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Alcoholic beverages is a well-known risk factor of cancers. N2-
ethyl-2’-deoxyguanosine (N2-Et-dG) is a promising biomarker of 
alcohol-associated cancers. However, the lack of a convenient 
detection method for N2-Et-dG hinders the development of 
practical DNA damage markers. Herein, we develop a detection 
method for N2-Et-dG using the single-molecule quantum 
sequencing (SMQS) method and machine learning analysis.  Our 
method succeeded in discriminating between N2-Et-dG and dG 
with an accuracy of 99 %, using 20 signals. Our developped 
method quantified the mixing rathio of N2-Et-dG from a mixed 
solution of N2-Et-dG and dG. It is shown that our method has the 
potential for facilitating the development of DNA damage markers 
and the early detection and prevention of cancers. 

Ethanol, a component of widely consumed alcoholic 
beverages, is a well-known cause of cancers such as oral cavity, 
liver, and oesophageal cancer and is accountable for 5.3% of 
the deaths in 2016 in the world.1–3 It is necessary to develop 
biomarkers for alcohol-associated cancers for the early 
detection and treatment of cancers. Acetaldehyde, an ethanol 
metabolite, damages the DNA and disrupts the DNA 
replication process by adding itself to the DNA.4,5 Fig. 1a shows 
the scheme of formation of the most abundant acetaldehyde 
aduct.4–9  Acetaldehyde adds to the deoxyguanosine (dG) and 
dehydrates to form N2-ethylidine-dG. To detect unstable N2-
ethylidine-dG in vitro,9 the modified nucleotide is reduced to 
stable N2-ethyl-2’-deoxyguanosine (N2-Et-dG) by the addition 
of a reductant. In conventional methods, N2-Et-dG is detected 
using liquid chromatography tandem mass spectrometry after 
enzymatic degradation.4–9 Previous studies showed that N2-Et-
dG has the potential of alcohol-associated cancer markers. 4,7 
However, the lack of a convenient and simple detection 
method for N2-Et-dG hinders the development of practical 

DNA damage markers. Herein, we focused on single-molecule 
quantum sequencing (SMQS), theoretically proposed by Di 
Ventra’s group.10,11 SMQS is based on the mechanically 
controllable break junction (MCBJ) method, which is one of the 
most commonly used methods for single-molecule 
measurements; a narrow metal wire drawn is broken by 
bending the substrate to form a nano gap as shown in Fig. 1b-
d.12–16 The conductance of a single molecule passing through 
the nanogap is measured using this method as shown in Fig. 1b. 
The DNA and RNA sequencing using the SMQS method has 
attracted significant attention.17–21 In the SMQS method, 
nucleobases are detectable and countable without 
complicated pre-treatment in principle. The purpose of this 
study is to establish a convenient method to detect N2-Et-dG 
and differentiate between N2-Et-dG and dG using the SMQS 
method.

FIG.1 　 (a) Scheme of acetaldehyde addition to 
deoxyguanosine (dG). dG reacts with N2-ethyl-2’-
deoxyguanosine (N2-Et-dG) via acetaldehyde addition, 
dehydration, and reduction. (b) Schematic of N2-Et-dG single-
molecule measurement. (c) Structures of SMQS substrate. 
Polyimide is coated onto a silicon substrate for electric 
insulation. A Au nanowire is fabricated with electron beam 
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lithography on the substrate. A Nanogap is formed by bending 
the substrate and breaking the Au nanowire. (d) SEM image of 
Au nanowire on the  substrate. The scale bar is 1 μm.

