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High-throughput experimentation meets artificial intelligence: A 
new pathway to catalyst discovery 
Katherine McCullough, Travis Williams, Kathleen Mingle, Pooyan Jamshidi and Jochen Lauterbach* 

High throughput experimentation in heterogeneous catalysis provides an efficient solution to the generation of large 
datasets under reproducible conditions. Knowledge extraction from these datasets has mostly been performed using 
statistical methods, targeting the optimization of catalyst formulations. The combination of advanced machine learning 
methodologies with high-throughput experimentation has enormous potential to accelerate the predictive discovery of 
novel catalyst formulations that do not exist with current statistical design of experiments. This perspective describes 
selective examples ranging from statistical design of experiments for catalyst synthesis to genetic algorithms applied to 
catalyst optimization, and finally random forest machine learning using experimental data for the discovery of novel 
catalysts. Lastly, this perspective also provides an outlook on advanced machine learning methodologies as applied to 
experimental data for materials discovery.  

Introduction
In “ancient” times (i.e., a few decades ago), materials discovery 
was predominantly conducted via single trial-and-error 
experiments guided by human intuition and previous 
knowledge. Some classical examples of this research approach 
include material discovery conducted by Thomas Edison, who 
screened roughly 6,000 materials for the filament of 
incandescent light bulbs.1 Another example is the catalyst 
development work performed in the early 20th century by 
Mittasch and coworkers, who screened over 2,500 
compositions for the optimum ammonia synthesis catalyst.2 
However, this trial-and-error approach to materials discovery 
and optimization suffers from the time-consuming sequential 
nature of synthesis, analysis, and testing of materials for their 
desired properties.In addition, the process is costly and can 
result in wasting a lot of materials due to the trial and error 
nature of the process.

The concept of gradient libraries and systematic parallel 
screening for desired materials properties to accelerate 
materials discovery was introduced by the pioneering work of 
Hanak3 in the 1970s. Over the following two decades, the 
methodology was adopted by several academic labs and 
companies. In 1986, for example, Creer et al., designed and 
published a parallel catalyst screening system consisting of six 
parallel reactors attached to a gas chromatograph.4 A 
comprehensive historical review on the early years of high 
throughput experimentation has been recently addressed by 
Maier.5 Since those early beginnings, high throughput (HT) 
technologies have blossomed and have become routine in a 
variety of materials research fields, such as homogeneous and 

biocatalysis,6–11 optical materials,12,13 engineered biomaterials, 
14 polymer-based materials,15–17 and high entropy alloys.18,19 
The parallel screening, material discovery, and final 
optimization stages of the high throughput approach can be 
enhanced through several data science-based methods, which, 
when intelligently chosen, can extract intricate relationships 
between material synthesis variables (such as composition, 
synthesis parameters, etc.) and measurable material 
performance. The systematic mining of such relationships from 
multi-dimensional datasets that can be experimentally 
produced in a very efficient manner via high-throughput 
experimentation in conjunction with statistical methods for 
catalyst optimization can open new dimensions of catalyst 
research.

Machine learning (ML) has been recently employed in a variety 
of fields to significantly increase rates of discovery.20,21 ML is a 
branch of artificial intelligence (AI) that employs statistical 
algorithms to identify important features in datasets and make 
predictions from these learned relationships between features 
and measured properties. Most ML algorithms currently 
reported in the literature are trained on computational data 
since many groups have amassed large databases. However, 
computational-based predictions do not always result in 
feasible materials formulations since experimental synthesis 
and application of the material incur additional complications 
not accounted for in the computational models. 22  Additionally, 
single low-throughput experimental methods do not generate 
enough data for ML to be truly useful. However, HT 
experimentation combined with ML can mitigate these 
drawbacks and will allow for the accurate prediction of stable 
and synthesizable materials. These algorithms have been used 
to identify phase boundaries in materials systems,23 predict the 
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formation of metallic glasses in ternary systems,24 and 
accelerate electrocatalyst discovery.25 

Experimentally trained ML models differ primarily with the 
amount of data accessible to the model. When large amounts 
of data are accessible (on the order of 104 or more data points), 
Deep Neural Networks (DNN) are typically adopted.26 DNNs 
have been used in many applications with great success, 
including search engines,27 playing board games against expert 
human players,28 and clinical diagnoses. 29 DNNs are powerful, 
but they require a substantial amount of data for training and 
to provide accurate predictions. When material systems contain 
small amounts of reported data (less than 103 data points), 
DNNs fail to produce accurate predictions. In this regime, many 
algorithms have been used and reported in the literature, 
including multiple regression,30 least absolute shrinkage and 
selection operator (LASSO),31,32 kernel ridge regression,33 
support vector machines,34 neural networks,35,36 and random 
forests.37  Of these algorithms, the random forest (RF) model is 
consistently reported as having the highest accuracy for small 
and typically sparse experimental datasets.38    

The combination of high throughput experiments with machine 
learning algorithms for characteristic determination of new 
materials is limited. Currently, high throughput methods are 
typically limited to be indirectly coupled with machine learning 
through the use of databases and material properties libraries. 
Materials can be synthesized rapidly through compositional 
spread alloys and thin films, and then their properties are 
determined and entered in databases. For heterogeneous 
catalysis, the additional complexity of operating conditions 
(e.g., feed composition, space velocity, temperature) and 
catalyst preparation methods (e.g., impregnation method, type 
of precursors, calcination parameters) leads to the need of 
more than just material properties for a machine learning 
training set. This complexity has led to very few studies coupling 
machine learning with experimental data in catalysis due to a 
large number of experiments that need to run and a large 
number of variables to be considered. Here, we will discuss 
select examples of catalyst synthesis and and optimization 
through statistical design of experiments (DoE), and then 
address the current state of machine learning coupled with high 
throughput experimentation. This is followed by an outlook on 
the future perspective of artificial intelligence coupled with 
experimental data, including the use of transfer learning from 
computational data to accelerate the discovery process. 

High throughput screening methods for catalyst 
discovery

High throughput approaches are characterized not only by their 
throughput capabilities but also by their data quality and ability 
to adapt to different measurements. For heterogeneous 
catalysis, the additional complexity of measuring reaction 
temperatures, space velocities, catalytic activity, yield, and 

quantification of the product gases that often contain mixtures 
of similar species, presents a challenge for developing analytical 
systems that can acquire and analyze data in a rapid, parallel 
manner in order to determine quantitative structure-activity 
relationships. With the additional complexity of the effects of 
synthesis variables and operating conditions on catalyst 
performance across a variety of different reactions, multiple 
synthesis and screening methods have been developed that are 
suitable for the variety of applications.Bulk materials for 
catalytic studies are often synthesized in smaller sets of arrays 
(i.e., tens to hundreds of samples) due to time-consuming multi-
step synthesis methods that can involve mixing, heating, drying, 
milling, grinding and calcination steps that may be repeated 
multiple times. Combinatorial approaches to catalyst synthesis 
through solution-based methods have been demonstrated for 
perovskites,39 molecular sieves,40 colloidal nanoparticles41 and 
near-infrared driven decomposition of solution-deposited films 
for the formation of mixed-metal electrocatalysts,42 to name a 
few in the large body of work being developed in the field. High 
throughput experimentation can lead to the testing and 
discovery of more exotic materials than is permitted with the 
general one-at-a-time approach. However, without the aid of a 
reseracher’s domain knowledge in a particular reaction, the 
number of potential catalyst combinations for synthesis and 
experimentation is massive. A working understanding of the 
reaction chemistry, and hypothesis driven experimentation can 
dramatically reduce the possible catalyst combinations and lead 
to more intelligent design of experiments. This will have a 
strong impact on design space selection. Planning of the initial 
design space often requires implementation of DoE strategieses 
such as response surface metholodies and D optimal designs, of 
which have been thoroughly described elsewhere.43,44 However 
the number of factors and parameters that can be screened is 
limited. Some of examples of intelligent selection of a design 
space for catalyst synthesis and experimentation either by 
implementing domain knowledge, DoE or a combination of 
both,  will be highlighted in the case studies that follow.

Catalyst activity is often analyzed using parallel techniques to 
avoid the inefficient nature of sequential gas stream analysis 
through gas chromatography or mass spectrometry 45,46, for 
example. However, in some instances these sequential 
techniques have been successfully applied to high throughput 
screening coupled with parallel reactors.44,47–49 Parallel analysis 
of catalytic activity can be achieved using different optical 
imaging techniques, some of which may not provide chemical 
sensitivity or a linear dependence between the signal response 
and increases in catalytic activity.44 In addition, imaging-based 
analysis techniques can be limited in their spatial resolution and 
thus their applicability depends greatly on the catalyst sampling 
density which in turn, is largely dependent on the method of 
synthesis and the reactor configuration. In order to determine 
structure activity relationships from high throughput 
experimental data, an appropriate method of analysis must be 
chosen that provides as much quantitative information as 
needed without sacrificing the amount of throughput that may 
be achieved. 
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Parallel analysis based on the cataluminescence (CTL) signal 
from solid catalyst surfaces under oxygen-containing 
environments has been demonstrated for small sets of 
catalysts.50–54 The CTL response is created from the deactivation 
of intermediate species on the catalyst surface from the excited 
state to the ground state, thus producing light emission. This 
method of analysis is however limited to a very small number of 
chemical reactions and multiple CTL sensing elements are 
needed for differing product species and identification. In 
contrast, the application of IR thermography (IRT)55 has been 
highly effective for a larger range of array sizes spanning into 
the hundreds of samples, and for multiple reactions,56–60 thus 
providing more flexibility than CTL. Catalytic activity is 
determined by IRT based on heats of reaction. This method is 
chemically insensitive and does not provide insight into 
competing parallel reaction pathways and cannot quantify 
catalyst selectivity. Thus, this method is often limited to 
reactions with single reaction pathways. Laser-induced 
fluorescence imaging (LIFI)61–63 has also be utilized as an 
effective imaging technique for specific chemical reactants or 
products, where the intensity of the fluorescence of a specific 
molecule can be tuned and imaged with a charged coupled 
device. Spatially resolved Fourier transform infrared imaging 
(FTIR imaging) overcomes the drawback of IRT and CTL in terms 
of the chemical insensitivity and useful for a broad range of 
chemistry.FTIR has been demonstrated for high-throughput 
screening of catalysts for a variety of reactions,64–68 but typically 
with a lower throughput than can be achieved with IRT 
screening. A focal-plane array-based IR detector provides the 
spatial resolution needed for parallel analysis. Infrared 
spectroscopy is a useful technique due to its chemical sensitivity 
and ability to quantify reaction products due to the 
characteristically linear relationship between absorbance and 
concentration established through Beer’s Law. However, 
chemical speciation must be done with care and often requires 
chemometric approaches, as IR bands can become easily 
convoluted when multiple gases have similar vibrational modes. 
The use of IR imaging is most advantageous when each reaction 
product can be quantified with a unique IR band that does not 
have an overlap with another product.    

