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Detecting reactive islands in a system-bath model of
isomerization†

Shibabrat Naik,∗a Stephen Wiggins,b‡

In this article, we study the conformational isomerization in a solvent using a system-bath model
where the phase space structures relevant for the reaction dynamics are revealed. These phase
space structures are an integral part of understanding the reaction mechanism, that is the path-
ways that reactive trajectories undertake, in the presence of a solvent. Our approach involves
detecting the analogs of the reactive islands first discussed in the works by Davis, Marston, De
Leon, Berne and coauthors1–4 in the system-bath model using Lagrangian descriptors. We first
present the structure of the reactive islands for the two degrees of freedom system modelling
isomerization in the absence of the bath using direct computation of cylindrical (tube) manifolds
and verify the Lagrangian descriptor method for detecting the reactive islands. The hierarchy of
the reactive islands as indicated in the recent work by Patra and Keshavamurthy 5 is shown to
be related to the temporal features in committor probabilities. Next, we investigate the influence
of the solvent on the reactive islands that we previously revealed for the two degrees of freedom
system and discuss the use of the Lagrangian descriptor in the high-dimensional phase space of
the system-bath model.

1 Introduction
Isomerization is an important reaction in atmospheric, medical,
and industrial chemistry ∗ 6–9. On one hand, the influence of var-
ious solvents on the rate constant of conformational isomerization
has been pursued for specific molecules10–14 using statistical me-
chanics. On the other hand, dynamical systems theory has been
used to develop a systematic approach for identifying trajectories
that go from reactants to products and reside inside phase space
structures called reactive islands in two degrees of freedom Hamil-
tonian models1–4. In this article, we extend the reactive islands
approach to N > 2 degrees of freedom model for the isomerization
reaction in a bath.

Following the derivation of the Langevin equations and its gen-
eralized system dynamics in a heat bath15, Kramers16 derived
the expression for the escape rate of a Brownian particle trapped
in a potential well for small and large values of the viscosity. He
also showed that only for a specific potential barrier the escape
rate for all values of viscosity is equal to the one given by the
transition state theory. However, the solution for all values of vis-
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cosity was obtained in 1980s by Mel’nikov, Meshkov17 and Grote,
Hynes, Pollak, Grabert, Hänggi18,19 and showed the turnover of
reaction rates with the increasing viscosity of the solvent. Further-
more, Pollak’s derivation20 connected the Kramers theory and the
transition state theory for condensed phase reactions which has
been useful for calculations of rate expressions21. These develop-
ments established the Langevin equation of motion for a particle
trapped in a potential well with a barrier height V ‡ as a model for
studying a reaction in the condensed phase. In this set-up, the re-
action (or the system) is defined by the crossing of the barrier and
the influence of the medium (or the bath) is studied by coupling
the bath coordinates to the system coordinates. This framework
has received much attention in the literature where the system
dynamics can be obtained explicitly using a one-dimensional po-
tential well and the bath is modelled using a large number of
harmonic oscillators with mass, frequency, and viscosity param-
eters22–25. In this set-up, the bath coordinates are coupled with
the system coordinates via the viscosity (or the friction) param-
eter in the form of a bilinear term in the potential energy. This
gives rise to the Hamiltonian which is written as a sum of kinetic
energy and potential energy in the system and bath coordinates.

However, the dynamics of a two or more degrees of freedom
system coupled with bath modes has not received a global anal-
ysis from a dynamical systems perspective of reactions. In this
direction, the first step would be to consider a two degrees of free-
dom Hamiltonian system with well-understood quantities such as
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the reaction coordinate, and to which the harmonic bath modes
can be coupled to represent the reaction in a condensed phase.
In this work, we will adopt the two degrees of freedom isomer-
ization model of De Leon and Berne who studied the chemical re-
action dynamics extensively using a dynamical systems perspec-
tive4,26–30. This Hamiltonian model of isomerization describes
the conformational change by the motion of an internal angle
where the isomers are represented by the wells in a double po-
tential well separated by a barrier. The two degrees of freedom in
the model correspond to the bond that undergoes rotation (struc-
tural change of a molecule) for total energies between the isomer-
ization and dissociation energy and to the bond that splits above
dissociation energy. Typically, the isomerization energy is lower
than the dissociation energy of the molecule, and the activation
energy for the isomerization is imparted by molecular collisions
or photoexcitation.

Traditionally, the construction of a dividing surface (DS) was
focused on critical points of the potential energy surface (PES),
that is, in the configuration space describing the molecular sys-
tem31. Critical points on the PES do have significance in phase
space since they are the equilibrium points for zero momentum.
But they continue to have influence for nonzero momentum for a
range of energies above the energy of the equilibrium point. The
construction of a DS separating the phase space into two parts,
that is reactants and products, has been a focus from the dynam-
ical systems point of view in recent years32–34. In phase space,
the role of the saddle equilibrium point is played by an invariant
manifold of saddle type stability called the normally hyperbolic
invariant manifold (NHIM)35,36. In order to fully appreciate the
NHIM and its role in reaction rate theory, it is useful to begin with
a precursor concept — the periodic orbit dividing surface or PODS.
For systems with two DOF described by a natural Hamiltonian, ki-
netic plus potential energy, the problem of constructing the DS in
phase space was solved during the 1970s by McLafferty, Pechukas
and Pollak37–40. They demonstrated that the DS at a specific en-
ergy is related to an invariant phase space structure, an unstable
periodic orbit (UPO) which defines (it is the boundary of) the bot-
tleneck in phase space through which the reaction occurs. The DS
which intersects trajectories evolving from reactants to products
can then be shown to have the geometry of a hemisphere in phase
space whose boundary is the UPO. The same construction can be
carried out for a DS intersecting trajectories crossing from prod-
ucts to reactants and these two hemispheres form a sphere for
which the UPO is the equator. Generalisation of this construction
of DS to high dimensional systems has been a central question
in reaction dynamics and has only received a satisfactory answer
in recent years32–34. The key difficulty being the high dimen-
sional analogue of the UPO used in the two DOF system for the
construction of the DS and which is resolved by considering the
NHIM, which has the appropriate dimensionality for anchoring
the dividing surface in high dimensional phase space35. Nor-
mal hyperbolicity of these invariant manifolds means that their
stability, in a precise sense, is of saddle type in the transverse
direction, which implies that they possess stable and unstable in-
variant manifolds that are impenetrable barriers and mediate re-
active trajectories in phase space. These invariant manifolds of

the NHIM are structurally stable, that is, stable under perturba-
tion36. For two DOF systems, the NHIM is an unstable PO, and
for an N > 2 DOF system at a fixed energy, the NHIM has the
topology of a (2N−3)-dimensional sphere and is the equator of a
(2N−2)-dimensional sphere which is the DS. This DS can then be
used to divide the (2N− 1)-dimensional energy surface into two
parts, reactants and products41–45. An elementary description of
the role of the NHIM in reaction dynamics is given in46 along
with description of their geometry using quadratic normal form
Hamiltonians. Fundamental theorems assure the existence of the
phase space structures — NHIM and its invariant manifolds —for
a range of energies above that of the saddle36. However, the pre-
cise extent of this range, as well as the nature and consequences
of any bifurcations of the phase space structures that might occur
as energy is increased, is not known and is a topic of continuing
research47–52.

Thus, calculation of reaction rate (or flux) based on the geome-
try of phase space structures requires identifying trajectories that
start in the reactant well, cross the dividing surface constructed
from the NHIM, and reach the product well. This dividing sur-
face has been shown to be the appropriate (locally no-recrossing)
surface that reactive trajectories must cross since the calculated
reaction rates do not need correction due to recrossings34. This
construction is in contrast to the “standard” transition state theory
(TST) for constructing the dividing surface which is only exact in
gas phase unimolecular reactions and when ergodicity of trajec-
tories in the phase space holds19. As is now established, the no
recrossing (locally) property of a dividing surface is a contribution
of the phase space perspective of chemical reactions33. While the
standard TST relies on a recrossing free surface for calculating
reaction flux, a dividing surface constructed in the configuration
space violates this condition in the case of a solvent19,53, and thus
the TST based reaction rate is not exact. This violation of the re-
crossing property when the DS is constructed in the configuration
space of a reaction in a high viscosity solvent also follows from
the Kramers’ diffusion model, Langevin equation, of chemical re-
actions19. Thus, finding the reactive trajectories, and the changes
in the DS and NHIM is a worthwhile step towards understanding
the phase space structures relevant for a reaction in a solvent.

For a general introduction to the theory and terminologies used
in this study, we refer the reader to the excellent reviews21,54

and the open source book on chemical reactions and dynami-
cal systems55. The phase space geometry of unimolecular reac-
tions dynamics has been developed using a two degrees of free-
dom Hamiltonian where the coordinates represent intermolecular
bonds3,4,26–30. As a natural next step in studying unimolecular
reaction dynamics in solvents, we adopt a model where the reac-
tion coordinates (modeled as a system Hamiltonian) are coupled
with a set of harmonic bath modes (modeled as a bath Hamilto-
nian)56–59. This is with the intention of parametrizing the effects
of a solvent on the reaction dynamics. This formulation of cou-
pling harmonic bath modes with system dynamics also serves as a
preliminary step in assessing the capabilities of a trajectory diag-
nostic called Lagrangian descriptors (LDs)60 in realistic (high di-
mensional) chemical systems. Lagrangian descriptors have been
shown to detect phase space structures that mediate reactive tra-

2 | 1–23Journal Name, [year], [vol.],

Page 2 of 24Physical Chemistry Chemical Physics



jectories in dissipative, time-dependent models of chemical reac-
tions61,62, for transition path sampling in two degrees of freedom
models of chemical reactions5,63, and for revealing roaming path-
ways in molecular dissociation64,65.