Single-molecule measurements of N2-Et-dG and dG 
solutions were carried out using the SMQS method.18,20 The 
details of this method are described in the supplementary 
information (SI1). Figure 2a shows a part of the current 
measurement results of N2-Et-dG. Single N2-Et-dG signals were 
successfully detected. The histogram of the average current of 
the obtained signal is shown in Fig. 2b. A comparison between 
current histograms of N2-Et-dG of dG shows the N2-Et-dG 
structure to be in the higher current region compared to dG. 
The average current of the signals (indicated by arrows in Fig. 
2(b)) at 0.1 V bias voltage is 47 pA (0.61 μG0, G0 is conductance 
quantum: 2e2/h, e,h denotes the elementary charge and Plank 
constant, respectively) for dG and 61 pA (0.79 μG0) for N2-Et-
dG. N2-Et-dG shows higher single-molecule conductance than 
dG. The histogram of N2-Et-dG does not show well-defined 
conductance. In the conductance measurement of a single 
molecule, it has been reported that even a single molecule 
exhibits multiple conductance peaks or broad conductance 
peaks.22–24 N2-Et-dG was assumed to form multiple bridging 
structures with the electrodes. Both N2-Et-dG and dG show 
similar shapes in the low-conductance region of the 
histograms. The molecular orbitals localized on the 
deoxyribose caused the peaks in the low conductance region.25 
The difference between the bases of N2-Et-dG and dG appears 
in the high conductance region.25 The difference in the 
conductance histograms of N2-Et-dG and dG indicates the 
detection of differences between the bases. 

DFT calculations using Gaussian 0926 were performed to 
reveal the high conductance of N2-Et-dG. The energy diagram 
based on molecular orbital calculations is shown in Fig. 2c. The 
HOMOs of N2-Et-dG and dG are shown in Fig. 2d and (e). The 
HOMO levels are at 5.3 eV for N2-Et-dG and at 5.4 eV for dG. 
HOMO of N2-Et-dG has a smaller energy difference with 
respect to the Fermi level of gold at 5.1 eV.27 In the Landauer 
picture,28 the conductance of a single-molecule junction is 
proportional to the transmission. The transmission τ near the 
zero bias is expressed by Breit-Wigner equation (Eq. 1).22,25,29,30

τ =  
4ΓLΓR

ε2 + (ΓL + ΓR)2　　　　　　　　　　　(1)

 where  and ε represent the coupling between the ΓL,R

molecule-left and right electrodes and the energy difference 
between the Fermi energy of Au electrodes and the 
conduction orbital, respectively. The coupling indicates the 
delocalization between the molecular orbital and electrodes. 
From Figs. 2d and e, the orbital shapes of HOMO for both N2-
Et-dG and dG are similar. Therefore, the coupling of N2-Et-dG 
and dG is assumed to be less significant than the effect of the 
energy difference between the Fermi level of the Au 
electrodes and the HOMO levels of the molecules. It can be 
interpreted that the smaller HOMO-Au Fermi energy 
difference of N2-Et-dG causes higher conductance. The results 

of DFT calculations show the validity of single-molecule 
measurements.

FIG.2 (a)Current profile of N2-Et-dG single-molecule 
measurement using the SMQS method. Inset shows the 
expansion of a single pulse signal in the dotted line. (b) Current 
histogram of obtained pulse signal by single-molecule 
measurements of dG (red) and N2-Et-dG (blue). The arrows 
indicate the average current. (c) Energy diagram of HOMO of 
the nucleobases and Au Fermi level. (d,e) HOMO of N2-Et-dG 
(d) and dG (e).

The current histogram Figs. 2 confirms the statistical 
difference between N2-Et-dG and dG. However, distinguishing 
the nucleobases from a single signal is difficult because of the 
large overlap between the histograms. Herein, the two 
nucleobases were distinguished using machine learning to 
quantify N2-Et-dG (refer to SI.2).31 First, we built a classifier 
between the dG and N2-Et-dG signals. The classification 
scheme using machine learning is shown in Fig. 3a. The noise-
removed signals by PUC32 are classified by machine learning 
with the XGBoost classifier.33 Figure 3b shows the classification 
result. It is observed that 81% of the N2-Et-dG signals and 74% 
of the dG signals were correctly classified. F-measure, which is 
an index for measuring discrimination performance, was 0.77 
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(SI.2). Complete discrimination at a single-molecule level was 
not achieved. However, the two nucleobases are 
distinguishable using SMQS and ML-based analysis. 
Quantification among many molecules, instead of 
discriminating at a single-molecule level, is important for the 
application to detect cancers. The accumulated analysis 
improves the accuracy of statistical quantification. For 
example, when the accuracy for distinguishing only one signal 
is 0.77, the accuracy based on statistical analysis with 20 
signals is over 99% (refer to SI3 in supplementary information). 
An F-measure of 0.77 is sufficiently high for a single signal. 
Machine learning can learn the average current as well as the 
current profile of statistical training data. High-precision 
discrimination of two nucleobases was achieved using a single 
signal. We succeeded in building a classifier that can 
distinguish between N2-Et-dG and dG.