With the ability to rapidly generate data using parallel screening 
and analysis techniques, data management methodologies 
must be utilized to avoid bottlenecking of the overall high 
throughput experimentation process. Additionally, proper data 
management leads to proper data analysis, and thus knowledge 
extraction of trends and quantifiable relationships.44,69 Data 
mining tools used to extract knowledge can include principcal 
component analysis (PCA), clustering techniques, genetic 
algorithms (GA), artificial neural networks (ANN), decision 
trees, and other classification and regression based machine 
learning algorithms.44,70,71 The application of machine learning 
algorithms for data mining in catalysis will be discussed later on 
in greater detail.

The following selected examples were selected to showcase the 
use of different high-throughput experimentation techniques to 
either accelerate new material discovery or to elucidate 
qualtiative structure-activity relationships. The examples 
represent a variety of studies. Many other outstanding studies 
have of course been published and can unfortunately not be 
discussed here. 

Cu-Ag catalyzed ethylene epoxidation

The selective oxidation of ethylene to ethylene oxide (EO) is a 
highly profitable reaction occurring typically on α-Al2O3 
supported promoted silver nanoparticles. The process was first 
commercialized by Union Carbide in 1937.72,73 EO is used as an 
intermediary to form primarily ethylene glycols (antifreeze, 
polyester, PET), as well as polyethylene glycols (perfumes, 
cosmetics) and ethoxylates (detergents, surfactants, 
emulsifiers). In general, Ag is strong enough to dissociate 
oxygen and supply stable oxygen species for epoxidation, but 
not strong enough to break the ethylene C-H bond74,75 making 
it the most effective catalyst for ethylene epoxidation. Cu is the 
only material predicted to have theoretical baseline ethylene 
oxide selectivity higher than Ag, but Cu epoxidation activity is 
hindered by the formation of surface Cu2O.76 A series of works 
from Barteau and coworkers demonstrated that Ag-Cu 
bimetallics have a synergistic effect on EO selectivity and 
conversion, and similar trends were observed in studies 
involving Ag-Cu bimetallic promoted by Cl and Cs. Kinetic 
studies for the Ag-Cu alloy indicated a reaction rate limited by 
the surface reaction of O and C=C under oxygen-rich conditions, 
and the dissociated of oxygen under ethylene rich conditions.77 
Additional promoting systems, which have been studied, 
include Ag/SrTiO3 catalysts promoted with Au, Ba, Pd, Sn, and 
Cu. Here, it was found that only Au, Ba, and Cu improved the 
ethylene oxide selectivity relative to an Ag only catalyst.78 While 
neither Pd or Sn improved selectivity or activity, the Sn-Cu-Ag 
system was effective in increasing the catalyst stability, 
presumably by decreasing coke formation. This result was 
similar to that of Bae et al., who studied Sn promotion of the 
hydrochlorination of CCl4 over Pt-Sn/γ-Al2O3 and found that Sn 
improved stability by destroying the Pt surface sites linked to 
coking and transferring electrons to Pt such that the HC-Pt bond 
strength lessened.79 Work by Dellamorte et al. showed that 100 
ppm Pd could potentially double the ethylene oxide selectivity 
when compared to a base silver catalyst, appearing to increase 
the rate of oxygen dissociation80 while Chongterskool et al.78 
found that the addition of 0.63% Pd increased coking and 
ultimately decreased ethylene oxide selectivity. This may be 
due to the disparity in Pd loadings utilized. 

Many of the promoting systems which have been studied for 
base Ag/a-Al2O3 catalysts have not systematically screened and 
optimized for incorporation into the bimetallic Cu-Ag/a-Al2O3 
catalyst system. Here, as a first example of the interplay 
between HTE and statistical methods, we discuss a multi-tier 
optimization of the co-promoter space for Cu-Ag/α-Al2O3 
catalyzed ethylene epoxidation via high-throughput reactor 

Page 3 of 24 Physical Chemistry Chemical Physics



ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

studies paired with the statistical DoE. First, novel promoting 
materials were screened with the objective of identifying 
systems that led to improved ethylene oxide selectivity on 
0.2%Cu-15%Ag/α-Al2O3 based catalysts. Second, selected co-
promoters were further studied using factorial designs to 
develop an understanding of how catalyst structure and 
promotional effects change with respect to promoter loading 
and impregnation sequence. Finally, learnings were leveraged 
to incorporate the promoting materials into the base catalyst 
formulation. 

Initial co-promoters were selected on the basis that they could 
either form stable alloys with Cu and/or Ag (ie. Au, Ru, Zn, Pt, 
Mg, Pd) or had been shown in previous work, experimental or 
theoretical, to catalyze or promote epoxidation (ie. Sn, Mo, Au, 
Pt, Cs, Pd, Re).72,78–88 Each co-promoter was added to a 0.2% Cu-
15% Ag/α-Al2O3 formulation as part of a standard wet 
impregnation synthesis84 in the form of a water-soluble salt. 
Promoters were either co-impregnated on the support with Ag 
or sequentially impregnated onto the Ag-containing support 
after the Ag/α-Al2O3 had been dried, calcined and also reduced 
in a 20% hydrogen/helium stream at 300◦C for 12h. X-Ag is used 
in catalyst nomenclature to denote a sequential impregnation 
preparation while (X-Ag) denotes co-impregnation, an example 
being (Cu-Sn)-Ag which means that Ag was impregnated, dried, 
and calcined before co-impregnating Cu and Sn in one step 
followed by an additional drying, calcination and final reduction 
before catalyst testing. Figure 1 shows the co-promoters that 
were part of the initial screening as well as their corresponding 
loadings and the EO selectivity at 5±0.5% C2H4 conversion for 
each of the co-promoted 0.2% Cu-15% Ag/α-Al2O3 catalysts. 
Measurements were made in 10% C2H4, 10% O2, and balance N2 
feed at a space velocity of 4,000 h−1 and at temperatures 
between 230-350◦C in order to achieve comparable conversion 
levels. Co-promoters, which improved the ethylene oxide 
selectivity with respect to unpromoted Cu-Ag catalysts were 
selected for further investigation with factorial design, including 
Cs, Re, Au, and Sn. Previous studies focused on optimizing 
promoted alumina supported Cu-Ag and Ag catalysts showed 
sensitivity to the impregnation sequence and promoter 
loadings involved.72,89 Thus, the parameters selected for 
continued investigation were the co-promoter impregnation 
order on the catalyst and the promoter loading. These 
parameters were studied using 22 factorial screening designs for 
each Cs, Re, Au, and Sn with the screening performed in our 16-
well parallel reactor. 72,89

Figure 1. Initial screening of co-promoters for ethylene epoxidation 
measured at differential conditions. Reaction conditions:  10% C2H4, 
10% O2, in balance N2, SV = 4,000 h−1. The table inset shows the Ag, 
Cu and promoter weight loadings for each catalyst. 

Interestingly, no statistically significant effects of these 
variables were found on the morphology or activity of Re and 
Au containing catalysts, but differences in Sn and Cs containing 
materials based on the levels studied were substantial. For 
example, the main effects of Cs loading and impregnation order 
for a Cs-0.2% Cu-15% Ag/α-Al2O3 catalyst on ethylene oxide 
selectivity at 5% C2H4 conversion demonstrated that selectivity 
increased with increasing Cs loading and decreased when Cs 
was co-impregnated with Cs rather than Ag. As a note, the 
design was centered around the original starting point in the 
investigation of Cs loading pertaining to a 0.2%Cu-(100 ppm Cs-
15%Ag)/α-Al2O3 catalyst and that this formulation was 
ultimately found to be the optimal loading for enhanced 
ethylene oxide selectivity. 

Examination of SEM images of the Cs containing Cu-Ag/α-Al2O3 
provided some insights into the above-described relationships. 
Figure 2 shows that the average size of the Ag particles 
increased substantially when Cs was co-impregnated with Cu. 
The average size of Ag particles when Cs was co-impregnated 
with Ag was within error the same for the two Cs loadings, being 
18.9±8.5 nm for a) Cu-(50 ppm Cs-Ag) and 15.7±0.8 nm for b) 
Cu-(150 ppm Cs-Ag). When Cs was instead impregnated with Cu 
the average size increased substantially to 201±37.2 nm for c) 
(Cu-50 ppm Cs)-Ag and was much less when more Cs was co-
impregnated with Cu for d) (Cu-150 ppm Cs)-Ag with an average 
Ag particle size of 55.4±3.7 nm.
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Figure 2. SEM images of selected Cs promoted Cu-Ag/α-Al2O3 
catalysts for ethylene epoxidation with varying synthesis 
impregnation methods, where the brackets signify the order the 
impregnation. a) 0.2% Cu – (50 ppm Cs -  15% Ag) b) 0.2% Cu – (150 
ppm Cs – 15% Ag) c) (0.2% Cu – 50 ppm Cs) – 15% Ag and d) (0.2% Cu 
– 150 ppm Cs) – 15% Ag. 