To find all the reactive trajectories at a given energy so they can
be used in reaction rate calculations, one starts with some seed
initial conditions that lead to reaction, and then produces more
initial conditions (reactive) by varying the position and momenta.
Hence this approach is phrased as harvesting reactive trajecto-
ries63 in transition path sampling methods66. In high dimen-
sional molecular phase space, this is a non-trivial computation
due to the large size of the energetically accessible phase space
volume. Since it has been shown that the reactive islands and
their hierarchical structure can be used to search for reactive tra-
jectories using the shooting method5 in two degrees of freedom
model, it is useful to consider how the same approach performs
in a high dimensional system-bath model. The system-bath model
will also serve as a test bed for illustrating the use of LDs in de-
tecting the reactive islands in the presence of a solvent.

This article is outlined as follows. First, we briefly describe
the De Leon-Berne Hamiltonian in § 2.1 and the corresponding
system-bath Hamiltonian in § 2.2. This is followed by a de-
scription of the methods — Lagrangian descriptor and committor
probability — in § 2.3. In § 3.1, we first present results on the
system dynamics modelled by the De Leon-Berne Hamiltonian.
Then, in § 3.1.1, we present a method for directly constructing
the reactive islands and in § 3.1.2 we verify that the singular fea-
tures in LD contour maps detect the reactive islands’ boundaries
by comparing it with the direct construction. Then, we make
the connection with the temporal features in committor probabil-
ities and the hierarchy of reactive islands in the system dynamics.
Next, in § 3.2, we apply the approach of the LD based detection
to find the hierarchy of reactive islands in the system-bath model
along with verifying the results using the committor probability
calculations. Then, we conclude with a summary and outlook in
§ 4.

2 Models and Methods

2.1 System dynamics: Two degrees of freedom isomeriza-
tion

We consider the two degrees of freedom Hamiltonian for a uni-
molecular conformational isomerization introduced by De Leon,
Berne and co-authors4,26–28,30,67. This system model describes
the structural change of a molecule that goes from the isomer A
to B and described by the reaction

A
forward
�

backward
B. (1)

The two degrees of freedom De Leon-Berne Hamiltonian is given
by

H (x,y, px, py) =T (px, py)+VDB(x,y)

=
p2

x
2mx

+
p2

y

2my
+VDB(x,y)

(2)

Fig. 1 Contour plot of the potential energy in the De Leon-Berne
model of unimolecular isomerization 26,27 for the coupling and Morse
range values shown and εs = 1.0, Dx = 10.0, yw =±1/

√
2 are used in both

the plots. The location of the saddle equilibrium point (denoted by the
red cross) is independent of the parameters and is always located at the
origin, while the y-coordinate of the center equilibrium point is at yw, the
x-coordinate is dependent on the parameters.

where the potential energy function VDB(x,y) is

VDB(x,y) =Dx [1− exp(−λx)]2

+
V ‡

y4
w

y2(y2−2y2
w)exp(−ζ λx)+ εs (3)

and a description of the parameters is given in the Appendix A.
In this study, we fix V ‡ = 1.0,yw =±1/

√
2,εs = 1.0,Dx = 10.0, and

vary the Morse range parameter, λ , and the coupling parame-
ter, ζ , while using the same value for the mass of the system
coordinates: mx = my = 8.0 as adopted in the works of De Leon,
Berne and co-authors4,26–28,30,67. We note that, in general, an
isomerization reaction the representative system coordinates will
have different mass parameter values, we have adopted the same
value for both the coordinates to compare with known results on
the De Leon-Berne Hamiltonian. The contour plots of the poten-
tial energy (3) for the chosen values of the range and coupling
parameters are shown in Fig. 1. The Hamilton’s equations are:

ẋ =
∂H

∂ px
=

px

mx

ẏ =
∂H

∂ py
=

py

my

ṗx =−
∂H

∂x
= 2Dxλ exp(−λx)(exp(−λx)−1)

+
V ‡

y4
w

ζ λy2(y2−2y2
w)exp(−ζ λx)

ṗy =−
∂H

∂y
=−4

V ‡

y4
w

y(y2− y2
w)exp(−ζ λx).

(4)

Equilibrium points and total energy. The equilibrium points of
the Hamiltonian vector field (4) are located at qs = (0,0,0,0) and
at qc = (xeq,±yw,0,0) where the x-coordinate, xeq, depends on the
parameters chosen and is obtained using numerical root solver.
The product is specified in the computations by the y−coordinate,
yw = −1/

√
2, and this condition that the product is specified by
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the value of the bond that undergoes rotational change.
The total energy is denoted by H (x,y, px, py) = E = Esaddle+∆E

where ∆E is the excess energy above the isomerization barrier
energy. The total energy of the equilibrium point qs is H (qs) = εs

for all parameter values, and will be referred to as the critical
energy or the isomerization barrier energy. The total energy of
the equilibrium point qc is given by

H (qc) = Dx(1− exp(−λxeq))
2−V ‡ exp(−ζ λxeq)+ εs (5)

When the two degrees of freedom are uncoupled, that is ζ = 0,
the equilibrium point qc is at (0,±yw,0,0), and has total energy
εs−V ‡. Furthermore, since the total energy at these points (5)
is independent of yw, the total energy of the isomer state A and B
is always same which makes this a symmetric double well poten-
tial. However, as we will show this configuration space symmetry
does not imply symmetry in the backward and forward reaction
defined by going from the top to the bottom well (Fig. 1).

2.2 System-bath dynamics: Two degree of freedom isomer-
ization in a solvent

In this section we describe the system-bath model for a system
with two degree of freedom (DOF). This type of system-bath
model have been used to develop dynamical methods for a system
coupled to an environment68–70. These theoretical of chemical
reactions have been studied in the context for energy and charge
transfer reactions71, isomerization via conical intersection where
the two active DOF are coupled to the environment72. We con-
sider the two degree of freedom Hamiltonian (2) coupled with
harmonic oscillators for a system-bath model of the form56–58:

H (x,y,x j,y j, px, py, px j , py j ) =

p2
x

2mx
+

p2
y

2my
+VDB(x,y)︸ ︷︷ ︸

System Hamiltonian

+
NB

∑
j=1

1
2

[
p2

x j

m j
+

(
ω jx j−

cx, jx
ω j

)2
]

︸ ︷︷ ︸
Coupling of the bath to x

+
NB

∑
j=1

1
2

[
p2

y j

m j
+

(
ω jy j−

cy, jy
ω j

)2
]

︸ ︷︷ ︸
Coupling of the bath to y

where x and y denote the configuration space coordinates of
the system, px and py are the associated conjugate momenta, px j ,
x j denote the jth bath phase space coordinates associated with the
system configuration space variable x, and py j , y j denote the jth

bath phase space coordinates associated with the system configu-
ration space variable y. We assume that the frequencies, ω j, are
the same for each bath, and the coupling constants for each con-
figuration space variable to the bath are given by cx, j and cy, j. In
the supplemental material, we explicitly carry out the discretiza-
tion that gives us the coupling constants cx, j and cy, j and the fre-
quencies ω j. These quantities are given by

ω j =−ωc log

(
j− 1

2
NB

)
, j = 1, . . . ,NB (6)

and

cx, j =

√
2ηxωc

πNB
ω j, cy, j =

√
2ηyωc

πNB
ω j, j = 1, . . . ,NB. (7)

We note here that the bath modes are coupled to each other
indirectly through the system dynamics and their coupling to the
system coordinates depends on both the friction and frequency
parameters.

Using Eqn. (3) and Eqn. (6), the Hamilton’s equations for the
system-bath model are:

ẋ =
∂H

∂ px
=

px

mx
,

ẏ =
∂H

∂ py
=

py

my
,

ẋ j =
∂H

∂ px j

=
px j

m j
, j = 1, . . . ,NB

ẏ j =
∂H

∂ py j

=
py j

m j
, j = 1, . . . ,NB,

ṗx =−
∂H

∂x
= 2Dxλ exp(−λx)(exp(−λx)−1)

+
V ‡

y4
w

ζ λy2(y2−2y2
w)exp(−ζ λx)

+
NB

∑
j=1

cx, j

ω j

(
ω jx j−

cx, jx
ω j

)
,

ṗy =−
∂H

∂y
=−4

V ‡

y4
w

y(y2− y2
w)exp(−ζ λx)

+
NB

∑
j=1

cy, j

ω j

(
ω jy j−

cy, jy
ω j

)
,

ṗx j =−
∂H

∂x j
=−ω j

(
ω jx j−

cx, jx
ω j

)
, j = 1, . . . ,NB

ṗy j =−
∂H

∂y j
=−ω j

(
ω jy j−

cy, jy
ω j

)
, j = 1, . . . ,NB,

(8)

where the bath frequencies ω j and coupling coefficients cx, j,cy, j

are given by Eqn. (6) and Eqn. (7), respectively. The total energy
will be denoted by H (x,y,x j,y j, px, py, px j , py j ) = E = Esaddle +∆E
where j = 1,2, . . . ,NB and ∆E is the excess energy with respect to
the isomerization barrier energy. In this article, we are adopting x
to denote the x-coordinates of the bath modes x1,x2, . . . ,xNB ; px to
denote the x-momentum of the bath modes px1 , px2 , . . . , pxNB

, and
so forth.

In this form of coupling each system degree of freedom (NS)
is coupled with all its bath modes (NB), the total number of de-
grees of freedom are NS +NSNB, and thus the dimension of phase
space is 2NS(NB + 1). This gives us a high dimensional Hamil-
tonian model where we can increase the number of degrees of
freedom by increasing the number of bath modes along with in-
corporating the effects of a solvent in a systematic way by chang-
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ing the mass, frequency, and friction parameters. In this study,
we will focus on a small value of the mass parameter and use 64
bath modes which amounts to a weak strength solvent or a small
perturbation to the system dynamics. Although, the number of
bath modes considered here are not large enough to capture the
effect of a solvent in the Langevin sense, this formulation can be
extended as long as enough computational time is reserved to ob-
tain trajectories and the associated diagnostic method. However,
the high dimensionality of the system-bath model will be a setting
to assess how the method of Lagrangian descriptors performs in
more realistic chemical systems. This also gives a natural way
to model the unimolecular conformational isomerization in a sol-
vent and allows us to vary the friction of the environment from
low-density gases to high-density liquids25.

