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We present a generic way to hybridize physical and data-
driven methods for predicting physicochemical properties.
The approach ‘distills’ the physical method’s predictions
into a prior model and combines it with sparse experimental
data using Bayesian inference. We apply the new approach
to predict activity coefficients at infinite dilution and obtain
significant improvements compared to the data-driven and
physical baselines and established ensemble methods from
the machine learning literature.

Prediction methods for physicochemical properties of mixtures
are indispensable for process design and optimization in chem-
ical engineering since the experimental elucidation of physico-
chemical properties is usually expensive and tedious. The most
widely used approaches are group-contribution methods (GCMs)
that model the properties of pure components or mixtures based
on the structural groups that build up the components.1–6 GCMs
can also be used for predicting properties of mixtures of which
the composition is (partially) unknown.7–9 The most successful
GCMs for describing the properties of mixtures are the differ-
ent versions of UNIFAC10–12 that model the excess Gibbs en-
ergy based on binary group-interaction parameters. The group-
contribution concept dramatically reduces the number of model
parameters and the amount of data needed for fitting GCMs.
However, even after decades of further development, the prac-
tical applicability of UNIFAC is still restricted, mainly due to nec-
essary group-interaction parameters that have not been fitted
yet. Another successful approach is the quantum chemistry-based
COSMO-RS13, which describes the properties of mixtures refer-
ring to the polarization charge densities of the constituent compo-
nents, and which depends only on a small number of adjustable
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parameters.14 However, expensive COSMO calculations are re-
quired for each component of interest.
In previous work15, we have introduced a novel, purely data-
driven approach to predict physicochemical properties of mix-
tures. Specifically, we considered activity coefficients at infinite
dilution γ∞

i j in binary mixtures at a constant temperature, but this
approach generalizes to other properties. The data for γ∞

i j can
be represented as a matrix whose rows and columns correspond
to solutes i and solvents j, respectively. For γ∞

i j at 298.15± 1 K,
which we studied in our previous work, the matrix containing the
available experimental data from one of the largest databases for
physicochemical properties, the Dortmund Data Bank16, is very
sparse, cf. Figure S.1 (ESI†). The data set covers 240 solutes and
250 solvents, but only 4,094 entries are observed. The predic-
tion of the unobserved entries, i.e., the prediction of γ∞

i j for not
yet studied mixtures, can be framed as a matrix completion prob-
lem.17–20

The basis of our previously introduced approach15 is a proba-
bilistic matrix completion method (MCM). We modeled lnγ∞

i j (the
logarithm of γ∞

i j is used for scaling purposes) as a stochastic func-
tion of initially unknown features of the solutes i and solvents j,
specifically as the dot product of two vectors:

lnγ
∞
i j = ui · v j + εi j (1)

where ui and v j are learned feature vectors for solute i and sol-
vent j, respectively, and the random variable εi j captures both
measurement noise and inaccuracies of the model. The feature
vectors of all considered solutes and solvents can be aggregated
to two feature matrices U and V , respectively. Rather than se-
lecting features based on physical considerations, the deployed
data-driven approach infers useful features from available exper-
imental data on lnγ∞

i j alone, using the laws of probability theory
and (approximate) Bayesian inference.21–23 The inferred features
can then be used to predict lnγ∞

i j for mixtures for which no exper-
imental data are available, cf. Eq. (1).
While the purely data-driven approach15 already outperforms the
state-of-the-art physical method for predicting activity coefficients
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Fig. 1 Scheme of the proposed whisky method. We first fit an MCM to
UNIFAC predictions for lnγ∞

i j (distillation, purple). We then use the fitted
parameters from the distillation step to construct informative priors for
the component feature matrices U and V and fit the model to experimen-
tal data on lnγ∞

i j using these priors (maturation, green). lnγUNIFAC and
lnγexp denote the available data sets from UNIFAC 24 and experiments 16,
respectively.