In the case of Sn, lower Sn loadings benefited EO selectivity, 
while impregnation order made little difference. In addition, it 
was found that the 0.2% Cu 15% Ag at all Sn loadings and 
impregnation sequences investigated formed unexpected 
porous agglomerates which could possibly arise due to the 
effects of Sn on the mobility of Cu and Ag during catalyst 
formation. SEM images are included in Figure 3.

Figure 3. SEM images of selected Sn promoted Cu-Ag/α-Al2O3 
catalysts for ethylene epoxidation with varying synthesis 
impregnation methods, where the brackets signify the order the 
impregnation. a) 0.2% Cu – (50 ppm Sn -  15% Ag) b) 0.2% Cu – (450 
ppm Sn – 15% Ag) c) (0.2% Cu – 50 ppm Sn) – 15% Ag and d) (0.2% 
Cu – 450 ppm Sn) – 15% Ag. 

Using the optimized co-promoter (Sn, Cs, Re, Au) loadings and 
impregnation sequences, an optimized, fully promoted (Cu-Au)-
Re-(Sn-Cs-Ag) catalyst was synthesized and evaluated. 
Additional catalyst formulations, including Au-Re-(Sn-Cs-Ag), 
Cu-Re-(Cs-Ag), and Re-(Cs-Ag), were synthesized as well for 
comparison. It should be noted that the purpose of synthesizing 
and comparing the fully promoted material to one containing 
only Re-(Cs-Ag) and Cu-Re-(Cs-Ag) was to evaluate the efficacy 
of the more obscure promoting materials (Sn and Au) when 
compared to Re and Cs, which are well known and expected to 
have a synergistic effect on epoxide selectivity.

Figure 4. Optimized co-promoter loadings and impregnation 
sequences for ethylene epoxidation on Ag/α-Al2O3 catalysts. 
Reaction conditions:  10% C2H4, 10% O2, in balance N2, SV = 4,000 h−1.

The results of this analysis are shown in Figure 4, together with 
the performance of the Ag only and Cu-Ag only catalysts for 
reference. Under the reaction conditions studied here, the fully 
promoted (Cu-Au)-Re-(Sn-Cs-Ag) catalyst promoted EO 
selectivity to a greater extent than all other materials evaluated, 
having an EO selectivity of roughly 69% at 5% ethylene 
conversion. This value is more than double that of the Ag only 
baseline catalyst. An interesting observation was that the same 
catalyst was 30% less selective toward EO when Cu was omitted 
from the formulation altogether. Conversely, the addition of Cu 
to Re-(Cs-Ag) lowered the EO selectivity by approximately 10%, 
possibly disturbing the Re and Cs synergistic effect. 

In summary, high-throughput analysis in combination with 
statistical DoE was used to complete a systematic screening of 
both conventional and nonconventional promoters for 0.2%Cu-
15%Ag/α-Al2O3 ethylene epoxidation catalysts. The most 
promising candidates from the screening were found to be Au, 
Re, Sn, and Cs, each of which was optimized for the ideal 
impregnation sequence and loading. Results of the factorial 
analysis together with SEM studies led to the conclusion that 
increased Cs loading and co-impregnation with Ag were 
instrumental in decreasing the Ag particle size and increasing its 
dispersion on the α-Al2O3 support. In the case of Sn, it was found 
that lower Sn loadings benefited EO selectivity while the 
impregnation order made little difference. SEM studies showed 
that 0.2% Cu-15% Ag catalysts at all Sn loadings and 
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impregnation sequences investigated displayed porous 
agglomerates which could arise due to the effects of Sn on the 
mobility of Cu and Ag. Knowledge gained through the study was 
used to direct the synthesis of a fully promoted(Cu-Au)-Re-(Sn-
Cs-Ag)/α-Al2O3 catalyst, which was 69% selective toward 
ethylene epoxidation at 5% ethylene conversion, more than 
double that of the Ag only baseline catalyst evaluated at 
comparable conditions.

High throughput synthesis: PdBiTe Catalysts for Aerobic 
Oxidative Esterification of Primary Alcohols

Solution-based synthesis for bulk catalytic materials can be a 
primary bottleneck in the overall assessment of new material 
discovery via high-throughput methodologies. Heterogeneous 
catalysts are often synthesized via incipient wetness 
impregnation, wet impregnation, hydro- or solvothermal 
treatment methods that require multiple steps and can take 
multiple days to complete.90 Because of this, screening new 
heterogeneous catalysts can often be a gamble due to the lack 
of information available in the literature and the amount of 
time and cost required to synthesize many catalysts, especially 
if the purpose is for new material discovery. To circumvent this 
issue, Mannel et al.91 demonstrated a rapid synthesis method 
to screen a large number of materials for the aerobic oxidative 
esterification of primary alcohols by mimicking synthesis 
methods used for homogenous catalyst synthesis. Catalysts are 
prepared in situ via simple combination and mixing of different 
catalyst components, such as a metal salt and acid, base, or 
other additives. Certain heterogeneous catalyst compositions 
can be created in a similar matter, thus shortening steps 
involved in heterogeneous catalyst synthesis and preparation. 
Catalysts for aerobic oxidation of alcohols to aldehydes and 
ketones have been successfully identified in previous 
studies,92,93 but analogs for the conversion of primary alcohols 
to carboxylic acids and esters by homogenous catalysts have 
been less successful. Simple binary and ternary admixtures of 
Pd/charcoal (Pd/C) were combined with one or two metal 
and/or metalloid components as catalysts with no additional 
steps that are indicative of heterogeneous catalyst synthesis, 
such as calcination and reduction. This led to the screening of 
400 different combinations for the oxidative methyl 
esterification of 1-octanol. After the initial screen, a response 
surface methodology was employed to further optimize the the 
novel catalyst formulations.

Preliminary studies of the admixture screening had shown that 
the addition of Bi(NO3)3 and Te to a Pd/C is highly effective for 
the methyl esterification of a variety of primary alcohols.  To 
further test the robustness of the admixture screening 
methodology, 28 different additives ranging from different 
main-group, transition metal, and rare earth elements were 
screened in either their oxide form, salt form, or in some cases 
both. These catalysts were tested for their aerobic oxidative 
methyl esterification activity of 1-octanol in methanol at 60oC. 
In total 231 different elemental combinations and 406 unique 

admixtures were tested as catalysts for the reaction. The results 
from this screen are shown in Figure 5. 

The base catalyst of Pd/C exhibited a 32% yield for methyl 
octanoate and the addition of the variety of promoters to the 
catalyst ranged yields as low as 2% and as high as 88%. From 
this screening, it was found that Bi- or Pb-based additives, when 
combined with elemental Te, had the highest yield of methyl 
octanoate. Therefore, catalyst compositions of PdBixTey/C were 
optimized using response surface methodology. A catalyst 
containing 1:1:1 molar ratio of PdBiTe was used as a starting 
point and four surrounding compositions were used to 
determine the gradient associated with the Bi and Te mole 
fractions.  Two of the best catalysts discovered were 
PdBi0.47Te0.09 and PdBi0.35Te0.23. A response surface 
methodology was then enacted to further improve the activity 
and optimize a more precise heterogeneous catalyst 
formulation. One such combination, PdBi0.35Ti0.21/C was shown 
to have excellent performance and good stability under 
continuous flow conditions in a packed bed reactor and is the 
most active liquid-phase oxidative esterification catalyst 
reported to date. 

Particle size dependence on CO oxidation on model planar 
titania supported gold catalysts measured by parallel infrared 
thermography

Figure 5.  Admixture screening data (methyl octanoate yields) 
obtained from the aerobic oxidation of 1-octanol with 
heterogeneous catalysts composed of Pd/C in combination with 
one or two additives. Color code reflects methyl octanoate yields 
below that obtained with Pd alone (white), above Pd alone 
(yellow), >60% (orange), and ≥80% (red). Adapted with 
permission from "Discovery of Multicomponent Heterogeneous 
Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic 
Oxidative Esterification of Primary Alcohol. J. Am. Chem. Soc. 
2017,139,1690-1698." Copyright 2017 American Chemical 
Society.
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Small Au nanoparticles have been intensely studied for low-
temperature CO oxidation.94,95 For this reaction, high throughput 
IRT is an attractive method to screen multiple catalysts in parallel. 
Emmanuel et al.96 utilized parallel IRT to measure CO oxidation 
over a series of amorphous titania supported Au catalysts to 
determine the effect of Au particle size on CO oxidation and to 
further elucidate the mechanism of CO oxidation using data from 

100 different Au/TiO2 catalysts. In order to well characterize this 
array-based system and obtain pertainent structure activity 
relationships, increased sensitivity is needed to detect heat 
generation during the reaction. Varying sized Au particles were 
deposited onto TiO2 thin films (ca. 200 nm) by changing the total 
flux of gold to provide various thickness and different particle 
sizes. 

The temperature response of the catalyst for a given power input 
was calculated through finite element thermal modeling. For the 
CO oxidation reaction (ΔH=-283 kJ/mol) at a pressure of 1x10-3 
mBar, the theoretical maximum power was determined to be 
2.289x10-4 Js-1mm-2, which would result in a maximum 
temperature rise of 4oC. Au particle distributions were measured 
using TEM and XPS, and film thickness of the TiO2 support was 
measured using tapping mode AFM. To measure the TOF, the 
mass of gold and the number of gold atoms at the surface of the 
particles per area of catalyst was calculated from TEM images, 
assuming the particles are hemispherical. The chip containing 100 
different Au particle sizes on TiO2 was first heated to a base 
temperature of 170oC. The total pressure of the gas mixture was 
1.5 mBar with an O2:CO ratio of 1:2. Figure 6a shows the 
temperature distribution across the 100 catalysts for these 
reaction conditions. The catalysts were synthesized so that the 
particle size was consistent across the rows and varied along the 
columns, from 1.5 nm to 6 nm Figure b shows the variation in 
temperature change across each of the catalyst rows. The change 
in temperature for each row was ca. 0.2oC, which was much 
smaller than the temperature change along the columns. From 
this figure, it is obvious to see an increase in the temperature 
change as the particle size decreases. 