Equilibrium points and total energy. The equilibrium points
of the system-bath model (8) are located at qs = (0,0,0,0,0,0,0,0)
and at

qc = (xeq,±yw,(cx, j/ω
2
j )xeq,(cy, j/ω

2
j )yw,0,0,0,0), j = 1, . . . ,NB.

(9)

where 0 is a vector of zeros of length NB, xeq is the x-coordinate
of the equilibrium point in the system model and needs to be
obtained using numerical methods for solving roots of nonlinear
equations.

The linear stability analysis of the equilibrium point at the ori-
gin is shown in the Appendix E and we checked that the equi-
librium point at the origin is an index-1 saddle with eigenvalues
±λ ,±iω1,±iω2, . . . ,±iωNSNB+(NS−1). Thus, adding the bath modes
in the form of Eqn. (6) has not changed the stability of the equi-
librium points in the system Hamiltonian. We note that the struc-
ture of the Jacobian of the Hamilton’s equations (8) (or the Hes-
sian of the potential energy) is similar to the collected effective
modes approach used in charge transfer reactions68–71,73. Next,
the total energy of the index-1 saddle equilibrium point at qs is
H (0,0,0,0,0,0,0,0) = εs which is also same. However, the coor-
dinates of the well depend on the bath parameters and we check
their stability in the Appendix E. To investigate the reaction dy-
namics, we will use an isoenergetic two-dimensional surface (to
compute Lagrangian descriptors) at the well location in the sys-
tem Hamiltonian even when the system-bath model is used so we
can compare the phase space structures directly.

2.3 Methods

a. Lagrangian descriptor (LD) to detect the invariant mani-
folds As described in the Appendix C and presented in the lit-
erature74–76, we know the singular features in the LD contour
maps identify points on the invariant manifolds such as the nor-
mally hyperbolic invariant manifold and its associated stable and
unstable manifolds. Since the reactive islands are formed by the
stable and unstable manifolds, the boundary of the reactive is-
lands can be identified in the LD contour map. We note here that
both the fixed (49) and variable (53) integration time LD detect
the reactive island structure except with some differences. Briefly,
the former approach shows singular features in the contour map

that are local minima, while the latter approach shows singular
features in the contour map that are local maxima. Since the
variable integration approach stops trajectories when they reach
or leave a preselected region, the computations are faster than the
fixed integration approach.

b. Committor probability to verify the reactive island struc-
ture Committor probability of a set of initial conditions, (Q,P)
where Q,P ∈ RN for N degrees of freedom system, is the fraction
of trajectories that are committed to a stable state (this corre-
sponds to the center equilibrium point or minima of the potential
energy surface) B at a time t before reaching another stable state
A. This is denoted by PB(t,(Q,P)) to check the committor proba-
bility of B when the initial conditions are fixed in A. This is calcu-
lated by launching N initial conditions with fixed position coordi-
nates Q (this fixes the configuration of a molecule) and choosing
momenta to satisfy the fixed energy constraint. Then, fraction
of the initial conditions and the time until which the initial con-
ditions remain committed to B is recorded, thus the committor
probability for a stable state B becomes

PB(t,(Q,P))≈ 1
N

N

∑
i=1

δB(Φt(Q,P)), (10)

where δB(Q,P) is the characteristic function of stable state B
and Φt(Q,P) denotes the evolution of the initial conditions for
time t under the Hamiltonian vector field, either (2) or (8). In
this study, the system dynamics being described by the De Leon-
Berne Hamiltonian, we choose the top well’s y−coordinate as the
state A (yw = 1/

√
2) and bottom well’s y−coordinate to be the

state B (yw =−1/
√

2).
Thus, committor probability is an approach to check which ini-

tial conditions become reactive trajectories and how long they
spend in the reactant or product well. This amounts to check-
ing the effectiveness of a method in sampling reaction (transi-
tion) paths in the phase space for a fixed energy. Therefore, it
has been used for detecting reactive trajectories which are rare
events when the energy of the barrier is higher than the energy
imparted to the solute by the collisions with the solvent molecule.
Since finding these reactive trajectories constitutes detecting rare
events in the high dimensional phase space5,77 of the system-bath
model (8), we can test the effectiveness of the reactive islands in
producing reactive trajectories in the system-bath model.

3 Results and discussion

3.1 System dynamics

The regular and chaotic dynamics of the Hamiltonian (2) and its
implications for reaction rates has been studied in detail by Davis,
Marston, De Leon, Berne and coauthors in the 1980s1–4,26,27.
They have illustrated by varying the coupling parameter, ζ , and
Morse range parameter, λ , that the simple model of isomerization
can exhibit a wide variety of dynamically different trajectories.
These manifest qualitatively as transition to chaos, coexistence of
regular and chaotic regions, and quantitatively in the temporal
decay of reaction rates. Further discussions of the reactions dy-
namics by varying the above parameters can be found in the open
source book55.
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In this study, we will focus on the two sets of the coupling and
range parameters: ζ = 1.00, λ = 1.50 and ζ = 2.30, λ = 1.95 to
discover the reactive islands as shown in the literature and under-
stand the influence of a solvent on the isomerization by studying
the reactive islands. This approach of studying the influence of an
environment on known reactions can be considered as an assess-
ment of the LD contour map method for realistic reactions. Here
we will demonstrate the use of Lagrangian descriptors for find-
ing reactive islands in the system dynamics and verify the results
using a direct construction of the global stable and unstable man-
ifolds associated with the index-1 saddle equilibrium point. Our
results of the reactive islands in the system dynamics applies to all
the other parameter values in the literature and for an arbitrary
total energy between the isomerization (V ‡) and dissociation en-
ergy (Dx).

Poincaré surface of section — Let M (E) be the energy sur-
face given by setting the Hamiltonian (2) or the total energy to a
constant, that is

M (E) =
{
(x,y, px, py) ∈ R4 |H (x,y, px, py) = E

}
(11)

where E is the constant and the surface M (E) is three-
dimensional and embedded in the four-dimensional phase space,
R4, and thus referred to as codimension-1. Now, if we take a
cross-section of this three-dimensional surface, we obtain a two-
dimensional Poincaré surface of section (SOS). The SOS can be
used to define a two-dimensional return map (R2 → R2) for a
constant energy, E and given by

U−xpx
=
{
(x,y, px, py) ∈ R4 | y = yw = 1/

√
2,

py(x,y, px;E)< 0
}
, (12)

where py < 0 enforces a directional crossing of the surface and
in this case, trajectories with y−momentum directed towards the
bottom well.

Fig. 2 Poincaré surface of section of the trajectories crossing the sur-
face (12) for the parameters (a) ζ = 1.00, λ = 1.50 (b) ζ = 2.30, λ = 1.95
at total energy E = 1.5. While the range and coupling parameter shown
in (a) exhibits a combination of regular and chaotic behavior, the set of
parameters used for (b) is almost completely chaotic.

In Fig. 2, we show the Poincaré section of trajectories initialized
on the surface (12) and integrated for 103 time units (for the cho-

sen parameters, the barrier frequency is ωb =
√

(4V ‡)/(y2
wmy) =

1.0). The trajectories are sampled on the energy surface E = 1.5
which is above the critical energy and for the two sets of system
parameters. The Poincaré sections show that the phase space of
the system dynamics for ζ = 1.00, λ = 1.50 is a combination of
regular and chaotic motion as indicated by the KAM islands near
the edge of the energy boundary’s intersection with the surface
and the sea surrounding these islands, respectively. For the pa-
rameters ζ = 2.30, λ = 1.95, the surface lacks any regular motion
since the KAM islands are absent. Thus, while the first set of
coupling and range parameters exhibits a combination of chaotic
and regular motion, the second set of parameters exhibits com-
pletely chaotic motion, respectively. As has been discussed in the
literature26,27, these two types of global dynamics are typical of
molecular systems that undergo isomerization. However, infer-
ring about the phase space mechanism of the isomerization, that
is how and which trajectories lead to reaction, requires further lo-
cal analysis (linearization) around fixed points in the Poincaré
return map for finding the periodic orbit and its stable and unsta-
ble manifolds28–30. Furthermore, as the dimension of the phase
space increases due to the coupling with bath modes, trajectories
in more than four-dimensional phase space will intersect the two
dimensional surface with probability close to zero, and hence the
Poincaré return map constructed using a two-dimensional surface
of section can not catch trajectories with dynamically different
fates. For the parameters chosen here, the integration time can
be considered as “long” compared to the time scale involved in the
barrier crossings and can become infeasible for high dimensional
phase space, while at the same time we do not gain much under-
standing of the hierarchy (time ordering) of reactive trajectories
using Poincaré sections. To address this issue, we will present a
direct construction of the so called reactive islands4,26,28,30, and a
simple trajectory diagnostic method, Lagrangian descriptor con-
tour map, that can detect the phase space structures in the system
Hamiltonian. In addition, the Lagrangian descriptor (LD) contour
map obtained using either the formulation (49) or (53) can reveal
the reaction mechanism by detecting the reactive island structures
in high dimensional phase space of a system-bath Hamiltonian.
However, before proceeding to the system-bath Hamiltonian, we
will verify the reactive islands obtained using the LD contour map
by comparing with the direct construction of the reactive islands
in the system Hamiltonian.

