14]. A split of 60:20:20 of the whole datasets in CGCNN study was used
to train and evaluate our models while a split of 80:10:10 was used for training and evaluating our
models as is done in MEGNET study. Given the large enough size of the materials dataset, note that
the specification of the exact seed doesn’t significantly affect the reported results. All of the models
were trained on Nvidia GeForce RTX 2080 Ti GPUs. During the training process, the model parameters
leading to the lowest validation error are saved to construct the final model. Our dataset and code can
be found at — https://github.com/superlouis/ GATGNN
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3. Results

3.1. Prediction Performance Improvements over MEGNET and CGCNN

Table 2 provides a summary of the comparison between our models’ performance and the models
of CGCNN. From the reported mean absolute error (MAE) scores, our models outperform the CGCNN
models in nearly all properties prediction problems. Except for the formation-energy prediction
problem for which the scores matched, the absolute amount in performance improvement over the
previous CGCNN results range from 2.3% to 33%. Material properties with 10% score improvement
were observed including Absolute-Energy, Band-Gap, and Bulk-Moduli as shown in the table.

Table 2. Performance (MAE) comparison over seven materials property prediction problems of our
model compared to CGCNN. The number of training samples used for each model is indicated in

parentheses.
H Properties CGCNN GATGNN(this work) Units H

Formation Energy  0.039 (28,046) 0.039 (28,046) eV/atom
Absolute Energy  0.072 (28,046) 0.048 (28,046) eV/atom
Fermi Energy 0.363 (28,046) 0.33 (21,885) eV/atom

Band Gap 0.388 (16,485) 0.322 (16,485) eV
Bulk-Moduli 0.054 (2,041) 0.047 (2,041) log(GPa)
Shear-Moduli 0.087 (2,041) 0.085 (2,041) log(GPa)

Poisson-ratio 0.030 (2,041) 0.029 (2,041) -

Consistent with the performance comparison with CGCNN, our GATGNN models likewise
outperform the MEGNET models in the predictions of three out of four properties as shown in Table
3, which displays the side-by-side comparison of the MEGNET results compared to our models.
While our models improves the prediction results reported by MEGNET in predicting the Band-Gap,
Bulk-Moduli, and Shear-Moduli properties, our models underperformed in the prediction of the
Formation Energy property. The lower performance of our model for the Formation Energy prediction
compared to those of both CGCNN and MEGNET suggests one potential limitation of our models.

Table 3. MAE comparison of four materials properties prediction of our GATGNN model compared to
MEGNET. The number of training samples used for each model is indicated in parentheses.

H Properties MEGNET GATGNN(this Work) Units H
Formation Energy  0.028 4-0.000 (60,000) 0.048 (60,000) eV/atom
Band Gap 0.33 £0.01 (36,720) 0.31 (36,720) eV
Bulk-Moduli 0.050 0.002 (4664) 0.045 (4664) log(GPa)
Shear-Moduli 0.079 + 0.003 (4664) 0.075 (4664) log(GPa)

3.2. Ablation experiments

In Table 4, we provide the MAE comparison for the prediction of the Band-Gap, Bulk-Moduli,
and Shear-Moduli properties for all the attention models investigated in this work. Without our
minor improvements and the usage of edge information, the original GAT demonstrated a very poor
predictive ability for the three tested properties. While the AGAT model recorded comparable results
to CGCNN, all of our global information propagation solutions improved its performance with the
added attention coefficient vector. For each one of the three properties predictions, the four solutions
provided very similar results. The reported descriptive statistics for the Band-Gap, Bulk-Moduli, and
Shear-Moduli properties listed as 0.33 £ 0.005, 0.0495 £ 0.002, and 0.0868 £ 0.0015 indicate that the
application of the weight coefficients from any GI-propagation method would yield better prediction
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than without its usage. Even though the third GI-Method of Random Unpooling didn’t yield the
lowest MAE for either one of the properties, it should be noted that this method showed the most
consistency of improving the AGAT performance. In two out of the three properties, the usage of the
crystal elemental composition provided the lowest prediction errors. In two out the three properties
prediction problems,the learning of the node position through our GI M-4 method of properties yielded
the worst result. Figure 4 displays the performance of our model for the GI M-4 method. For none of
the properties did the learning of the position with our GI M-4 method of propagation outperform
either the fixed or the random unpooling propagation.