The TOF as a function of mean particle size was found to be 
highest for the smaller Au particles, and to monotonically 
decrease as the particle size was increased. This same trend was 
also found for CO oxidation at 80oC and at O2:CO ratio of 1:1. At 
80oC, 8.4x10-2 mBar,  and an O2:CO ratio of 1:1, a TOF of 0.016 s-1 
was observed for Au particles of 5.8 nm, and a TOF of 0.186 s-1 
was observed for Au particles of 1.5 nm. For all reaction 
conditions studied, an increase in rate was found to be inversely 
proportional to the particle diameter. 

Perphrial Au particles have been shown to strongly stabilize 
oxygen adsorbed on the reducible TiO2 support, thus lowering the 
activation energy required for CO oxidation on nearby Au active 
sites.97 To explore this relationship, the total particle 
circumference per surface area of TiO2 was calculated from TEM 
images and plotted against the mean particle size, as shown in 
Figure 7. Because circumference increases with mean particle 
size, the authors conclude that the number of edge sites at the 
Au/TiO2 interface should also be proportional to the 
circumference. This would result in a decrease in TOF with 
increasing density of Au/TiO2 peripheral sites on the surface, 
suggesting that the high activity of these particles is unlikely due 
to the linear increase in Au edge sites.  While it is generally 
accepted that the edge sites at the Au/TiO2 interface play an 
important catalytic role in CO oxidation,94,95,98,99 low coordinated 
Au sites and electronic modification of Au nanoparticles from the 
substrate may also play a role in improving low temperature 
catalytic activity. The authors conclude that the strong particle 
size dependence on TOF cannot be solely due to an increase in 
the number of edge sites at the Au/TiO2 interface. The net 
increase in specific catalytic activity per surface area of Au was 
found to increase approximately as a function of d-4. Therefore 
the authors determine that a significant metal-support 

Figure 6. (a) The temperature changes due to the CO oxidation 
reaction on an array of 100 Au/TiO2 catalysts at 170oC measured 
simultaneously with an infra-red camera. The total pressure of the 
gas mixture was 1.5 mBar and the O2:CO ratio was 1:2. (b) The 
average temperature rises over the ten catalysts with identical 
particle size. The errors represent the standard deviation in the 10 
measurements. Adapted with permission from "The particle size 
dependence of CO oxidation on model planar titania supported 
gold catalysts measured by parallel thermographic imaging. J. 
Catal. 2019, 369, 175-180.” Copyright 2019 Elsevier.

Figure 7. The total circumference (mm) and surface area (mm2) of 
particles (per mm2 of titania support) calculated from the TEM 
images of titania supported Au nanoparticles for the four different 
deposition times, (a) 30 sec, (b) 2 min, (c) 3.5 min and (d) 5 min 
corresponding to a mean particle size of (a) 2.0 nm, (b) 2.8 nm, (c) 
4.5 nm, and (d) 5.3 nm. Particles were deposited at an Au deposition 
rate of 0.15 Å/s and a substrate deposition temperature of 200oC. 
Adapted with permission from "The particle size dependence of CO 
oxidation on model planar titania supported gold catalysts measured 
by parallel thermographic imaging. J. Catal. 2019, 369, 175-180.” 
Copyright 2019 Elsevier.
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interaction must largely account for this steep increase in activity 
that is observed with decreasing particle size. 

Overall, these three examples show the effectiveness of 
different high-throughput methodologies combined with DoE 
to investigate complex relationships present between synthesis 
variables, promoter materials, catalyst properties, and catalytic 
activity. While DoE has the ability to optimize a number of 
variables within a small experimental range, the information 
gained from studying trends cannot be utilized to derive 
consecutive experiments or used outside of their intended 
design space. 

Machine learning - background
ML as a discipline arose from the desire to reproduce cognitive 
patterns inherent to rational thought in synthetic devices such as 
computers.100,101 ML at its core is a combination of complex 
statistical algorithms that build a mathematical model from data 
in order to reason and predict outcomes without being explicitly 
programmed for the task at hand.102 ML algorithms base their 
understanding on a user-provided database of prior knowledge, 
and from this data, the algorithm learns the consequences of all 
decisions made previously. It then uses these learned 
consequences to predict the outcome of choices that have never 
been made based on how similar those choices are to what the 
algorithm has experienced.   

The ability of ML algorithms to learn relationships between 
choices and consequences is especially desirable for the scientific 
community. Specific to catalysis, there is a multitude of 
parameters that affect catalyst properties and ultimately 
performance, such as variations in the synthesis protocol, 
elemental composition, or operating conditions. The typical 
discovery process involves varying one or at best a few 
parameters within these categories to improve the desired 
properties of a material. DoE studies are typically employed to 
probe both the effects of these parameters and interaction 
effects between the parameters, but these studies often require 
hundreds of experiments to effectively screen even a small 
number of parameters. Sample efficient ML algorithms, on the 
other hand, can extract these parameter effects and interactions 
from smaller datasets, since they can leverage prior datasets. It is 
ideal, therefore, to develop a machine learning framework 
capable of understanding parameter variation and learning the 
effects of parameters on various outcomes. 

An effective ML framework is comprised of the following 
components: 1) a suitable ML model, 2) a dataset, and 3) a feature 
set, see Table 1. The first component of a ML framework, the 
selection of a ML model, is highly dependent on the dataset being 
used for learning. When a very large amount of data is accessible, 
algorithms such as DNNs are shown to have superior prediction 
accuracy compared to other algorithms. While a DNN produces 
accurate predictions, one major drawback is the difficulty to 
extract knowledge from these algorithms.103  Consequently, DNN 
algorithms are frequently used in conjunction with other ML 

algorithms, such as affinity propagation32 or decision trees104, to 
extract knowledge without sacrificing predictive capabilities. 
While DNNs are excellent algorithms, they require a sufficiently 
large dataset to achieve good performance. There are currently 
no means for determining the required dataset size, but some 
heuristics suggest maintaining high sample-to-feature ratios, such 
as greater than 10 samples per feature.105 This restriction limits 
the usefulness of DNN, as most catalyst discovery datasets do not 
contain sufficient data for accurate predictions.  There are some 
material properties that have entire databases cataloging 
composition-property correlations, for example, materialsproject 
catalogs the bandgap of over 50,000 materials.106 Such open 
access databases allow for DNN models to be utilized, but the 
current scope of cataloged properties is unfortunately 
restrictively narrow for applications in heterogeneous catalysis. 

Some ML algorithms are realistically employed on relatively small 
datasets, containing at times as few as 100 samples.31 To select 
an optimal ML algorithm for small datasets, multiple algorithms 
are often evaluated to determine which has the highest 
performance. Of the available algorithms, ensemble 
algorithms,107 support vector machines,108 least absolute 
shrinkage and selection operator (LASSO),109 and various 
regression algorithms110 are used most commonly. Ensemble 
algorithms, such as random forests, involve training many models 
with random variation and using the average as the predicted 
value111. Support vector machines fit hyperplanes through 
multidimensional space, making them excellent algorithms for 
classification, although they have potential as a regression 
algorithm as well.112 The LASSO algorithm is a regression analysis 
with inherent feature selection, which ultimately makes the 
model easier to interpret by the user than other regression 
algorithms.113 Regression algorithms mimic linear regression, but 
are augmented for better performance in multidimensional 
spaces.114 None of the algorithms listed above are objectively 
better than the others in all cases; rather, each algorithm must be 
evaluated to determine which is best suited for modelling a 
particular dataset.115,116 

The second component of a ML framework is the dataset itself.  
The construction of a dataset poses an interesting challenge for 
catalyst discovery. One option is to survey the available literature 
for a particular catalyst application and compile that literature 
into a database.117 This collection provides a good starting point 
for ML, but it has multiple drawbacks. First, there is often a 
striking inconsistency in what is reported in the literature, even 
for matching catalyst compositions. Differing synthesis conditions 
lead to different catalysts, effecting properties such as crystal 
structure, particle size, and surface sites, among many others. 
These synthesis conditions are not always reported across 
studies, which leads to incomplete entries into the dataset. 
Second, the catalysts reported in the literature are often only 
those which are successful, leading to a strong bias in literature-
generated datasets. For ML to effectively learn, the algorithm 
requires both positive and negative examples to be provided 118. 
Ultimately, additional data would be required for a literature-
generated dataset to make successful predictions and distinguish 
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between good and bad catalysts. Third, not all published data is 
good data.119,120 Inclusion of data into the ML algorithms that are 
not accurate or reproducible will inevitably lead to inaccurate 
predictions, but there is no feasible way to evaluate every 
scientific claim when compiling a literature-based database. With 
all of these drawbacks, a careful assessment of the literature is 

necessary prior to any attempts to predict new catalyst 
compositions. Literature data may not be readily transferrable to 
the conditions or target variables that are desired. 118. Ultimately, 
additional data would be required for a literature-generated 
dataset to make successful predictions and distinguish between 
good and bad catalysts. 