3.1.1 Direct construction of reactive islands

Here we discuss the computational approach for directly obtain-
ing the reactive islands for the two degrees of freedom De Leon-
Berne Hamiltonian (2) presented in the Appendix B. The proce-
dure relies on the linearization around the index-1 saddle equi-
librium point and the corresponding eigenvalue problem yields
the eigenvectors in the center manifold which is used to generate
initial conditions for the unstable periodic orbit. Since computing
unstable periodic orbits is a fundamental step in studying trans-
port across index-1 saddle, we have made this step available as
an open source python package which also includes the De Leon-
Berne Hamiltonian as an example78. Next, the eigenvectors that
span the unstable and stable subspace at the index-1 saddle equi-
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Fig. 3 Phase space and configuration space view. Shows the cylindrical (tube) invariant manifolds of the unstable periodic orbit associated
with the index-1 saddle equilibrium point in the bottleneck for the total energy, E = 1.1, and for (a) ζ = 1.00, λ = 1.50 (b) ζ = 2.30, λ = 1.95. The
Hill’s region (defined in Appendix A) for the same total energy is shown as the grey region in the configuration space. The stable and unstable
manifolds in the top and bottom wells are shown as the surface with maroon and orange)= trajectories, respectively, and are obtained using numerical
globalization (see Appendix B). The unstable manifold in the top well and the stable manifold in the bottom well are not shown here, to avoid cluttering
the figure. The example trajectory (shown in blue with green and red circles marking the start and end coordinates) with configuration coordinates
(−0.1,1/

√
2,1.0, py(E;(ζ ,λ ))) integrated for 30 time units for both the set of system parameters. During this time interval, the trajectory crosses the

barrier (for ζ = 2.30, λ = 1.95) by entering the stable manifold in the top well, crossing the bottleneck, and then entering the unstable manifold in the
bottom well. The trajectory is trapped in the well as long as it remains on the outside the manifolds.

librium point are placed on the unstable periodic orbit to generate
initial conditions which are then integrated to construct the global
stable and unstable invariant manifolds of the unstable periodic
orbit associated with an index-1 saddle. As pointed out in the in-
troduction, these invariant manifolds are two-dimensional on the
three-dimensional energy surface making them codimension-1 on
the energy surface, and have cylindrical geometry, that is R1×S1,
and hence are also called tubes. Thus, they are of appropriate di-
mension to partition the energy surface in four dimensional phase
space and thus mediate trajectories that cross the barrier3 be-
tween the isomer wells. Since the trajectories that cross the bar-
rier must enter the stable manifold of the unstable periodic orbit,
cross the bottleneck of the energy surface, and then enter the un-
stable manifold of the unstable periodic orbit (projection of the
unstable periodic orbit on the configuration space is referred to
as the transition state) associated with the index-1 saddle equi-
librium point in the bottleneck. For example, if we define the
forward reaction as going from the top to the bottom well, then
forward reactive trajectories must pass through the stable man-
ifold’s branch (denoted by the surface with cyan trajectories in
Fig. 3) in the top well, cross the unstable periodic orbit in the
bottleneck, and enter the bottom well through the unstable man-
ifold’s branch (denoted by the surface with orange trajectories
in Fig. 3) in the bottom well. An example trajectory (shown as
the blue curve with green and red circles denoting initial and fi-
nal phase space coordinates) that undergoes reaction by passing

through the cylindrical manifolds is shown in Fig. 3.

Reactive islands in the two degrees of freedom system are the
intersection of the tube manifolds with a two-dimensional surface
in the three-dimensional energy surface which makes the reac-
tive islands one-dimensional. Depending on the geometry of the
globalized tube manifolds and the choice of the two-dimensional
surface, the intersection of the invariant manifolds can be ei-
ther closed curves or non-closed as has been known in the lit-
erature67,79. Patra and Keshavamurthy 63 have discussed the role
of reactive islands in sampling reactive trajectories which can be
thought of as rare events when a trapped trajectory in a system-
bath model crosses the potential energy barrier. This observa-
tion has also been experimentally validated80 where the reac-
tion probability (or transition probability) for a given total en-
ergy can be calculated directly as the area of the reactive islands
relative to the area of the energetically accessible region on the
surface. This quantitative approach based on reactive island ar-
eas has been used to develop the reactive island kinetic theory of
reaction rates30,67.

It follows from the construction of the cylindrical manifolds
that the trajectories on the stable manifold approach the unsta-
ble periodic orbit in the bottleneck in forward time which implies
that a trajectory exiting the top well has to appear inside the first
intersection (in backward time) of the stable manifold with the
surface (12). A similar justification holds for the first intersection
(in forward time) of the unstable manifold for a trajectory enter-
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ing the bottom well. Thus, the first intersections of the stable and
unstable manifolds define the reactive islands of imminent reac-
tions. So given the phase space coordinates of a trajectory inside
these reactive islands we can specify the upper bound of the bar-
rier crossing time by the average time taken by the trajectories on
the manifold to intersect the surface. Furthermore, the pre-image
and image of these first intersections of the stable and unstable
manifolds, respectively, can be used to construct an itinerary of
the reactive trajectory in the molecular phase space5,81,82. It is
to be noted that this requires densifying the pre-image and image
curves to generate smooth approximations83,84 for the area calcu-
lations to be of practical interest. Here, we present the qualitative
changes in the reactive islands for the two sets of the parameters
in the system dynamics at three different energies.

In Fig. 4 and 5, we show the reactive islands (as orange and
maroon curves) in the top well constructed from the intersections
of the globalized unstable (orange) and stable (maroon) cylindri-
cal manifolds with the surface (12). The top row in both figures
shows the intersections of the unstable manifolds of the unsta-
ble periodic orbit at the total energy, E = 1.5, with the surface
for τ = 30 and the bottom row shows the same for the stable
manifolds. We note here that for the parameters considered here
(which affects the geometry of the cylindrical manifolds as is ev-
ident in Fig. 3) and the choice of the surface (12), only the re-
active islands of imminent reactions are closed curves and their
pre-images and images are non-closed curves. A detailed geo-
metric analysis of these intersections requires careful discussion
of the tube dynamics and is beyond the scope of this study but
can be found elsewhere81,84,85.

3.1.2 Detecting the hierarchy of reactive islands using La-
grangian descriptors

In a recent work75,76, we showed that the singular features in the
Lagrangian descriptors (LD) identify the normally hyperbolic in-
variant manifold and its unstable and stable manifolds in two and
three degrees of freedom (for both linear and nonlinear) Hamilto-
nian systems. We also compared the fixed (49) and variable (53)
integration time formulation for the two and three degrees-of-
freedom system with Hénon-Heiles type potential. Since the re-
active islands are the interior of the intersections of the unstable
and stable invariant manifolds with the surface, such as defined
by the Eqn. (12), it is reasonable to check that the singular fea-
tures in the Lagrangian descriptor contour maps can reveal the
reactive island structures. To this end, it has been shown that
for the Müller-Brown potential energy surface and De Leon-Berne
Hamiltonian Lagrangian descriptor contour maps can reveal the
hierarchy of reactive islands5,63. The hierarchy is formed when
the first intersection of the stable manifold is evolved backwards
in time to give the pre-image and the first intersection of the un-
stable manifold is evolved forward in time to give the image of
the reactive island of imminent reaction. It is to be noted that the
reactive islands formed by the stable manifold in the top well me-
diates the forward reactive trajectories going to the bottom well.
Similarly, the reactive islands formed by the unstable manifold in
the top well mediates the backward reactive trajectories coming
from the bottom well. Thus, the knowledge of the reactive island

structures on the surface (12) shows the phase space mechanism
of the reaction as defined for the potential energy surface (14).

Now, we establish the connection between the hierarchy of the
reactive islands generated by the globalized invariant manifolds.
This globalization implies that the intersection of these invari-
ant manifolds with the surface has a natural time ordering which
produces the hierarchy in the reactive island structure starting
from the first intersections of the unstable and stable manifolds.
Furthermore, this hierarchy can be used to explain the temporal
features in the committor probability66,86 of a set of initial con-
ditions which are specified by fixing position coordinates (config-
urations) and selecting momenta to satisfy the fixed energy con-
straint. First, we verify the approach of using LD contour maps
for detecting reactive islands by comparing the direct numerical
construction in §:3.1.1 with the singular features in the LD plots.

In Figs. 4(a,c) and 5(a,c), we show the fixed integration time
LD contour maps for the two sets of the system parameters and
where the singular features as indicated by the one-dimensional
sections in the respective (b,d) line plots. Even though, the sin-
gular features in the contour maps agree with the directly con-
structed reactive islands, the fixed integration time LD has a large
number of minima that are generated due to trapped trajecto-
ries outside the invariant manifolds. Due to these “ripples” in the
function M values, we resort to calculating the variable integra-
tion time LD using τ± = 30 in the formulation (53). This is shown
in Figs. 6(d,f) and 7(d,f) for the two sets of the parameters, re-
spectively.

In Fig. 6(b,c) and 7(b,c), we show the committor probabilities
of the five sets of initial conditions for the two sets of parameters
initialized on the surface (12). The committor probabilities show
the step jumps resulting from the initial conditions inside the re-
active islands that lead to the bottom well while the flat portions
of the committor corresponds to the trapping in the well. The
drop in the committor corresponds to the recrossings which is re-
lated to the reactive island structure that leads to the top well
from the bottom well (called as backward reaction67). Thus, the
reactive islands leading to forward reaction is revealed by forward
time LD since the blue set of initial conditions react immediately
in forward time (∼ 5 time units) and take longer to react in back-
ward time (∼ 20 time units).

The finer structure in the interior of the reactive islands is ab-
sent in these maps because the integration is terminated once the
trajectory satisfies the product criterion and hence they only ap-
pear in the fixed integration time LD as shown in Figs. 4 and 5.
These finer structures are to be expected due to the global re-
crossings of the barrier on a bounded energy surface and are sup-
pressed when using the variable integration time (cf. Fig. 6 (b,c)
and Fig. 4 (a,d)) formulation. Besides, the formula (53) is faster
to compute compared to the fixed integration time formula (49)
in a high-dimensional phase space, and hence is more suitable for
setting up seed initial conditions for harvesting reactive trajecto-
ries in transition path sampling.
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(a) (b)

(c) (d)

Fig. 4 Reactive islands and Lagrangian descriptors for the system model. The singular features in the contour maps identify the reactive islands
(in orange and maroon curves) for ζ = 1.00 and λ = 1.50 at total energy E = 1.500. (a) shows the fixed integration time backward LD and (b) shows the
fixed integration time forward LD for τ = 30. In both the contour maps, the orange and maroon curves denote the intersection of unstable and stable
manifolds with the surface (12), respectively, and are computed directly by globalizing the manifolds for 30 time units and recording their intersections
with the surface. (c) and (d) show the function M value, M0.5(·,0,30), for the initial conditions along the constant x−coordinate.