Table 4. Performance (MAE) comparison over three properties prediction for graph networks with
original GAT layer, our AGAT layer, and our four proposed methods of GI propagation.

| Properties  GAT AGAT GIM-1 GIM-2 GIM-3 GIM-4  Units  #Training Samples ||

Band Gap 0.466  0.345 0.329 0.322 0.332 0.337 eV 16,485
Bulk-Moduli  0.081  0.054 0.047 0.051 0.048 0.052  log(GPa) 2,041
Shear-Moduli  0.121  0.094 0.085 0.089 0.086 0.087  log(GPa) 2,041

4. Discussion

The architecture of our graph neural network offers the inherent benefits of improved accuracy
and interepretability. With the use of either one of our proposed global attention layers for properties
prediction, we observed a minimum reduction of prediction error of 7% for all property prediction
problems evaluated in this study including band gap, bulk modulus and Shear modulus as shown in
Table4. Even though our models were trained using a larger number of parameters than CGCNN and
a comparable number of parameters to MEGNET, our models have the advantage of a much faster
convergence than the latter. Mainly, this improved convergence can be attributed to the implementation
of the Batch-normalization within our AGAT layers. For most of the models, about 160 epochs are
enough for our GATGNN models to reach comparable results to CGCNN and MEGNET which usually
take 500 to 2000 epochs or more with the same batch sizes. Using the bulk-moduli property as an
example, Figure 4 displays the resulting training and parity plots from our models. Figure 4 a) provides
the details of the predictive performance from our GI M-1 attention model. Our model recorded its
lowest validation loss at epoch 252 at which point its parameters were saved. Then, the latter model,
with its saved parameters from epoch 252, is later evaluated on the testing set to display the parity plot
shown in Figure 4 b) for a MAE of 0.048. While our reported results come from the performance of the
model with five AGAT layers for our CGCNN comparison models and seven for our MEGNET models,
using a minimum of three layers with four attention heads would also provide a similar behavior of
faster convergence and similar state-of-the-art results.
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Figure 4. Training plot (a) and parity plot (b) for the CGCNN Bulk-Moduli trained model; with

property on the log scale.

To obtain additional insight from our GATGNN model, Table 5 provides a detailed analysis of the
extracted context vector from the prediction of the material mp-20452 which is displayed in Figure 5.
The table lists the interpretable coefficient corresponding to each atom in the unit cell by comparing
the results of our proposed model without global attention to the results of the four global attention
mechanisms discussed in this work. The last row in the table corresponds to the predicted bulk-moduli
property for the material with formula (Ba(MgPb),). Except for the model trained without the global
attention layer, each global attention method provides a meaningful weight to each node with respect

to the global information used.

Table 5. Context vectors obtained in predicting bulk modulus (Kygy) of material mp-20452 (with

Kyrpg = 1.5051) obtained from each method discussed in our work. Each row lists the rounded weight

contribution of an atom in the unit cell for each proposed method. The last row: Predicted Ky rpy lists

the obtained predicted property from each method.

[ Atom AGAT GIM-1 GIM-2 GIM-3 GIM-4 ||
Ba L0 0353 0.05 0.1 0.185
Ba 1.0 0353  0.185 0.1 0.185
Mg 1.0 0056 005 0098 012
Mg L0 0056 0.185 0.1 0.12
Mg 1.0 0017 0.037 0.1 0.033
Mg 1.0 0017 0.037 0.1 0.033
Pb 1.0 0.06 005 0098 0124
Pb 1.0 006  0.037 0.1 0.124
Pb 1.0 0013 0.185 0.1 0.037
Pb L0 0013 0.185 0.1 0.037

[ Predicted Kygy 15977 1.5024 15528 15085 15204 ||
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Figure 5. Ba(MgPb), Crystal structure. (Material-Project id: mp-20452). Orange nodes represent the
Mg sites, green the Ba sites, and grey the Pb sites.

With all of its weights fixed at 1.0, the AGAT model trained without our global attention had
the largest error of 0.09. On the other hand, each one of the other global attention methods returned
a mixture of weights per node which offer a different level of information regarding the GI and GI
propagation method. The GI M-1 weighted the by their types. Barium (Ba) accounted for about 70% of
the sum of the context vector while Lead (Pb) and Magnesium (Mg) had a similar weight totaling to
0.146. Particularly, we note that for the four Mg and four Pb atoms, two of each type have half of the
weight assigned to the remaining two. The three other global attention methods weight assigned the
weights to the nodes based on their location in the graph.