Table 1 – The components of an effective machine learning framework

(1) Selection of a suitable machine learning model
Condition Selection Heuristic Algorithms

Large Dataset Greater than 10:1 sample-to-feature 
ratio105

DNN

Small Dataset Less than 4000 samples 26 Random Forest
Support Vector Machine (SVM)
LASSO
Regression Algorithms

(2) Construction of a dataset
Dataset Option Advantage Disadvantage

Literature Only - Quickly create large database
- Encompass many parameters

- Database is likely to be sparsely 
populated
- May contain conflicting results
- May contain inaccurate results
- Often only includes positive 
results (successes)

Experimental Only - Dataset is consistent 
- Easier to evaluate results at same 
conditions

- Slow
- Expensive

Combined Literature and Experimental - Encompasses most data - Sparse literature data may lead 
to inaccurate predictions away 
from experimental dataset
- Larger experimental datasets 
may bias predictions, rendering 
sparse literature data irrelevant

(3) Selection of a feature set
Feature Type Advantage Disadvantage

Composition – Boolean - Simple - Does not capture full 
composition

Composition – Loading - Captures composition - Typically only captures nominal 
loading

Bulk Elemental – Mean Elemental Value - Simple
- Captures elemental contribution

- Does not capture relative 
elemental contribution 

Bulk Elemental – Weighted Statistics - Captures relative elemental 
contribution

- May be inaccurate if nominal 
does not match actual loading
- Does not capture possible 
interaction effects between 
elements

Heuristics - May help algorithm predictions 
- Can be used to evaluate heuristic 
accuracy

- May bias algorithm predictions
- Possibility of heuristic being too 
general or too specific

Calculations – a priori - Extremely accurate descriptor - Often time consuming to 
calculate
- May be inaccurate due to 
assumptions
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Alternatively, systematic experiments can be conducted to create 
a consistent, controlled dataset. A recent example of this 
approach was performed by Nguyen et al., where 40 catalysts for 
oxidative coupling of methane were evaluated at 216 different 
conditions.121 This approach can generate an ideal dataset for 
machine learning, since data trends are more easily identifiable 
when a majority of the experiment variables are held constant. 
Additionally, systematic experimentation allows for accurate 
valiadation of predicitons, since the reactor and reaction 
conditions are already identical to the ML dataset. This approach, 
however, has the drawback of being more costly and time-
consuming than simply accessing previous literature.

The third component of a ML framework is the feature set. The 
feature set is a compilation of characteristics describing the 
samples contained in the dataset. Compositional features are the 
most commonly included features for catalyst datasets.  The 
composition can be indicated using Boolean values (0/1 indicate 
the absence/presence of the element) or mass fractions for each 
element on the periodic table (non-zero mass fraction indicates 
the element is present). Many groups use the mass fractions of 
elements to calculate weighted elemental properties, such as a 
weighted mean electronegativity.122 Additionally, the range, 
minimum, maximum, and weighted mean absolute deviation of 
elemental properties have been included as features.38 Some 
groups have included the properties of possible oxides, such as 
the enthalpy of formation or the element oxidation state within 
the oxide.123,124 Other features, such as heuristics or fundamental 
theories, can also be included to increase model accuracy.24 Large 
databases with derived or calculated values are also good 
candidates as features for machine learning.125,126 

The focus of this perspective is on ML in experimental catalysis; 
however, it is worth noting that ML is also widely employed in 
computational catalysis as well.70,127,128 Computational catalysis 
allows the design and testing of catalyst surfaces in silico and 
extraction of fundamental factors that heavily influence 
catalytic activity. Unfortunately, modeling these surfaces is very 
expensive, resulting in the study of only a few stable surface 
facets and possibly excluding other facets that contribute most 
to the reaction rate.129 Machine learning techniques are being 
employed to reduce this bottleneck, accurately predicting new 
surface performance rather than constructing them in silico.130 
A recent, comprehensive review detailing the application of 
machine learning to computational catalysis can be found 
elsewhere.131  

Application of machine learning in experimental 
heterogeneous catalysis
The application of ML to experimental catalysis began in the 
mid-1990s, when groups began exploring ML as a means to 
further increase the efficiency of their catalyst discovery 

process. Initially, the ANN algorithm was the primary algorithm 
explored.100,132,133 Subsequently, groups explored GA,  later 
augmenting the GA by coupling it with the ANN. Some groups 
also explored other machine learning algorithms, such as 
support vector machines and clustering algorithms. The 
following sections will explore and summarize some examples 
of this work. 

Discovery of catalysts for the oxidative dehydrogenation of 
propane through genetic algorithms and artificial neural networks 

One of the first applications of GA to catalysis was for the 
discovery of an optimal catalyst for the oxidative 
dehydrogenation of propane (ODP).134 To optimize the GA 
parameters, a pseudo-dataset was constructed with defined 
equations that calculated a pseudo-conversion and pseudo-
selectivity from the composition values of each catalyst.  This 
pseudo-dataset was used to optimize a GA, identifying 
parameters such as the minimum population required to 
achieve successful results and the optimum number of 
elements per catalyst in the initial generation. These GA 
parameters were used to generate multiple generations during 
their experimental search for an optimal ODP catalyst. The 
initial population was comprised of 56 4-component catalysts.  
The 4 components of each catalyst were randomly selected 
from a list of 8 elements, which were chosen based on prior 
knowledge of ODP, and their weight loadings were also 
randomly generated. This initial generation was tested 
experimentally using high-throughput techniques, and the 
propane conversion and selectivity towards propene were used 
to determine which catalysts would be used by the GA to seed 
the next generation through mutation and crossover (only 
catalysts with greater than 20% selectivity and 5% conversion 
were viable candidates). Continuing this procedure produced 4 
total generations with 56 catalysts each. Notably, the mean 
propene yield increased with each successive generation, such 
that only 3 catalyst compositions failed the conversion and 
selectivity criteria in the final generation (compared to 19 
compositions that failed in the first generation). Additionally, 
some elements from the initial 8 selected were almost entirely 
removed from the catalyst compositions by the final 
generation, indicating that the GA learned that these elements 
had a negative impact on the propene yield.  

Despite the algorithm’s success, there are some significant 
drawbacks.  First, as stated by the authors, the 3rd generation 
of catalysts contained the highest yield, indicating that while the 
GA can learn and remove low propene yield catalysts, it isn't 
sufficient to predict catalysts with even higher yields. This is also 
evidenced by examining the composition of the final 
generation, where a majority of catalysts have similar 
compositions with only minor variations. The GA seems to 
converge on a particular composition and make minor changes 
from that optimal composition. In this regard, the initial 
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application of GA to catalysis fails to be very different from 
standard high-throughput approaches, which screen a large 
design space for high performing catalysts and then explore the 
modification of other parameters in a much more confined 
parameter space.
 
The next approach was to apply artificial neural networks to the 
ODP dataset and determine composition-yield dependence 135. 
The ANN used a single hidden layer, and the dataset was divided 
such that 75% of the data comprised the ANN training set and 
the remaining 25% of the data was available as a test set.  Using 
these parameters, the model was able to achieve a mean 
absolute difference of 0.3% propene yield (relative 5.4% error 
to average propene yield). This value, however, is artificially low 
due to the similarity in the composition of the entire dataset. 
The authors addressed this point by predicting 6 new catalyst 
compositions with maximized propene yields using the ANN. 
They ensured the predicted compositions were different by 
varying the model hyperparameters, which causes the 
algorithm to converge at separate compositions. Testing these 
new catalysts and comparing the experimental values to the 
predicted values yields a new propene yield error of 1.1% 
(relative error 14%). A higher model error is expected for these 
new compositions, but the catalyst compositions predicted 
from this method do not appear novel or unique. All 6 best-
predicted catalysts contain high amounts of Ga, ranging from 
35-67%, and V, ranging from 17-41%. The best catalyst 
composition discovered through this methodology is 
V17Mg37Mo11Ga35Ox, which is similar to a high performing 
catalyst found through the previous GA screening 
(V19Mg39Mo9Ga33Ox). Consequently, this study shows that an 
ANN is capable of "memorizing" what is good but is not truly 
learning from the previous data. Additionally, datasets created 
by GA may not be suitable training sets for ANN, as the bias 
towards certain compositions appears to limit the ability of the 
ANN to predict outside of that range. The conclusion from this 
study is a list of heuristics for propene yield, such as "If 24% < 
Ga < 33% and …, then yield of propene >= 8%".  These heuristics, 
while accurate in the determined parameter space, may not 
hold true at conditions other than those used in this study, and 
the inclusion of any additional possible elements would render 
the heuristics unhelpful.
  
In a final study one this dataset, a framework was designed to 
quickly tune a GA using ANN.136 They use an ANN trained on 
catalyst compositions and measured propene yield to quickly 
predict the propene yield of each catalyst in a generation 
created by the GA. Using this approach, predicted propene 
yields may be used in place of experimental data to tune the GA 
hyperparameters. This saves time and reduces cost by 
mitigating catalyst synthesis and increasing the rate of GA 
convergence since optimal hyperparameters lead to catalyst 
discovery in fewer GA generations. One parameter that was 
examined in this study was the population size of each 
generation of catalysts. They determined from this study that 
population size is relatively unimportant to the convergence of 
the GA, whereby 11 generations, population sizes of 28, 56, and 

280 catalysts each had achieved a similar maximum yield of 
propene. Additionally, the optimal catalyst composition 
achieved by each population size is similar in composition. 

The use of ANN to tune GA is novel and promising, but this study 
does not provide enough information to truly validate the 
reported conclusions. The authors validate their ANN by 
extracting heuristics learned by the algorithm and then 
demonstrating experimental data that fit those heuristics, 
shown in Table 2. The 6 catalysts which are provided only vary 
in elemental composition by 1-2 mol% per element, while the 
heuristics themselves have elements that vary by as much as 12 
mol%. Within a reasonably assumed experimental error, the 
catalyst compositions chosen by the authors are identical, and 
thus they are not sufficient to evaluate the ANN heuristics. The 
authors report that the model successful learns which elements 
make effective catalysts, as shown in Figure 6, but this was 
already known about GA performance from prior studies. 
Noticeably absent is any report of the overall performance of 
the ANN on predicting the dataset, which would provide more 
understanding of the capabilities of the model to accurately 
predict the data. With this information lacking, it is entirely 
possible the observed convergence of each population size is a 
result of poor predictions from the ANN. Therefore, further 
investigation should be conducted in order to fully evaluate the 
effectiveness of this approach.