3.2 System-bath dynamics

Now, we will use the LD contour maps to identify reactive is-
lands in the system-bath model with NS(NB + 1) degrees of free-
dom. Since the system dynamics for the isomerization is mod-
elled by the De Leon-Berne Hamiltonian (NS = 2) and coupled
with NB = 64 harmonic oscillators, the configuration space is
130-dimensional and as a result 260-dimensional phase space.
However, since the isomerization model involves the two coor-
dinates (x,y) in the system-bath model (8), a two-dimensional
surface with either (x, px) or (y, py) as the coordinates becomes
an appropriate choice for finding the reactive islands. In the
2NS(NB + 1)-dimensional phase space, we consider the isoener-
getic two-dimensional surface given by

U−xpx
=
{
(x,y,x,y, px, py,px,py) ∈ R2NS(NB+1) | y = yw,

x = 0,y = 0,px = 0,py = 0, py(·;E)< 0
}
. (13)

The negative py enforces a directional crossing such that we
only record trajectories with y−momentum pointing towards the
bottom well. On this surface, we initialize a microcanonical en-
semble at E = 1.5, and integrate them for 30 time units in for-

ward and backward or until their y−coordinate is within toler-
ance (10−6) of the condition, yw = −1/

√
2. The terminal condi-

tion corresponds to the formation of a product while the result-
ing LD computation becomes a variable time formulation (53). In
what follows, we use the bath parameters mi = 1.0,ωc =

√
5 ≈

2.236,ηx = ηy = 0.1 which represents a weak coupling of the
bath modes (for ms = 8.0,ωb = 1.0,∆E = 0.5,εs = 1.0, we get
ηx/(msωb) < ∆E/εs) and thus, acts as perturbation to the dy-
namics given by the system Hamiltonian. Here, we note that in
a recent work the influence of the solvent’s mass (in particular
the timescale mismatch between a solute and solvent’s motion)
on the phase space dividing surface has been illustrated using a
Lennard-Jones like repulsion term87,88.

3.2.1 Detecting the hierarchy of reactive islands using La-
grangian descriptors

In Fig. 8(a,c) and Fig. 9(a,c), we show the backward and forward
variable integration time (defined by the Eqn. (53) with τ± = 30)
LD contour maps along with one-dimensional sections at constant
x−coordinate. In both cases of the system parameters, we observe
that the singular features in the variable integration time LD con-
tour maps identify the boundaries of the reactive islands and the
flat regions between the singular points identify the interior of
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(a) (b)

(c) (d)

Fig. 5 Reactive islands and Lagrangian descriptors for the system model. The singular features in the contour maps identify the reactive islands
(in orange and maroon curves) for ζ = 2.30 and λ = 1.95 at total energy E = 1.500. (a) shows the fixed integration time backward LD and (b) shows the
fixed integration time forward LD for τ = 30. In both the contour maps, the orange and maroon curves denote the intersection of unstable and stable
manifolds with the surface (12), respectively, and are computed directly by globalizing the manifolds for 30 time units and recording their intersections
with the surface. (c) and (d) show the function M value, M0.5(·,0,30), for the initial conditions along the constant x−coordinate.

these reactive islands76.

Using the integration time of τ = ±30, we observe that the re-
active islands of imminent reactions have appeared in both cases
of the system parameters at the total energy, E = 1.5. Further-
more, in Figs. 8(a,c) and 9(a,c), we observe the appearance of
higher order reactive islands which manifest as singular features
narrow flat regions in the one-dimensional sections. These higher
order reactive islands also explain why even a small variation in
the x− momentum can cause reaction to be delayed as the initial
condition has to pass through the hierarchy of reactive islands
to cross the barrier. Comparing the Fig. 6(d,f) with Fig. 8(a,c)
which are for the same system parameters: ζ = 1.00, λ = 1.50,
we observe that the reactive island structures are not destroyed
by a light bath. This observation is corroborated when the sys-
tem parameters are changed to ζ = 2.30, λ = 1.95 (cf. Figs. 7(d,f)
and 9(a,c)). Even though, the reactive island structures in the
system model are now different, the reactive islands still persist.
Our numerical experiments at higher energies also supports this
observation. Thus we can conclude that the gross picture of the
phase space structures in the system dynamics is not destroyed
even though individual configurations show distinctly different
dynamics as picked up by the committor probabilities in Figs. 8(e)
and 9(e). This has two potential implications: firstly, the global

dynamics can be diagnosed using Lagrangian descriptors which
detect the reactive islands and secondly, once the skeleton of the
global behaviour is revealed, specific configurations can be initial-
ized in a systematic way in the high-dimensional phase space to
find all the reactive trajectories used for rate calculations.

4 Conclusion and outlook
The role of reactive islands in two degrees of freedom isomer-
ization dynamics has been known since the work of De Leon,
Marston, Davis1–4. Theoretical developments have shown their
role in the qualitative understanding of reaction pathways and
their usefulness in computing reaction rates. In this article, we
have presented a computational approach of combining reactive
islands, Lagrangian descriptors, and committor probabilities for
identifying the phase space structures that govern reaction dy-
namics in a system-bath model. We have shown a direct approach
for obtaining the reactive islands by computing the cylindrical
invariant manifolds (tubes) in a well-known two degrees of free-
dom model of isomerization, De Leon-Berne Hamiltonian26,27.
Then, we have verified the Lagrangian descriptor method for
identifying reactive islands and their hierarchy5 in the two de-
grees of freedom system. We have used this approach in a high
dimensional system-bath model where reactive islands were ob-
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 6 Committor probabilities and reactive islands in the system model. Shows the reactive islands are identified by the singular features in the
LD contour maps for parameters: ζ = 1.00, λ = 1.50 at total energy E = 1.500. (a) Shows the configurations used for committor probability calculations.
(b,c) Show the committor probabilities of the five configurations for the backward and forward reaction, respectively, for τ = 30 time units. (d,f) Show the
variable integration time backward and forward LD, respectively, and (e,g) show the function M value, M0.5(·,0,30), for the initial conditions along the
three configurations at constant x−coordinate.

tained and checked using committor probabilities of configura-
tions initialized in the isomer well A. The hierarchy of the reactive
islands explain the phase space mechanism of a solvent’s influ-
ence on the isomerization and the barrier recrossings associated
with solution-phase reactions.

In this study, we observed that the phase space structure of
reactive islands that contain the global behaviour of trajectories

is preserved when a molecule undergoes isomerization in a light
bath (mass of the solvent molecules is less than the mass of the
molecule). This is verified by the committor probabilities of a few
test configurations which also reveal the barrier recrossings due to
a solvent19,20. This indicates that the reactive islands persist even
when the isomerization reaction takes place in a low viscosity sol-
vent. This observation is also in accordance with what has been
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 7 Committor probabilities and reactive islands in the system model. Shows the reactive islands are identified by the singular features in the
LD contour maps for parameters: ζ = 2.30, λ = 1.95 at total energy E = 1.500. (a) Shows the configurations used for committor probability calculations.
(b,c) Show the committor probabilities of the five configurations for the backward and forward reaction, respectively, for τ = 30 time units. (d,f) Show the
variable integration time backward and forward LD, respectively, and (e,g) show the function M value, M0.5(·,0,30), for the initial conditions along the
three configurations at constant x−coordinate.

thought of as cylindrical manifolds becoming fuzzy cylinders5 in
the presence of random forces89. The connection between phase
space structures in system-bath Hamiltonian and reactions in sol-
vent modelled by Langevin dynamics22,90,91 remains to be made,
and related future work will be along this direction. Furthermore,
the robustness of the reactive islands to parameters of the solvent

remains to be investigated. This includes the influence of the
mass, frequency dependent friction92, and cut-off frequency on
the reactive islands for a given system dynamics. Understanding
the effects of these solvent parameters on the reactive islands will
provide insights into the phase space mechanism of reactions in a
solvent and aid transition path sampling methods for calculating
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Committor probabilities and reactive islands in the system-bath model for parameters: ζ = 1.00, λ = 1.50 and at total energy E = 1.5.
The color map shows the variable integration time forward LD for (a, c) τ = 30 computed on the surface (13). One dimensional sections along
constant x-coordinate is shown in (b, d) for the three configurations of the system coordinates. (e,f) Show the committor probabilities for the same initial
configuration of the system as in the Fig. 6(a).

reaction rates when the solvent is altered for a given reaction. Conflicts of interest
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Committor probabilities and reactive islands in the system-bath model for parameters: ζ = 2.30, λ = 1.95 and at total energy E = 1.5.
The color map shows the variable integration time forward LD for (a, c) τ = 30 computed on the surface (13). One dimensional sections along
constant x-coordinate is shown in (b, d) for the three configurations of the system coordinates. (e,f) Show the committor probabilities for the same initial
configuration of the system as in the Fig. 7 (a).

Acknowledgements
We acknowledge the support of EPSRC Grant No. EP/P021123/1
and Office of Naval Research Grant No. N00014-01-1-0769. We

also acknowledge the high performance computing cluster of
Linux servers, CREAM, at the School of Mathematics for sup-

14 | 1–23Journal Name, [year], [vol.],

Page 14 of 24Physical Chemistry Chemical Physics



porting the computational needs of this work. The authors ac-
knowledge critical discussions and feedback from Srihari Ke-
shavamurthy on a draft of this article.