modified UNIFAC (Dortmund)12,24 (to which we simply refer as
UNIFAC in the following) in terms of average predictive perfor-
mance, it leaves substantial room for improvement as it ignores
available physical knowledge about the mixtures. In thermody-
namics, such knowledge is often abundant, e.g., in pure compo-
nent properties or physical laws and models. In this paper, we
therefore propose a hybrid physics-based/data-driven prediction
method that combines the best of both worlds. We show that the
framework of probabilistic models and Bayesian inference pro-
vides a principled way to incorporate scientific domain knowl-
edge into machine learning (ML) models by specifying a so-called
prior probability distribution over model parameters. Specifically,
we propose to use model distillation25,26 to extract physical do-
main knowledge from UNIFAC in a format that can be used to
construct an informative prior distribution for the MCM.
In the following, we describe the details of our proposed hybrid
physics-based/data-driven approach. Once again, we consider
predicting lnγ∞

i j in binary mixtures at 298.15±1 K as a prime ex-
ample and evaluate the predictive performance on the same data
set as in our previous work15. As physical base method, we use
the current publicly available version of UNIFAC12,24. As data-
driven base method, we adopt the Bayesian MCM from our previ-
ous work15. We compare the performance of our hybrid method
to the performances of the constituent base methods as well as
two established ML ensemble methods.
Figure 1 summarizes our proposed hybrid method, which we call

whisky. Just like the manufacturing of whisky, our whisky method
involves a distillation step, in which we distill knowledge from an
existing model into a prior distribution using an approach known
as model distillation in the ML literature25,26, and a maturation
step, in which we allow the prior to mature by combining it with
experimental data. Both steps are based on a probabilistic MCM
similar to our previous work15 to fit model parameters (i.e., fea-
ture matrices U and V ) to a data set of lnγ∞

i j . The difference be-
tween the distillation and maturation step is that they operate on
different data sets. The distillation step (purple part of Figure 1)
fits an MCM to all predictions for lnγ∞

i j at 298.15 K that can be ob-
tained with UNIFAC, denoted as lnγUNIFAC. Thus, the distillation

step extracts the physical knowledge encoded in UNIFAC, which
is implicitly exposed via its predictions for lnγ∞

i j , into parameters
of an MCM. By contrast, the maturation step (green part of Fig-
ure 1) builds upon the results of the distillation step and refines
the parameters by fitting an MCM to the available experimental
data, denoted as lnγexp.
The two different data sets lnγUNIFAC and lnγexp are illustrated in
the two blue/red matrices in Figure 1. Here, rows and columns
correspond to solutes and solvents, respectively, and blue or red
entries indicate binary mixtures for which data points are avail-
able or absent, respectively. As can be seen, UNIFAC predictions
are available for a lot more mixtures than experimental obser-
vations (lnγUNIFAC has more blue entries than lnγexp), meaning
that the distillation step trains on a larger data set. While the
experimental data set lnγexp is more sparse, it is considered more
reliable than the UNIFAC predictions. Larger depictions of the
two matrices are given in Figures S.1 and S.3 (ESI†).
The main novelty of our proposed whisky method lies in the way
how it combines physical information with experimental data. We
realize the interface between distillation and maturation (purple
and green parts of Figure 1) by specifying an informative prior
distribution over model parameters. To understand the role of
the prior, it is instructive to recall the principles of Bayesian infer-
ence on which our MCM builds. Bayesian inference describes the
relationship between three probability distributions, called prior,
likelihood, and posterior. The prior is a probability distribution
over model parameters that encodes a-priori knowledge, i.e., in-
formation on the model parameters before the model is fitted to
the training data. In a purely data-driven approach, no a-priori
information is used, and the prior is typically a very broad (i.e.,
noninformative) probability distribution. The likelihood encodes
how model parameters manifest themselves in physically observ-
able quantities, i.e., the data to which the model is trained. To-
gether, prior and likelihood define a probabilistic model over ob-
servable quantities, such as lnγ∞