Table 2.  Experimental validation of rule 1 (examples 1–3) and rule 2 
(examples 4–6) extracted from a trained ANN. Reproduced with permission 
from 136.

Example Composition (mol%) Propene yield (%)
Ga Mg Mo V Predicted Experimental

1 32 32 7 29 8.1 8.2
2 27 36 6 31 8.1 8.4
3 32 33 5 30 8.3 8.0
4 38 31 8 23 8.3 7.9
5 38 31 9 22 8.4 8.3
6 38 32 9 21 8.4 8.2

 

Figure 6 . The variation in the frequency that certain elements 
were contained within the predicted catalyst composition of the 
GA over the course of 5 generations.  Copyright Elsevier 2004.
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Genetic algorithms constrained by chemistry rules for extracting 
kinetic reaction parameters from the conversion of propane to 
aromatics over H-ZSM-5 catalysts.

Caruthers et al. developed a coupled framework, combining GA 
with a reaction framework that includes 60 gas and surface 
species and 271 potential reaction steps.43 The GA was used to 
search for and optimize a best-fit kinetic model, which was 
subsequently used to describe the weight fraction of the 
products at various reaction conditions. Each of the species and 
reaction steps was categorized into 13 groups to reduce the 
total number of features.  The final feature set contained 9 rate 
constants (e.g.: olefin desorption, kod, or β-scission, kb), 3 
adsorption enthalpies (ex: enthalpy change per carbon number 
for alkane adsorption, Δqad), and the entropy change for β-
scission/oligomerization equilibrium. The GA was used to 
rapidly search this parameter space and locate optimal 
parameters that fit the experimental data. In total, the model 
identified 33 local minima with a similar sum of squares error 
(SSE), some of which contained drastically different values for 
certain kinetic parameters. For example, the rate of 
aromatization was reported to have an average value of 0.85 ± 
0.90 mol / g / h across all the minima. This high error indicates 
that either this parameter is unimportant or that the model 
needs additional data to better understand this parameter. 

Caruthers et al. began to expand the feature set, adding in 
additional terms from the full set of reaction steps and species. 
They found that adding one particular term, the alkylation of 
alkoxy species with light alkanes, caused the greatest 
improvement to the model by reducing the SSE, and the 
comparison of the original and refined model is shown in Figure 

7. Using this methodology of model refinement has the 
potential to uncover important factors influencing the reaction, 
and it has been demonstrated to significantly increase the 
accuracy of the model. Despite these benefits, this application 
seems contradictory. The benefit of the GA is that it allows rapid 
searching of a diverse parameter space, but the original 
parameter space was simplified to the 13 categories to reduce 
the number of parameters. This, followed by a stochastic search 
for the next best feature, raises questions of why a GA was not 
implemented on the entire parameter space in the first place. It 
seems that this initial simplification artificially constrains the 
model, and likely limits the effectiveness of the GA.  Needless to 
say, the authors do not provide an explanation for this choice in 
methodology.

Finally, the authors propose a knowledge mapping component 
to their framework, where these kinetic parameters are 
mapped to fundamental catalyst descriptors, such as proton 
affinity or transition state geometries.  They do not 
demonstrate how, for this particular example, this knowledge 
extraction process works; rather, they create a hypothetical 
example where they compare the predictions of a typical ANN 
implementation with an ANN constrained by extracted 
knowledge. The hybrid model, containing the expert 
knowledge, had a much better fit than the typical model when 
it was extrapolated from their hypothetical data points. This 
shows the potential for knowledge extraction to inform 
predictive models; however, the study still leaves the 
demonstration of this feat to be shown.
 
Artificial neural network boosted genetic algorithms for 
optimization of Ti-silicate synthesis parameters for olefin 
epoxidation

Corma et al. used an ANN combined with a GA and HTE to 
optimize multiple catalyst systems, including catalysts for the 
oxidative dehydrogenation of ethane,137 water-gas shift 
catalysts,138 and the synthesis variables of a Ti-silicate olefin 
epoxidation catalyst.139 In the latter study, four synthesis 
variables were selected: gel pH, hexadecyltrimethylammonium 
hydroxide content, tetramethylammonium hydroxide content, 
and titanium content. Their group reported previously that the 
primary factor impacting the success of a GA is the diversity of 
the initial generation.140 Therefore, they used multiple GA to 
create several random catalyst generations and manually 
selected a diverse initial population. The GA was used to create 
new generations from the initial catalyst population, and an 
ANN was used to predict and pre-screen each new catalyst 
compositions. The authors iterated through 3 generations of 
catalysts with varied synthesis parameters.  Over the 3 
generations, the GA-ANN approach was able to optimize the 
synthesis parameters to increase the epoxide yield from ~92% 
to ~95% at a reaction temperature of 333 K. Select samples 
were chosen for a post-analysis via x-ray diffraction, which 
revealed a Ti-silicate structure that correlated strongly to 
catalyst activity. This study is one of the earliest studies to 

Figure 7.  Improvement in performance curves 
for propane aromatization on HZSM-5. Dots correspond to 
experimental data from Lukyanov et al. (131); solid lines indicate 
the original model predictions and the dashed line indicate the 
refined model predictions. The x-axis is in terms of the space-
time×104 (h) and the y-axis is the weight percentage of the various 
species. Copyright Elsivier 2003.
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bridge the gap between catalyst synthesis and crystal structure 
with machine learning techniques.
 
In a later study, Corma et al. used data from the Ti-silicate study 
described above to explore a number of other machine learning 
techniques, comparing the performance of machine learning 
models using logistic regression equations to both neural 
networks and decision trees.141 The features used to train these 
models were also varied, using combinations of catalyst 
synthesis and characterization features. Specifically, they 
applied dimensionality reduction techniques, such as principal 
component analysis and Kohonen networks, to x-ray diffraction 
(XRD) data collected on the catalysts. Accuracy of the model 
was obtained by comparing catalyst classifications assigned by 
the models, with 5 categories ranging from "very bad" to "very 
good". The validation was conducted with a pseudo-5-fold 
cross-validation, where 80% of the data was used to train and 
20% to test, but the data for each validation was independently 
selected for the 80%-20% split at random, unlike a typical cross-
validation strategy.   Inclusion of the dimensionally reduced XRD 
data increased the prediction accuracy of the ANN to 94%, and 
decision trees were able to achieve 100% prediction accuracy. 
It is important to note that, since the dataset being leveraged 
for this study was generated from a GA, a large portion of the 
dataset has similar catalyst parameters with minor variations, 
which will artificially inflate the ability of the machine learning 
models to make accurate predictions.  A better test would have 
been to ensure predictions were made on vastly different 
parameters so that the actual predictive ability of the model 
could be probed. Nevertheless, this is the first study to include 
characterization, such as XRD, in a predictive model. This 
framework paves the way for more studies to incorporate 
characterization techniques and provide fundamental insight 
into the catalyst surface to the machine learning model. 
 
In another study, the application of support vector machine 
(SVM) as a classification technique to two previously collected 
datasets, their olefin epoxidation dataset and their light olefin 
isomerization dataset, was explored.34 The olefin epoxidation 
dataset was chosen because it is well dispersed, with yields 
ranging from 0-95% and about half the data being above 80% 
yield. They chose this midpoint as a classification threshold, 
where the aim was to distinguish good and bad catalysts. The 
isomerization dataset, on the other hand, ranges from 0-50% 
yield, but only 15% of the data has a yield higher than 5% and a 
majority of the dataset has a 0% yield. The threshold for this 
classification problem was set at 5% yield to classify active and 
inactive catalysts. They compared the performance of 8 SVM 
algorithms to 6 different classification tree algorithms for both 
datasets. In both cases, the RBF3 SVM algorithm outperformed 
all other SVM and classification tree algorithms, achieving near-
perfect classification accuracy for both datasets. Both datasets 
were generated using a GA approach, which, as mentioned with 
previous studies, leads to concern about the homogeneity of 
the datasets and how well these classifiers actually perform in 
realistic situations.142 Despite this concern, the authors 
demonstrate the accuracy of SVM to their dataset and ascribe 

its performance to the inherent mitigation of model overfitting, 
which is especially prevalent on small datasets for algorithms 
such as ANN.
Random forest algorithms for discovery of novel ammonia 
decomposition catalysts

Recently, our group developed a random forest-based ML 
framework in combination with high-throughput screening (ML-HTE) 
for accelerated catalyst discovery.143 This methodology was 
successfully employed to predict the ammonia conversions of 
previously unknown catalyst compositions. A design space was 
centered around modifying a 12wt% K promoted 4wt% Ru catalyst 

supported on ɣ-Al2O3 (4,12 RuK/Al2O3) previously reported in the 
literature.144 This catalyst was selected for the exploration of 
elements that may act to enhance low-temperature ammonia 
decomposition activity at lower Ru loadings than the previously 
reported 4,12 RuK/Al2O3 catalyst. The modifications included 
replacement of a fraction of Ru with 1 of 33 other elements and 
varying the ratio of Ru to substituted element present in the catalyst. 
Figure 8 shows a compilation of most of the active metals studied for 
ammonia decomposition from 2001 to 2018. The focus for ammonia 
decomposition catalysts has predominantly been on Ru, and thus 
very little work has been done involving other transition, late 
transition or noble metal catalysts, let alone binary or even ternary 
combinations of these materials. The lack of comprehensive data 
under reproducible conditions made the selection of a starting point 
for this design difficult. If this were to be done with a traditional DoE, 
determination of a center point would involve very little scientific 
evidence and much guesswork, resulting in many failed experiments 
in addition to a much smaller design space than can be explored by 
a ML algorithm. Due to the flexibility of ML, we were able to define 
33 different elements, each with three different weight loading or 
“levels”. This kind of design would be difficult to realize with a 
traditional DoE due to a large number of categorical variables. 
Additionally, no meaningful relationships could be ascertained 
between activity and substituted metals using traditional DoE, 
because the relationships involve multiple properties of the 
elements and reaction conditions. 