The GI M-4 had a similar distribution of weights as the GI M-1 method. The global attention layer
values the sites of Ba sites as the most critical locations attributing a total weight of 0.37 to its atoms.
The Lead and Magnesium had weights totaling to 0.322 and 0.304. As in GI M-1, half of the Lead and
half of the Magnesium had much more significant weights than the remaining. The GI M-2 and GI M-3
methods weighted the nodes based on the node clusters of the graph. For the GI M-2 method, weights
are attributed to the nodes based on their corresponding clusters. For the three clusters formed for the
mp-20542 material, their corresponding weights correspond to 0.185, 0.05, and 0.037. The cluster that
contains the second Ba, the first Mg, and the last two Lead atoms has a cumulative weight of 0.74. The
next most important cluster, containing the first Ba, Mg, and Pb, has a cumulative weight of 0.15 while
the last cluster totals a weight of 0.11. Lastly, the GI M-3 method provides weights on the basis that the
nodes belonged to a different site. With the exception of the first Mg and Pb , all of the are attributed
the same weight of 0.1.

With the application of our graph attention layers from which we can extract the nodes” weights,
we are able to derive a more effective representation of the crystal feature vector. After that, our global
attention layer transforms each node’s feature vector to the graph scale by multiplying it with the
learned weight to extract the pooled crystal feature vector. In a set of experiments that we conducted
with the Random Forest (RF) algorithm, we noted that the extracted pooled crystal feature could allow
RF to achieve lower prediction error than the well-known Magpie features [28]. Essentially, our graph
network model allows us to extract the pooled crystal feature as a good representative set of features
for that crystal, which can be used for property prediction, classification, or other downstream tasks.
Furthermore, like MEGNET [18], our GATGNN model also provides the ability to transfer the learned
node relationships and weights from a previously built model trained with large amount of labelled
data to training models with limited property data.

Ultimately, our proposed method applies the concept of atoms’ importance meanwhile shortening
the training time. Our framework first learns the complex relationship amongst the atoms through
its AGAT layers. To learn that association, an AGAT layer proceeds to weigh the connection between
each atom and its neighboring atoms. However, such weight is only a relative weight; a weight
that is assigned to an atom based on its relation to its neighbors. Based on the assumption that the
measuring of some properties may also rely on the absolute importance of each atom, our GATGNN
applies a global-attention layer to extract this absolute weight. In fact, this global attention layer
allows our network to particularly assess the value of each atom with respect to the entire crystal
material; hence generating a global weight. We demonstrate in our research that this absolute weight
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can be obtained from either the atom’s type or the atom’s location in the crystal. As seen in the results,
our framework reached new SOTA results for properties prediction on nearly all properties, except
for formation-energy. Essentially, we associate the success of our framework at better predicting the
properties than the baseline models with the three following facts. First, our GATGNN is efficiently
implementated. Second, the properties our model predicted well may in fact depend on the absolute
ranking of the atoms. Third, the atoms’ type and atoms’ location may indeed have an association
with the intrinsic value of the property. Henceforth, we blame our GATGNN's poorer predictive
performance for formation energy on the simple fact that atoms” global weight are irrelevant to a
material’s property. In summary, we suggest to apply our proposed method in cases where atoms’
additional information are available and that there also exists an association between those atomic

information and the predictable property.

5. Conclusions

We proposed GATGNN, a novel graph convolutional neural network model with global attention
mechanisms for accurate materials property prediction. Evaluations on standard materials projects
dataset over multiple materials properties such as band gap, bulk-moduli, shear moduli, etc show
that our proposed graph convolutional network models achieve better predictive performance than
renowned CGCNN and MEGNET. The success of our GATGNN can be attributed to its local attention
mechanism and global attention layer. Particularly, our global attention technique implements the
assumption that some atoms may be more influential to the measured value of the crystal property.
Despite the important predicting improvement of our GATGNN over the referred baselines, conducting
additional investigations with other localor global atomic context information would be very important
in validating the functioning and importance of our global attention layer and further improve the
performance in materials property prediction.
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