i j here. Bayesian inference takes
such a probabilistic model and compares its predictions to actual
observed data. The task of Bayesian inference is to find the so-
called posterior probability distribution over model parameters
that are consistent with the observed quantities and the a-priori
knowledge.
This framework of probabilistic modeling and Bayesian inference
provides a principled way of hybridizing different methods using
probability distributions as interfaces. Our approach, illustrated
in Figure 1, follows the principle that ‘one man’s ceiling is another
man’s floor’. In analogy to this proverb, the posterior of the dis-
tillation step, which encodes knowledge after seeing the UNIFAC
predictions, can be turned into a prior of the maturation step,
which encodes knowledge before seeing the experimental data.
Specifically, we construct a physically informed prior for the mat-
uration step by taking the posterior means µU and µV from the
distillation step, and we form Gaussian prior distributions with a
rather small standard deviation of σ = 0.5 around these means.
Thus, this choice of prior encodes physical knowledge from the
UNIFAC model. At the same time, the nonzero prior standard de-
viation allows the maturation step to overrule prior knowledge if
the experimental data provide enough evidence to justify this.
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For some of the considered mixture components (eight solutes
and 41 solvents), UNIFAC is not applicable. Since the distilla-
tion step does not provide any information about these compo-
nents, we use a broader (i.e., less informative) Gaussian prior
here in the maturation step, with a standard deviation of σ = 3
centered around zero. For the task of (approximate) Bayesian in-
ference, we use the Stan framework27 and resort to variational
inference22,23,28. More details on the proposed whisky approach,
including the source codes to run the models in Stan, are given in
the ESI†.
In Figure 2 a), we compare the overall performance of our pro-
posed whisky method for predicting lnγ∞

i j with the performances
of the base methods UNIFAC24 and MCM15 (without the informa-
tive prior), and with two alternative hybrid approaches, bootstrap
aggregation (aka bagging)29 and boosting30,31. We compare
mean absolute deviation (MAD) and mean square error (MSE).
Bagging is realized here by simply averaging the predictions from
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Fig. 2 Mean square error (MSE) and mean absolute deviation (MAD)
for the prediction of lnγ∞

i j using the individual base methods UNIFAC and
data-driven MCM, the proposed hybrid whisky method, and the hybrid
baselines bagging and boosting. Lower is better for both metrics. Error
bars show the standard errors of the means. a) Considering all applicable
data points. b) Ignoring the worst eight outliers of UNIFAC.

UNIFAC and the data-driven MCM for each data point; boosting

is implemented by training an MCM to the matrix of the residu-
als of UNIFAC, i.e., to the differences between the UNIFAC pre-
diction for lnγ∞

i j and the respective experimental value for each
data point. Bagging and boosting are described in detail in the
ESI†. To simulate predictive performances, the predictions with
MCM, whisky, and boosting (and the MCM contribution of bag-
ging) are obtained by using leave-one-out cross-validation32, i.e.,
by training the models to all experimental data points except for
one, which is then used as a test data point and predicted. The
training set of UNIFAC is not disclosed; hence, no statements on
whether the UNIFAC results are obtained by regression or predic-
tion can be made here.
Figure 2 a) demonstrates that the proposed whisky method out-
performs all other methods in both MAD and MSE. The poor
scores of UNIFAC, bagging, and boosting can mainly be attributed
to only a handful of data points that are extremely poorly pre-
dicted by UNIFAC as shown in Figure S.8 (ESI†). However, even
if we, as an example, ignore the worst eight outliers of UNIFAC
(marked in Figure S.8) for the evaluation, the proposed whisky
method still performs significantly better than all baselines, cf.
Figure 2 b).
If the worst eight UNIFAC outliers are ignored (Figure 2 b), the re-
sults show that the hybrid baselines – bagging and boosting – also
improve the predictions of the base methods UNIFAC and MCM:
bagging and boosting have smaller MAD and MSE values than the
base methods. Bagging is widely used if the available base meth-
ods for a specific problem tend to overfit, i.e., if they fit the train-
ing data but do not generalize well to unobserved data.32 By con-
trast, boosting is commonly applied in ML to tackle the opposite
problem of underfitting, which arises if the base methods are not
expressible enough for a specific problem.30,31 The observation
that our proposed whisky method performs better than both bag-
ging and boosting indicates that the base methods UNIFAC and
data-driven MCM tend to overfit to parts of the data set. At the
same time, they also seem to underfit on other combinations, so
that neither bagging nor boosting is universally applicable. This
may in part be explained by the fact that the experimental data
set is very imbalanced: while we have data for at least 86 differ-
ent binary mixtures for each of the 5% most common solutes, we
only have six or fewer data points for each of the 50% most un-
common solutes (see also Figure S.1, ESI†). The proposed whisky
approach seems more robust to such an imbalanced data set than
the other hybrid approaches.
In Figure 3, we compare the predictions of the proposed whisky
method with those of the data-driven MCM and UNIFAC in a par-
ity plot. Points on the diagonal line would correspond to per-
fect predictions. The whisky method reliably reduces outliers
of both base methods. By contrast, both bagging and boosting,
shown in Figure S.7 (ESI†), only partially compensate for out-
liers of the data-driven MCM but severely suffer from outliers of
UNIFAC. Furthermore, the whisky method yields the highest co-
efficient of determination R2 (with R2 = 1 being optimal) of all
compared methods, irrespective of whether the worst eight UNI-
FAC outliers (OL) are considered or not (see table insets).
Another major advantage of the proposed whisky method is its