We utilized ML to deduce what combinations of materials and weight 
loadings would be most effective for low-temperature ammonia 
decomposition without having to synthesize and test hundreds of 
catalysts. The ML algorithm utilized information on elemental 

Figure 8. Compilation of active metals studied for ammonia 
decomposition literature from 2001 to 2018. References may be 
provided upon request.
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properties, synthesis conditions, and operating conditions to make 
predictions of the activity of substituted Ru catalysts. The training 
data for the ML was generated via a 16-channel HTE reactor.64,65,145 
The initial training dataset included a base composition of 3 wt.% Ru 
and 12 wt.% K co-impregnated onto γ-Al2O3 in addition to either 1 
wt.% Ca, Mn, or In. The elements Ca, Mn, and In were chosen to 
maximize the difference in features in the initial dataset since those 
elements reside in three different categories on the periodic table 
(alkaline earth metal, transition metal, and post-transition metal). 
Unlike prior algorithms, which used predominantly catalyst 
composition as an input, and our framework included weighted 
elemental features, such as electronegativity or ionization energy,  
for each catalyst composition. The use of these additional features 
allowed the ML to accurately rank the catalyst formulations based on 
their expected performance with only 3 catalysts in the initial 
training set. The model made these predictions based on features 
which describe the catalyst’s electronic, elemental, and geometric 
properties. After the predictions were made, the data set was 
synthesized and tested to validate the qualitative and quantitative 
accuracy of the model. 

This ML-HTE framework led to the discovery of several novel high-
performing catalyst formulations, such as a 3% Ru, 1% Y, 12% K 
catalyst on γ-Al2O3 (3,1,12 RuYK). Figure 9 shows the catalytic activity 
of the newly discovered Y containing catalysts compared to the 

thermodynamic limit between 250oC and 400oC. The substitution of 
Ru with as much as 3% Y (1,3,12 RuYK) further resulted in a highly 
active catalyst at low reaction temperatures (≤ 400oC) for ammonia 
decomposition. 

The Y containing catalysts were compared to the best catalysts 
reported in the literature for ammonia decomposition at identical 
reaction conditions,146 reported in Figure 9. Using 7 wt% Ru 
supported on carbon nanotubes, they reported activity of roughly 
80% conversion at 400oC, compared to 94% and 95% conversion 
obtained with our 3,1,12 RuYK and 1,3,12 RuYK catalysts 

respectively. Additionally, the novel catalyst formulations discovered 
through ML-HTE achieved nearly double the ammonia conversion at 
temperatures as low as 250℃ and 300℃ using only one-seventh of 
the Ru content. The excellent performance of the ML-HTE framework 
led to the rapid discovery of new catalysts for low-temperature 
ammonia decomposition. With the addition of subsequent 
experiments, the ML design space may be further expanded to 
include variables such as catalyst support, synthesis parameters, and 
promoter type and loading. This opens the door for hyper-
accelerated catalyst discovery that is only possible with the 
utilization of ML to predict catalyst formulations using a data set size 
reasonably achieved through high-throughput experiments. 

It is interesting to note that the model is agnostic of the reaction 
chemistry and made accurate predictions without any information 
on reaction kinetics or adsorbate binding energies. While some 
theoretical ML studies utilize binding energies, Fermi level, or d-band 
center location in their feature selection process,147,148 these 
energies are for well defined monometallic or bimetallic catalyst 
surfaces.149 The complexity of catalysts studied here and the 
ambiguity of the role of each catalyst component makes calculations 
of binding energies for these catalysts complicated. However, an 
estimation of the adsorbate metal interaction energies may only be 
necessary to enhance catalyst predictions. Recently it has been 
shown that integrating approximations for band gap, lattice thermal 
conductivity, and elastic properties into a ML model dramatically 
improved the predictive capability 31 for small data sets. Open source 
calculations and libraries of adsorbate binding energies using ML 
algorithms are beginning to arise,33,150 but the generalizability and 
influence of variables such as metal support interactions and particle 
size have yet to be addressed. The utilization of ML not only for 
catalyst predictions but also for predicting metal adsorbate 
interactions for more complex surfaces and catalysts compositions in 
a cost-effective and efficient manner, would dramatically enhance 
material discovery and pave the way for catalyst discovery containing 
three and four components in lieu of the traditional active metal and 
promoter combination. 

New advances in machine learning algorithms
The catalyst discovery process involves many decisions about 
process design, operation, and catalyst properties, where 
experimentation plays a pivotal role in evaluating these 
decisions. Traditionally, these decisions were aided by 
methodologies, such as DoE,151,152 but the trend in research 
towards increasingly complex catalysts has begun to render 
these traditional techniques impractical or even infeasible due 
to time and cost restrictions.153 The search for an optimal 
catalyst involves interactions between a multitude of variables, 
leading to a complex search problem over a massive 
configuration space with multiple objectives involved (we are 
interested to find stable, active, and low cost catalyst).153 
Computational evaluations are usually less costly to perform 
than physical experiments, allowing a lower cost iterative 
search process. In the absence of analytical knowledge about 
the material synthesis process (such as those that can be 
obtained through DFT, finite element analysis, or computational 

Figure 9.  Catalytic activity of 3% Ru, 1% Y,12%K on γ-Al2O3 (black 
diamonds) and 1% Ru, 3% Y,12%K on γ-Al2O3 (red circles) compared 
to the thermodynamic equilibrium conversion at atmospheric 
pressure. Reaction conditions: 100% NH3, P=1.01 bar, 5,200 
mL/hr/gcat.
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fluid dynamics), we can approach the problem of material 
synthesis as a black-box problem, where ML is best suitable for 
solving such problems. Here, we will shed light on the use of 
novel ML and data-driven approaches in catalyst design. We will 
discuss active learning for an iterative design process and 
transfer learning to accelerate the discovery process. We will 
also discuss causal inference for enhancing catalyst design to 
not only suggest potential catalyst formulations but also 
provide chemical explanations for such choices. We will finally 
discuss the infrastructure for enabling data-driven discovery at 
scale. Note that we will keep the discussion here at a high level 
and we do not intend to provide in-depth analysis. Rather, we 
want to provide insights into opportunities for future research 
based on existing work in the literature.

Active learning (Sequential Design)

On an abstract level, catalyst design problems are primarily 
concerned with the evaluation of a complex function, which 
maps features describing the catalyst composition to some 
chemical process. In this scenario, the complex relationship 
between the catalyst features and the catalyst performance is 
unknown, which renders optimization a major challenge and 
requires sampling of the performance for multiple iterations of 
catalyst features. The main obstruction in such a design and 
many other contexts is that the typically large dimensionality of 
the parameter space requires, in general, an enormous number 
of samples to derive reliable optimality conclusions, i.e. the 

Curse of Dimensionality. 

One possible solution to minimize the required number of 
samples is Bayesian optimization, which is a ML framework used 
to optimize expensive black-box functions. This methodology 
has been used previously for iterative (sequential) experimental 
designs 154. The black-box function is typically modeled via a 
Gaussian process (GP) model, building a mathematical model 
from available experimental data, and then using this model to 
recommend the next set of experimental parameters, giving 
rise to an iterative approach. At each iteration, the uncertainty 
captured by the probabilistic model is used to generate a utility 
function, where the optimal point of this function is the set of 
parameters most likely to increase the accuracy of the 
predictions. Unlike the actual objectives, the utility function is a 

function of the model and, therefore, it is cheap to evaluate and 
maximize. This approach contrasts with model-free approaches, 
such as genetic algorithms or evolutionary strategies, that can 
be effective for approximating the Pareto set but require many 
function evaluations with prohibitive cost in materials design 
applications. The GP is updated with new data as experiments 
are conducted. In this context, Bayesian optimization was 
shown to have the best achievable order of convergence rate in 
terms of the number of samples (sub-linear growth in 
cumulative regret) for global optimization.155,156 It can be 
applied to high-dimensional optimization of general types and 
more importantly, it offers transfer learning from past 
experiments in an efficient optimization framework 157. 

Transfer learning
The process of experimentation involves conducting an 
experiment, measuring the quality of output, then repeating 
the process with insights gained. This process is inherently 
iterative, dynamic, expensive, and limited by resources of time, 
cost and even ideas. Knowledge is built over time through 
several sets of experiments that vary in setting - thus “similar” 
experimental data is often available. For example, in catalyst 
discovery, there is typically a wealth of experimental and 
computational data available for a particular catalyst system. 
These data should contain information that is transferable to 
the current discovery effort. In particular, existing data can be 
used in a setting that enables transfer learning with Bayesian 
optimization.158 Also, we can transfer knowledge from low-
fidelity experiments and numerical simulations to enhance the 
multi-fidelity Bayesian optimization process (see Figure 10). In 
particular, multi-fidelity Bayesian optimization enables transfer 
learning from less expensive low-fidelity 
simulations/experiments and enables a more accurate 
prediction of material properties and therefore more efficient 
discovery process that learns jointly from both low-fidelity and 
high-fidelity data.158–162 We see an enormous potential in this 
approach that would result in a more accurate exploration of 
the performance landscape with an improved chance of 
detecting “unexpected” catalyst compositions.

Explainability and causal inference

Integrating AI techniques with pipelines for catalyst discovery 
involves communicating the extracted knowledge with both 
experimentalists and theoreticians. Here we explain challenges 
and a possible approach to overcome them using causal 
modeling tools, in particular, causal inference163 and their 
associated logic. Causal inference facilitates identifying the 
causes of an observed outcome via interventions and 
counterfactual analysis. We believe that these tools enable 
efficient communication of the knowledge that we extract from 
the catalyst discovery process. 