References
1 M. J. Davis, The Journal of Chemical Physics, 1985, 83, 1016–

1031.
2 M. J. Davis, The Journal of Chemical Physics, 1987, 86, 3978–

4003.
3 C. C. Marston and N. De Leon, The Journal of Chemical

Physics, 1989, 91, 3392–3404.
4 N. De Leon and C. C. Marston, The Journal of Chemical

Physics, 1989, 91, 3405–3425.
5 S. Patra and S. Keshavamurthy, Physical Chemistry Chemical

Physics, 2018, 20, 4970–4981.
6 G. M. Wieder and R. A. Marcus, The Journal of Chemical

Physics, 1962, 37, 1835–1852.
7 J. W. McIver and A. Komornicki, Journal of the American

Chemical Society, 1972, 94, 2625–2633.
8 C. Dugave and L. Demange, Chemical Reviews, 2003, 103,

2475–2532.
9 T. Donohoe, T. O’Riordan and C. Rosa, Angewandte Chemie

International Edition, 2009, 48, 1014–1017.
10 C. C. Price and W. H. Snyder, Journal of the American Chem-

ical Society, 1961, 83, 1773–1773.
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Appendices

A Details of the De Leon-Berne Hamiltonian
The potential energy function for the system dynamics can be bro-
ken down into three terms that models a conformational isomer-
ization in the y−coordinate by a double well potential, VDW(y), a
dissociation in the x−coordinate by a Morse potential, VM(y), and
a coupling term, VDWM(x,y) to write

VDB(x,y) =VDW(y)+VM(x)+VDWM(x,y)

VDW(y) =
V ‡

y4
w

y2(y2−2y2
w)+ εs

VM(x) =Dx [1− exp(−λx)]2

VDWM(x,y) =
V ‡

y4
w

y2(y2−2y2
w) [exp(−ζ λx)−1]

(14)

where the parameters are

V ‡ : potential energy difference between the isomerization bar-
rier and the bottom of the well for ζ = 0.

fix yw = ±1/
√

2 : location of the isomerization wells (symmetric
about the y = 0 axis).

fix εs = 1.0 : potential energy of the barrier.

fix Dx = 10.0 : dissociation energy of the Morse potential.

vary λ : range of the Morse potential.

vary ζ : coupling strength between the Morse potential and the
double well potential.

Symmetries of the equations of motion — We note the sym-
metries in the system (4), by substituting (−y,−py) for (y, py)

which implies reflection about the x−axis (y = 0 line) and ex-
pressed as

sy : (x,y, px, py, t)→ (x,−y, px,−py, t) (15)

Furthermore, the energy conservative Hamiltonian system (4) has
time-reversal symmetry given by

st : (x,y, px, py, t)→ (x,y,−px,−py,−t) (16)

So, if (x(t),y(t), px(t), py(t)) is a solution to (4), then com-
bining the two symmetries sy and st , we can assert
(x(−t),y(−t),−px(−t),−py(−t)) is another solution. These sym-
metries can be used to decrease the number of computations,
and to find special solutions. For example, any solution of (4)
will evolve on the energy surface given by (2). For fixed energy,
H (x,y, px, py) = E, there will be zero velocity curves correspond-
ing to VDB(x,y) = E contours as shown in Fig. 1. Any trajectory
which touches the zero velocity curve (boundary in phase space
where kinetic energy is zero) at time t0 must retrace its path in
configuration space (i.e. q = (x,y) space),

q(−t + t0) = q(t + t0) q̊(−t + t0) =−q̊(t + t0) (17)

This fact is useful in finding the unstable periodic orbit located in
the bottleneck of the Hamiltonian4,26,27.

Hill’s region and zero velocity curve— The projection of the
energy surface onto the configuration space, the (x,y) plane, is the
region of energetically possible motion for a given total energy, E.
Let M(E) denote this projection∗ and defined as

M(E) =
{
(x,y) ∈ R2 |VDB(x,y)6 E

}
, (18)

where VDB(x,y) is the potential energy (14). The projection of
the energy surface onto the configuration space, the (x,y) plane,
is known historically in mechanics as the Hill’s region and the
boundary of M(E) is known as the zero velocity curve. This pro-
jection denotes the bounds on the motion for a fixed energy and
can be used to visualize configurations allowed by energetically
accessible motion in high-dimensional phase space76. Further-
more, the zero velocity curve is the locus of the points in the (x,y)
plane where the kinetic energy is zero, that is

H (x,y, px, py) = E =
1
2

(
p2

x
mx

+
p2

y

my

)
+VDB(x,y) (19)

(
p2

x
mx

+
p2

y

my

)
=2(E−VDB(x,y)) = 0 (20)

Thus, the motion is only possible on the side of this curve where
the kinetic energy is positive and the other side is energetically

∗ It is to be noted that our convention is to use script letters for a region in the energy
surface (including the energy surface itself, M ) and italicized capital letters for that
region’s projection onto the configuration space (for example, M)
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forbidden and shown as grey region in the configuration space in
the Fig. 3.

B Computational method for the unstable
periodic orbit and its cylindrical invariant
manifolds

We consider the dynamics of the conservative system by determin-
ing the phase space “skeleton” that governs transition between
potential well (or, equivalently escape from a well). In the sim-
plest case of only two degrees of freedom, the phase space is of
four dimensional and the boundary between potential wells is de-
fined using unstable periodic orbit that lie in the bottleneck con-
necting the wells. The set of all states leading to escape from a
potential well can be understood as residing within an invariant
manifold of geometry R1×S1, that is a cylinder or tube. The in-
terior of this tube defines the set of all states which will transition
to the adjacent well.

B.1 Linearization at the index-1 saddle

It is to be noted that the linearization of the behavior of trajec-
tories near the saddle-center equilibrium points appears in the
leading order expression of the transition fraction. We are inter-
ested in trajectories which have an energy just above that of the
critical value. The region of possible motion for E > Ec contains
a neck around each saddle equilibrium point. The geometry of
trajectories close to the neck region is studied by considering the
linearized equations of motion near the equilibrium point.

Let xeq denote the equilibrium point connecting the top and
bottom wells. Furthermore, for a fixed energy E, we consider
a neighborhood of xeq on the energy surface, whose configura-
tion space projections are the bottleneck regions. We refer to
this neighborhood as the equilibrium region and denote it by R

on the energy surface. We perform a coordinate transformation
with xeq = (xeq,yeq,0,0) as the new origin, and keep the first order
terms, we obtain

ẋ = J(xeq)x where, x = [x,y, px, py]
T (21)

where J(xe,1) is the Jacobian of the Hamiltonian vector field (4)
evaluated at the equilibrium point. The Jacobian involves deriva-
tives of Eqns. (14) and the kinetic energy does not depend on the
position coordinates, we can write compactly

J(x) = Df(x) =


0 0 1/mx 0
0 0 0 1/my

− ∂ 2H
∂x2 − ∂ 2H

∂y∂x 0 0

− ∂ 2H
∂x∂y − ∂ 2H

∂y2 0 0

 (22)

=


0 0 1/mx 0
0 0 0 1/my

− ∂ 2VDB
∂x2 − ∂ 2VDB

∂y∂x 0 0

− ∂ 2VDB
∂x∂y − ∂ 2VDB

∂y2 0 0

 (23)

Thus, the linearized vector field at the equilibrium point be-

comes

ẋ = J(xeq)x = Df(xeq) =


0 0 1/mx 0
0 0 0 1/my

−2Dxλ 2 0 0 0
0 4V ‡

y2
w

0 0

x

(24)

where f denotes the Hamiltonian vector field, that is the right
hand side of the Hamilton’s equations. It can be checked that the
eigenvalues of the Jacobian to be of the form λ ,−λ , iω,−iω with
λ > 0, ω > 0 and given by

λ =

√
4V ‡

myy2
w
, ω =

√
2Dxλ 2

mx
, (25)

with corresponding eigenvectors given by

u±λ =

[
0, 1, 0, ±

√
4V ‡my

y2
w

]

ui±ω =
[
1, 0, ±i

√
2Dxλ 2mx, 0

] (26)

Thus, the general (real) solution of (21) has the form

x(t) = (x(t),y(t), px(t), py(t)) (27)

= α1eλ tuλ +α2e−λ tu−λ +2Re(βeiωtuiω ) (28)

where, α1, α2 are real and β = β1 + iβ2 is complex.

B.2 Numerical method for computing reactive islands

Step 1: Select appropriate energy above the critical value —
For computing the unstable periodic orbits and its invariant man-
ifolds that are phase space conduits for transition between the
two isomers, we have to specify a total energy, E, that is above
the energy of the index-1 saddle (this is referred to as critical
energy or reference energy or isomerization energy, Ec, in the
chemical reaction dynamics literature) and so the excess energy
∆E = E −Ec > 0. This excess energy can be arbitrarily large as
long as the unstable periodic orbit does not bifurcate.

Step 2: Compute the unstable periodic orbit associated with
the rank-1 saddle — We consider a procedure which com-
putes unstable periodic orbits associated with rank-1 saddle in a
straightforward fashion. This procedure begins with small “seed”
initial conditions obtained from the linearized equations of mo-
tion near xeq, and uses differential correction and numerical con-
tinuation to generate the desired periodic orbit corresponding to
the chosen energy E = εs +∆E 93. The result is a periodic orbit
of the desired energy E of some period T , which will be close
to 2π/ω where ±ω is the imaginary pair of eigenvalues of the
linearization around the saddle point.

Guess for initial condition of a periodic orbit — The general so-
lution of linearized equations of motion (Eqn. (28)) at the equi-
librium point xeq can be used to initialize a guess for an iterative
correction procedure called differential correction. The lineariza-
tion yields an eigenvalue problem Av= γv, where A is the Jacobian
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matrix evaluated at the equilibrium point, γ is the eigenvalue, and
v = [k1,k2,k3,k4]

T is the corresponding eigenvector. We initialize
the guess for the periodic orbit for a small amplitude, Ax << 1.
Let β =−Ax/2 and using the eigenvector spanning the center sub-
space, we can guess the initial condition to be

x̄(0) =x̄0,g = (x0,g,y0,g, px0,g , py0,g)
T (29)

=(xeq,yeq,0,0)T +2Re(βuiω ) = (xeq−Ax,yeq,0,0)T (30)

Differential correction of the initial condition — In this iterative
correction procedure, we introduce small change in the guess for
the initial condition such that coordinates at the final and initial
time of the periodic orbit∥∥x̄po(T )− x̄po(0)

∥∥< ε (31)

for some tolerance ε << 1. In this approach, we hold
x−coordinate constant, while applying correction to the initial
guess of the y−coordinate, use px−coordinate for terminating
event-based integration, and py−coordinate to test convergence
of the periodic orbit. It is to be noted that a specific combination
of the phase space coordinates is only suitable for potential, and
in general will require some permutation of the coordinates to
achieve a stable algorithm.