broader applicability compared to the other hybrid approaches.
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Fig. 3 Parity plot of the predictions (pred) for lnγ∞
i j with the proposed

whisky method over the corresponding experimental values (exp) and
comparison to UNIFAC and data-driven MCM. Coefficients of determi-
nation R2 (higher is better, 1 implies perfect correlation) are given, both
including and excluding the worst eight UNIFAC outliers (OL).

For a fair comparison, Figures 2 and 3 consider only data points
that can be predicted with UNIFAC, which is also a prerequisite
for applying bagging and boosting. By contrast, the whisky ap-
proach (and the purely data-driven MCM) can be used to pre-
dict lnγ∞

i j for any binary mixture of the considered solutes and
solvents. In Figure S.9 (ESI†), we compare the performance of
the whisky approach with the data-driven MCM for predicting all
available experimental data points. Again, we observe a signifi-
cant improvement with the proposed whisky method.
In conclusion, we introduce a novel approach to hybridize physi-
cal and data-driven prediction methods for physicochemical prop-
erties. In this paper, we focused on predicting activity coefficients
at infinite dilution, but the approach can directly be transferred
to other properties. The proposed method is termed whisky, re-
flecting its similarities with the manufacturing of whisky as it
combines model distillation with maturation. As a Bayesian ap-
proach, it incorporates physical knowledge in the form of a prior
belief, and allows to combine it with empirical data evidence in
a theoretically well-motivated and convenient way. The proposed
method outperforms all considered baselines in predicting activ-
ity coefficients at infinite dilution in binary mixtures: the physi-
cal gold standard modified UNIFAC (Dortmund)12,24, the purely
data-driven MCM from our previous work15, and two established
machine learning ensemble methods, bagging and boosting. We
further show that the whisky method is more robust to outliers
in the base methods and has a broader applicability than the hy-
brid baselines. We demonstrate that probabilistic machine learn-
ing is perfectly suited for incorporating physical knowledge (that
is often abundant in thermodynamics) in powerful data-driven
models. We emphasize the generic nature of the proposed whisky
approach that opens perspectives to a new generation of hybrid
prediction methods for physicochemical properties beyond purely

data-driven or purely physical approaches. The transfer to further
mixture properties and other physical and data-driven base meth-
ods is straightforward. We expect additional improvements if ex-
plicit physical information is incorporated and exciting insights
by elucidating relations between the learned component features
and physical component descriptors.
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lnγpred

Experimental
data matrix

(sparse but precise)

Model-based 
prediction matrix

(dense but imprecise)

Hybrid 
prediction matrix 

(dense and precise)

lnγexplnγUNIFAC

We present a generic, highly effective approach to combine physical and data-driven

prediction methods for physicochemical properties based on Bayesian machine learning and

model distillation.
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