Figure 10. Sequential design with Bayesian optimization and 
transfer learning.
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The first challenge is adaptability, or robustness, of the machine 
learning algorithm. Many current machine learning 
implementations lack the ability to accurately extrapolate 
outside of the design space that they have been specifically 
trained for. Transfer learning  and domain adaptation are both 
novel techniques that address the issue of adaptability by 
incorporating additional datasets into the machine learning 
process.164–167 Causal information164 and probabilistic 
information collected from current experiments (i.e., the 
catalysts we already collected data from) can be used to extract 
knowledge, predict, and infer properties about new target 
experiments, therefore, saving time and cost if the inferred 
information indicates that the catalyst is not going to possess 
certain properties of interests. Common intuition supported by 
previous research suggests that from the limited probabilistic 
information about the target catalyst via the synthesis results, 
we may be able to infer that certain probabilistic and causal 
facts are shared between the two processes and certain ones 
are not. Conclusions about one population can be supported by 
information about another but depends on exactly what causal 
and probabilistic facts they have in common (see Figure 1). 

A second challenge is explainability, which deals with the inner 
working of the machine learning algorithm and why it predicts  
certain catalysts to be good while others to be bad.168 Most 
current algorithms rely on the researcher’s’ intuition to 
evaluate what constitutes a good explanation, impeding 
diagnosis and repair.169,170 However, a model-based approach 
using structural casual models171 to internally evaluate cause-
effect relationships can cast new light on the question of what 
constitutes an adequate explanation, and it opens new 

possibilities for the automatic generation of explanations by 
machines.172 Causal models can then be used to communicate 
the extracted knowledge. Causal relations are typically specified 
using structural causal models such as A->B->C or A->B<-C, is Y 
=f(X,ε), wherein the former B mediates the change from A to C 
and in the latter B blocks the correlation between A and C. Such 
causal structures can be used to better guide the optimization 
process. 

A third challenge regards the lack of machine understanding for 
cause-effect relationships. Machine learning algorithms have 
been primarily designed to answer questions of a statistical 
nature, such as “What is the probability that A occurs?”, but 
equally important is the ability to answer questions of a more 
philosophical nature – “What if?”-type questions 173. The ability 
to ask and answer these “what-ifs” separates standard machine 
learning from true AI. Examples include interventional 
questions: “What if we set the number of specific components 
to a certain level in an experiment?” or “What if we put more of 
component X instead of component Y and observe how the 
characteristics of the derived material will change?” 
Counterfactual questions involving retrospection cannot be 
directly answered from data collected by interventions or 
controlled experiments.174 To address this challenge, the 
structural causal model can be used to answer counterfactual 
questions using both experimental studies and the structure of 
the causal diagram.175

We prescribe causal modeling andcounterfactual reasoning to 
overcome all three challenges, in particular, causal diagrams 
and their associated logic. These tools could complement the 
ML models by providing explanations regarding the decisions 
produced by the models, learning a better representation that 
transfer better across environments, or even enhance the 
models by disentangling the causal factors that explain the 
variation in the data in order to build robust models.176 The 
causal models can also be integrated into the iterative Bayesian 
optimization that derive experiments to increase the chance of 
discovering new materials and provide explanations. Through 
addressing these challenges, AI algorithms for catalyst discovery 
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I I . INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of thesystem changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in thesystem that weconsider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i -th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = D om(F1) ↵ · · · ↵ D om(Fd), where
D om(Fi ) = { 0, 1} . A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ↵ H ↵ V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E, a per-
formance model is a black-box function f : F ↵ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E. To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations x i 2 F , and
record the resulting performance values yi = f (x i ) + ↵ i , x i 2
F where ↵ i ↵ N (0, σi ). The training data for our regression
models is then simply Dt r = { (x i , yi )} n

i = 1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! ∆ (R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations x i 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi . We then
fit aprobability distribution to theset of measured performance
values De = { yi } using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
f s(c) corresponds to the response functions in the source
environment es 2 E, and g = f t (c) refers to the response
of the target environment et 2 E. Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et :
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

I I . INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of thesystem changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that weconsider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i -th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = D om(F1) ↵ · · · ↵ D om(Fd), where
D om(Fi ) = { 0, 1} . A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ↵ H ↵ V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E, a per-
formance model is a black-box function f : F ↵ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E. To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations x i 2 F , and
record the resulting performance values yi = f (x i ) + ↵ i , x i 2
F where ↵ i ↵ N (0, σi ). The training data for our regression
models is then simply Dt r = { (x i , yi )} n

i = 1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! ∆ (R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations x i 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi . We then
fit aprobability distribution to theset of measured performance
values De = { yi } using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
f s(c) corresponds to the response functions in the source
environment es 2 E, and g = f t (c) refers to the response
of the target environment et 2 E. Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et :
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

I I . INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of thesystem changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in thesystem that weconsider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i -th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ↵ · · · ↵ Dom(Fd), where
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a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ↵ H ↵ V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E, a per-
formance model is a black-box function f : F ↵ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E. To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations x i 2 F , and
record the resulting performance values yi = f (x i ) + ↵ i , x i 2
F where ↵ i ↵ N (0, σi ). The training data for our regression
models is then simply Dt r = { (x i , yi )} n

i = 1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! ∆ (R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations x i 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi . We then
fit aprobability distribution to theset of measured performance
values De = { yi } using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
f s(c) corresponds to the response functions in the source
environment es 2 E, and g = f t (c) refers to the response
of the target environment et 2 E. Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et :
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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I I . INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of thesystem changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that weconsider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i -th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = D om(F1) ↵ · · · ↵ D om(Fd), where
D om(Fi ) = { 0, 1} . A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ↵ H ↵ V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E, a per-
formance model is a black-box function f : F ↵ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E. To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations x i 2 F , and
record the resulting performance values yi = f (x i ) + ↵ i , x i 2
F where ↵ i ↵ N (0, σi ). The training data for our regression
models is then simply Dt r = { (x i , yi )} n

i = 1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! ∆ (R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations x i 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi . We then
fit aprobability distribution to theset of measured performance
values De = { yi } using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
f s(c) corresponds to the response functions in the source
environment es 2 E, and g = f t (c) refers to the response
of the target environment et 2 E. Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et :
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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Figure 11. Extracting knowledge from the source 
environment and transfering to the target environment 
for causal discovery.

Figure 12. Computational infrustructure for high 
capacity machine learning.
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will not only be able to predict novel materials, as has been 
shown previously, but will also have the capacity to ask scientific 
questions, evaluate which questions are most important, and 
design experiments to generate knowledge and improve 
understanding.25,177–184

High capacity machine learning

Experimental data from multiple groups, databases of HT data, 
and extraction of data from the literature can all generate 
significant amounts of data and as a result, training deep neural 
network models can be resource-intensive. DNN models are 
trained using a backpropagation algorithm, which computes the 
error signal of each parameter in the model and uses it to adjust 
the parameters according to gradient descent algorithms. The 
training process is inherently iterative, where training batches 
are processed sequentially. DNN models typically have 
thousands or millions of parameters. Therefore, training deep 
learning models on big data is challenging due to the 
computational demands of our data-driven strategy. Even with 
a powerful GPU, some models can take days or weeks to train. 
Fortunately, given cloud services, we can have access to 
multiple machines and multiple GPUs. We developed a domain-
specific architecture to leverage powerful heterogeneous 
hardware environments to achieve significant acceleration. In 
doing so, first, the generated experimental data is transferred 
to the cloud. In our cloud-based architecture (Error! Reference 
source not found.12), we partition the data over multiple cloud 
nodes that may be hosted on different cloud platforms. Then, 
the probability density function  of all variables including 
density, velocity, energy, and scalars will be batched for deep 
learning analysis. 
 

To describe the methodology, assume there are n nodes, then 
each node will receive a copy of the complete model and train 
it on 1/n of the data (see the architecture in Figure 10). At a high 
level, each node trains on its own fragment of data and 
generates a set of parameter updates. Then, a global parameter 
state is created from the ensemble of parameter sets created 
by the nodes. The new gradients and updated model are 
communicated across these nodes using Apache Spark cluster 
primitives (seeFigure 12). In order to deal with big data 
generated here, we need to resort to Hadoop Distributed File 
System (HDFS) on multi-cloud. This means of storage allows 
direct access to the data and seamless interoperability between 
various services such as Spark and Google services. This will save 
significant cost over time and enable high capacity machine 
learning at scale with big data from multiple groups, databases 
of experimental and theoretical HT data, and extraction of data 
from the literature. 

Conclusions
There are many advances in high-throughput metholodogies 
that allow the researcher to rapidly synthesize and screen 
catalysts. While combining such HT methodologies with DoE 
allows one to interpolate and search for local maxima within a 
given parameter space, it does little accelerate the rate of 
previously unknown materials discovery for experimental 
catalysis. In contrast, catalyst discovery has been demonstrated 
for a few select cases using various machine learning based 
algorithms, including GAs, ANNs, and random forest algorithms. 
Limitations still exist when extending catalyst discovery to the 
synthesis of real materials. We demonstrated that the 
combination of random forest algorithms with high-throughput 
screening can result in successful material discovery for 
ammonia decomposition catalysts. The addition of generalized 
parameters, such as adsorbate binding energies, band gap, or 
reaction kinetics could further improve the predicitability of 
machine learning models. Additionally, there exist 
opportunities in the future for transfer learning from 
computational data to lead to more accurately predicted 
performance of exisiting and novel catalyst formulation. The 
most exciting opportunities, hoever, lie in the extraction of new  
knowledge from such large datasets, exploring multi-
dimensional connections between catalsy features. 
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