Let us denote the flow map of a differential equation x̊ = f(x)
with an initial condition x(t0) = x0 by φ(t;x0). Thus, the displace-
ment of the final state under a perturbation δ t becomes

δ x̄(t +δ t) = φ(t +δ t; x̄0 +δ x̄0)−φ(t; x̄0) (32)

with respect to the reference orbit x̄(t). Thus, measuring the dis-
placement at t1 +δ t1 and expanding into Taylor series gives

δ x̄(t1 +δ t1) =
∂φ(t1; x̄0)

∂x0
δ x̄0 +

∂φ(t1; x̄0)

∂ t1
δ t1 +h.o.t (33)

where the first term on the right hand side is the state transition
matrix, Φ(t1, t0), when δ t1 = 0. Thus, it can be obtained as numer-
ical solution to the variational equations as discussed in94. Let us
suppose we want to reach the desired point xd, we have

x̄(t1) = φ(t1; x̄0) = x̄1 = xd −δ x̄1 (34)

which has an error δ x̄1 and needs correction. This correction to
the first order can be obtained from the state transition matrix
at t1 and an iterative procedure of this small correction based on
first order yields convergence in few steps. For the equilibrium
point under consideration, we initialize the guess as

x̄(0) = (x0,g,y0,g, px0,g , py0,g)
T = (−Ax,0,0,0)T (35)

and using numerical integrator we continue until next px = 0
event crossing with a high specified tolerance (typically 10−14).
So, we obtain x̄(t1) which for the guess periodic orbit denotes the
half-period point, t1 = T0,g/2 and compute the state transition ma-
trix Φ(t1,0). This can be used to correct the initial value of y0,g to
approximate the periodic orbit while keeping x0,g constant. Thus,

correction to the first order is given by

δ px1 = Φ32δy0 + p̊x1 δ t1 +h.o.t (36)

δ py1 = Φ42δy0 + p̊y1 δ t1 +h.o.t (37)

where Φi j is the (i, j)th entry of Φ(t1,0) and the acceleration terms
come from the equations of motion evaluated at the crossing t = t1
when px1 = δ px1 = 0. Thus, we obtain the first order correction
δy0 as

δy0 ≈
(

Φ42−Φ32
p̊y1

p̊x1

)−1
δ py1 (38)

y0→ y0−δy0 (39)

which is iterated until |py1 |= |δ py1 |< ε for some tolerance ε, since
we want the final periodic orbit to be of the form

x̄t1 = (x1,y1,0,0)T (40)

This procedure yields an accurate initial condition for a periodic
orbit of small amplitude Ax << 1, since our initial guess is based
on the linear approximation near the equilibrium point. It is also
to be noted that differential correction assumes the guess periodic
orbit has a small error (for example in this system, of the order of
10−2) and can be corrected using first order form of the correction
terms. If, however, larger steps in correction are applied this can
lead to unstable convergence as the half-orbit overshoots between
successive steps. Even though there are other algorithms for de-
tecting unstable periodic orbits, differential correction is easy to
implement and shows reliable convergence for generating a dense
family of periodic orbits (UPOs) associated with the rank-1 saddle
at arbitrary high excess energy (as long as UPOs don’t bifurcate).
These unstable perioidic orbit at high excess energy are required
for constructing codimension−1 invariant manifolds.

Numerical continuation to unstable periodic orbit at an arbitrary
energy — The above procedure yields an accurate initial condi-
tion for a unstable periodic orbit from a single initial guess. If our
initial guess came from the linear approximation near the equi-
librium point, from Eqn. (28), it has been observed in the numer-
ics that we can only use the differential correction procedure for
small amplitude (∼ 10−4) periodic orbit around xe. This small am-
plitude corresponds to small excess energy, typically ∼ 10−2, and
to find an unstable periodic orbit of arbitrarily large amplitude,
we resort to the procedure of numerical continuation to generate
a family which reaches the appropriate energy E. Numerical con-
tinuation uses the two small amplitude periodic orbits obtained
from the differential correction procedure and proceeds as fol-
lows.

Suppose we find two small nearby periodic orbit initial condi-
tions, x̄(1)0 and x̄(2)0 , correct to within the tolerance d, using the
differential correction procedure described above. We can then
generate a family of periodic orbits with successively increasing
amplitudes associated with the rank-1 saddle x̄e in the following
way. Let

∆ = x̄(2)0 − x̄(1)0 = [∆x0,∆y0,0,0]T (41)
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A linear extrapolation to an initial guess of slightly larger ampli-
tude, x̄(3)0 is given by

x̄(3)0,g = x̄(2)0 +∆ (42)

=
[
(x(2)0 +∆x0),(y

(2)
0 +∆y0),0,0

]T
(43)

=
[
x(3)0 ,y(3)0 ,0,0

]T
(44)

Now, we can use differential correction to refine the guess initial
condition x̄(3)0,g until a specified tolerance is satisfied. Then, we

repeat using x̄(3)0 and x̄(2)0 to obtain the next x̄(4)0 , so on and so
forth until we have a family of solutions. We can keep track of the
energy of each periodic orbit and when we have two solutions,
x̄(k)0 and x̄(k+1)

0 , whose energy bisects the desired target energy,
Etarget, we halt the numerical continuation of the family. Next, we
resort to combining bisection and differential correction to the
last two periodic orbits until we converge to the unstable periodic
orbit at Etarget to within a specified tolerance. Thus, the result is
a periodic orbit at Etarget and of some period Tpo with an initial
condition x̄0.

Step 3: Globalization of the invariant manifolds — First, we
find the local approximation to the unstable and stable manifolds
of the periodic orbit from the eigenvectors of the monodromy ma-
trix. Next, the local linear approximation of the unstable (or sta-
ble) manifold in the form of a state vector is integrated in the
nonlinear equations of motion to produce the approximation of
the unstable (or stable) manifolds. This procedure is known as
globalization of the manifolds and we proceed as follows

First, the state transition matrix Φ(t) along the periodic orbit
with initial condition x̄0 can be obtained numerically by integrat-
ing the variational equations along with the equations of motion
from t = 0 to t = T . This is known as the monodromy matrix
M = Φ(T ) and the eigenvalues can be computed numerically. The
theory for Hamiltonian systems (see Ref.95 for details) tells us
that the four eigenvalues of M are of the form

λ1 > 1, λ2 =
1
λ1

, λ3 = λ4 = 1 (45)

The eigenvector associated with eigenvalue λ1 is in the unstable
direction, the eigenvector associated with eigenvalue λ2 is in the
stable direction. Let es(x̄0) denote the normalized (to 1) stable
eigenvector, and eu(x̄0) denote the normalized unstable eigenvec-
tor. We can compute the stable manifold and unstable manifold
at x̄0 by initializing along the eigenvectors

X s/u(x̄0) = x̄0 + εes/u(x̄0). (46)

Here the small displacement from x̄0 is denoted by ε and its mag-
nitude should be small enough to be within the validity of the
linear estimate, yet not so small that the time of flight becomes
too large due to asymptotic nature of the stable and unstable
manifolds. Ref.93 suggests typical values of ε > 0 corresponding
to nondimensional position displacements of magnitude around
10−6. By numerically integrating the unstable vector forwards in

time, using both ε and −ε, for the two branches emanating from
the NHIM, respectively, we generate trajectories shadowing the
two branches, W u

+ and W u
−, of the unstable manifold of the NHIM.

Similarly, by integrating the stable vector backwards in time, us-
ing both ε and −ε, for forward and backward branch respectively,
we generate trajectories shadowing the stable manifold, W s

+,−.
For the manifold at X(t), one can simply use the state transition
matrix to transport the eigenvectors from X0 to X(t):

X s/u(X(t)) = Φ(t,0)X s/u(x̄0) (47)

It is to be noted that since the state transition matrix does not
preserve the norm and so the resulting vector must be normal-
ized. The globalized invariant manifolds associated with rank-1
saddles are known as Conley-McGehee tubes and these spherical
cylinders form the impenetrable barriers and phase space con-
duits for transition between potential wells96,97.

C Lagrangian descriptor
In the original form60,98, the Lagrangian descriptor (LD) is the
arc length of a trajectory with initial conditions x0 at time t0 and
integrated for a fixed time, τ, in forward or backward direction.
Recently, an alternate formulation has been developed74 for con-
tinuous time dynamical systems to prove results on detecting in-
variant phase space structures using singular features in the LD
contour map.

In the general setting of a non-autonomous vector field

dx
dt

= v(x, t), x ∈ Rn , t ∈ R (48)

where v(x, t) ∈Cr (r ≥ 1) in x and continuous in time. The defini-
tion of the LD depends on the initial condition x0 = x(t0), on the
initial time t0 (trivial for autonomous systems), the integration
time τ, and the type of norm used in the form below:

Mp(x0, t0,τ) =
∫ t0+τ

t0−τ

n

∑
i=1
|ẋi(t;x0)|p dt (49)

where p ∈ (0,1] and τ ∈ R+ are freely chosen parameters, and
the overdot represents the derivative with respect to time. It is
to be noted here that there are three formulations of the func-
tion Mp in the literature: the arc length of a trajectory in phase
space60,98, the arc length of a trajectory projected on the con-
figuration space99–102, and the sum of the p-norm of the vector
field components74,103. This latter formulation which does not
resemble the arc length of a trajectory, and yet has been shown to
identify the NHIM and its stable and unstable manifolds with the
singular features and minima (or maxima) in the contour map
for benchmark systems in recent work by the authors75,76. Thus,
it follows from the numerical verifications and theoretical proof
that

W s(x0, t0) = argext L ( f )(x0, t0,τ) (50)

W u(x0, t0) = argext L (b)(x0, t0,τ) (51)

where the stable and unstable manifolds (W s(x0, t0) and
W u(x0, t0)) denote the invariant manifolds at intial time t0 and

20 | 1–23Journal Name, [year], [vol.],

Page 20 of 24Physical Chemistry Chemical Physics



argext (·) denotes the argument that minimizes (or maximizes)
the function L (·)(x0, t0,τ) in forward and backward time, respec-
tively. In addition, the coordinates on the NHIM, M (x0, t0), at
time t0 is given by the intersection W s(x0, t0) and W u(x0, t0) of
the stable and unstable manifolds, and thus given by

M (x0, t0) = argext
(
L ( f )(x0, t0,τ)+L (b)(x0, t0,τ)

)
= argext L (x0, t0,τ)

(52)

In applying the LD method to nonlinear systems, one observes
multiple singularities and extremal values that can lead to ambi-
guities with isolating the extremas corresponding to the NHIM
and the ones due to the invariant manifolds76,101. This com-
putational issue can be addressed by using another formulation
and has been used to locate transition state trajectories for driven
two degrees of freedom and three degrees of freedom chemical
reaction models104–106. It has been observed in numerical exper-
iments that computing fixed integration time Lagrangian descrip-
tor (LD) as given by Eqn. (49) leads to two potential issues:

1. Bounded trajectories will show global recrossings of the
barrier as predicted by the Poincaré recurrrence theorem for a
bounded energy surface. The recrossings will show multiple min-
ima and singularities in the LD contour map which obscures lo-
cating the actual NHIM76,101.