FIG.3 (a) Schematic flow of machine learning classification of 
N2-Et-dG and dG single-pulse signals. (b) Prediction results 
between N2-Et-dG and dG single-molecule signals. The matrix 
represents the average ratio and standard deviation of the 10-
times classification.

To verify the robustness of the learned classifier and 
examine the applicability of the quantification of the mixture 
of N2-Et-dG and dG, we carried out single-molecule 
measurements of the mixtures of N2-Et-dG and dG. The 
concentration ratios of the mixed solutions were 1:3 and 3:1. 
As shown in Fig. 4a, the signals of the pure solutions were 
learned to build the classifier. Then, the signals of the mixture 
were classified as test data by the learned classifier. The 
concentration ratio of the mixed solution was determined 
from the ratio of the number of signals of the predicted class 
through machine learning. The obtained results are shown in 
Fig. 4b. Note that 70% of the signals from N2-Et-dG:dG = 3:1 
mixture were classified as N2-Et-dG, and 80% of the signals 
from N2-Et-dG:dG = 1:3 mixture were classified as dG. The 
concentration ratios predicted by machine learning were N2-
Et-dG:dG = 2.7:1 and 1:4.0 for N2-Et-dG:dG = 3:1 and 1:3 
solutions, respectively. The quantification of N2-Et-dG in the 
presence of dG was confirmed by our SMQS method. After the 
DNA is extracted and monomerized, the ratio of N2-Et-dG to 
dG in the DNA is examined by this method. This will allow the 
diagnosis of alcohol-associated cancers.

 

FIG.4 (a) Schematic flow of determination of mixing ratio using 
machine learning classification. The ML classifier was trained 
with pulse signals of N2-Et-dG and dG. Signals obtained from 
mixture measurement were classified with the learned 
classifier. The concentration ratio of mixtures of N2-Et-dG and 
dG were 1 μM:3 μM and 3 μM:1 μM, respectively. The signals 
denote the signals after noise removal with the PUC method. 
(b) The ML classification results of N2-Et-dG and dG mixtures. 
The number of test signals for the signals obtained from the 
N2-Et-dG :dG = 3:1 mixture and N2-Et-dG: dG = 1:3 mixture 
were 123 and 178, respectively.

In conclusion, single-molecule measurements successfully 
detected the signals for dG and N2-Et-dG. The current 
histogram of N2-Et-dG showed a structure with higher 
conductance than dG. The DFT calculations revealed that the 
conductance of N2-Et-dG increases as the gap between the 
HOMO level and Au Fermi level decreases. Machine learning 
classified the signals obtained from each solution with an F-
measure of 0.77. The concentration ratios of dG to N2-Et-dG 
were also determined using the machine learning-based 
method. The quantification of N2-Et-dG under the coexistence 
of dG was confirmed using the SMQS and machine learning 
methods.

Our N2-Et-dG detection method is promising for cancer 
diagnosis. Moreover, it can be used to investigate sequences 
damaged due to acetaldehyde. This study shows that N2-Et-dG 
can be distinguished from dG by using SMQS. The 
development of direct analysis using machine learning for the 
DNA sequence provides sequence information of the DNA 
damage. This work will contribute to the development of 
practical DNA damage markers and the investigation of 
carcinogenic mechanisms affected by aldehyde-induced DNA 
damage.
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