2. The trajectories that escape the open potential well will leave
with ever increasing acceleration, if the potential energy surface
opens out to infinity. These trajectories will have large LD val-
ues (compared to the bounded trajectories) and will render the
contour map flat which again obscures locating the NHIM.

To circumvent these issues, a heuristic that has been
adopted76,101,107,108 is to calculate LD values only until a tra-
jectory remains inside the preselected barrier region. As a result,
the initial conditions on an invariant manifold will show as sin-
gularities and maxima in the LD contour map because of being
integrated for the full integration time interval, τ, which others
which leave the region will have smaller LD values.

Thus, the formulation of Eqn. (49) can be modified as

Mp(x0, t0,τ±) =
∫ t0+τ+

t0−τ−

n

∑
i=1
|ẋi(t;x0)|p dt (53)

where the integration time interval, τ, depends on a trajectory
and is given by

τ
±(x0) = min

(
τ, t||x(t)|>qs

)
(54)

where qs defines the preselected barrier region in the configuration
space around the saddle in the bottleneck. We note here that the
only initial condition that gets integrated for the full time interval
τ units in forward and backward time is the one on the NHIM.
In addition, the coordinates on the NHIM, M (x0, t0), at time t0 is
given by

M (x0, t0) = argmax
(
L ( f )(x0, t0,τ)+L (b)(x0, t0,τ)

)
= argmax L (x0, t0,τ)

(55)

The variable integration time Lagrangian descriptor as given by
Eqn. (53) to locate invariant manifolds is familiar to the dynam-
ical systems community and is related to computing average exit
times to locate invariant sets in the phase space of symplectic
maps109.

D Discretization of the Spectral Density:
Derivation of the Parameters of the Bath

The coupling of the bath of harmonic oscillators to the configura-
tion space coordinates is described by a spectral density:

Jx(ω) =
π

2

NB

∑
i=1

c2
x,i

ωi
δ (ω−ωi), (56)

Jy(ω) =
π

2

NB

∑
i=1

c2
y,i

ωi
δ (ω−ωi), (57)

and these result from the discretization of a continuous Ohmic
(linear) form with an exponential cutoff:

J̄x(ω) = ηxωe−
ω

ωc , (58)

J̄y(ω) = ηyωe−
ω

ωc , (59)

the discretization that gives us the coupling constants cx, j, cy, j,
and the frequencies ω j, and are given by

ω j =−ωc log

(
j− 1

2
NB

)
, j = 1, . . . ,NB. (60)

and

cx, j =

√
2ηxωc

πNB
ω j, (61)

cy, j =

√
2ηyωc

πNB
ω j, j = 1, . . . ,NB. (62)

In this appendix we describe a scheme for discretizing the
continuous spectral density which was given in Craig and
Manolopoulos 59. In the following we will drop the subscripts x
and y on the various quantities for the sake of a simpler notation
since we will follow the same discretization procedure for each
spectral density. The subscripts can then be added back after-
wards. Re-establishing the notation, the discrete spectral density
function is given by:

J(ω) =
π

2

NB

∑
i=1

c2
i

ωi
δ (ω−ωi), (63)

and the continuous spectral density is given by:

J̄(ω) = ηωe−
ω

ωc . (64)

Discretization is obtained by carrying out the following steps.

1. Require
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∫
∞

0
J(ω)F(ω)dω ≈

∫
∞

0
J̄(ω)F(ω)dω, (65)

for any integrable function F(ω)

2. Substitute (63) into the left-hand side of (65) to obtain:

π

2

NB

∑
i=1

c2
i

ωi
F(ωi). (66)

3. Approximate the right-hand side of (65) by an appropriate
quadrature. This is the step that we will now carry out in
detail.

The quadrature recommended in59 is the midpoint rule, after
changing variables in the integral to x = e−

ω

ωc . The reason that
they give for choosing this quadrature is that it gives a uniform
distribution of grid points in the unit interval 0 < xi < 1 and there-
fore a logarithmic distribution of bath frequencies ωi =−ωc logxi.
They claim that such a distribution of bath frequencies is appro-
priate on physical grounds for an exponentially decaying density
of bath states.

The change of variables gives:

x = e−
ω

ωc ⇒ logx =− ω

ωc
⇒ ω =−ωc logx, (67)

dx = − 1
ωc

e−
ω

ωc dω =− 1
ωc

xdω. (68)

Then (64) becomes

J̄(ω) =−ηxωc logx, (69)

and using this expression, and the change of variables given in
(67) and (68), the right-hand side of (65) becomes:

−
∫ 1

0
ηω

2
c (logx)F(ω(x))dx. (70)

We discretize this integral using the midpoint rule. We partition
the unit interval into NB intervals of length 1

NB
and evaluate the

integrand at the midpoint, xi, of each sub-interval:

xi =
i− 1

2
NB

, i = 1, . . . ,NB, (71)

and obtain:

−
∫ 1

0
ηω

2
c (logx)F(ω(x))dx≈−

NB

∑
i=1

ηω
2
c logxiF(ω(xi))

i
NB

. (72)

Equating each term in the sum (66) to each term in the sum
(72) gives:

π

2
c2

i
ωi

=− 1
NB

ηω
2
c logxi =

1
NB

ηωcωi,

which gives:

ci =

√
2ηωc

πNB
ωi, i = 1, . . . ,NB. (73)

and from (67) and (71) we see that:

ωi =−ωc log

(
i− 1

2
NB

)
, i = 1, . . . ,NB. (74)

E Linear stability analysis of the system-
bath dynamics

As noted in the article, the location of the equilibrium points in
the system-bath model are dependent on the frequencies and cou-
pling strength of the bath modes. Hence, we would like to ana-
lyze the stability of these equilibrium points. The Jacobian of the
system-bath Hamiltonian vector field (8) is

J=

(
0 | M

∂ 2VSB
∂xix j

| 0

)
,

where i, j = 1,2, . . . ,NS(NB +1) (75)

where each block matrix is of size NS(NB +

1) × NS(NB + 1). The matrix M is given by:

M =



1
ms

0 0 0 0 · · · · · · · · · · · · 0
0 1

ms
0 0 0 · · · · · · · · · · · · 0

0 0 1
m1

0 0 · · · · · · · · · · · · 0
0 0 0 1

m2
0 · · · · · · · · · · · · 0

0 0 0 0
. . . · · · · · · · · · · · · 0

0 0 0 0 0 · · · 1
m1

0 · · · 0
0 0 0 0 0 · · · 0 1

m2
· · · 0

0 0 0 0 0 · · · · · · · · ·
. . . 0



∂ 2VSB

∂xix j
=



− ∂ 2VDB
∂x2 −∑

j
(

cx, j
ω j

)2 − ∂ 2VDB
∂y∂x cx,1 cx,2 · · · cx,NB 0 0 · · · 0

− ∂ 2VDB
∂y∂x − ∂ 2VDB

∂y2 −∑
j
(

cy, j
ω j

)2 0 0 · · · 0 cy,1 cy,2 · · · cy,NB

cx,1 0 −ω2
1 0 · · · 0 0 0 · · · 0

cx,2 0 0 −ω2
2 · · · 0 0 0 · · · 0

... 0 0 0
. . . 0 0 0 · · · 0

cx,NB 0 0 0 · · · −ω2
NB

0 0 · · · 0
0 cy,1 0 0 · · · 0 −ω2

1 0 · · · 0
0 cy,2 0 0 · · · 0 0 −ω2

2 · · · 0

0
... 0 0 · · · 0 0 0

. . . 0
0 cy,NB 0 0 · · · 0 0 0 · · · −ω2

NB
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where M is a diagonal matrix with mass of system and bath de-
grees of freedom along the main diagonal and ∂ 2VSB

∂xix j
is the Hessian

of the potential energy function for the system-bath model.
The Jacobian evaluated at the equilibrium points x is given by

J(q) =

(
0 | M

∂ 2VSB
∂xix j

(q) | 0

)
,

where i, j = 1,2, . . . ,NS(NB +1) (76)

The eigenvalues are given by the solutions of the characteristic
equation:

det(J(q)−λ I) = 0 (77)

where J(q) and I are 2NS(NB +1)×2NS(NB +1) matrices.

Fig. 10 Eigenvalues of the equilibrium point qs of the system-bath
model (8) where the real part is shown as red dots and imaginary part
is shown as blue cross. The pair (positive and negative) of purely real
eigenvalues verify the equilibrium point is an index-1 saddle. For this
case, bath parameters used are mi = 1.0,ηx = ηy = 0.1,ωc =

√
5,NB = 64

and the y-axis is normalized by the square of the cut-off frequency, ωc.

For NB = 64, the eigenvalues are plotted in the Fig. 10 where all
the real components are zero except for the one pair that corre-
sponds to the±λ eigenvalues and the imaginary components (fre-
quencies) of the eigenvalues shown as blue crosses show the ex-
ponential decay expected from the spectral density (58) and (59).
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Reactive islands in a system-bath model of isomerization detected by the singular 
features in the Lagrangian descriptor contour map
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