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Ribosomal incorporation of cyclic -amino acids into peptides 
using in vitro translation 
Joongoo Leea, Rafael Torresa, Do Soon Kima, Michelle Byromb, Andrew D. Ellingtonb, Michael C. 
Jewetta 

We demonstrate in vitro incorporation of cyclic -amino acids into 
peptides by the ribosome through genetic code reprogramming. 
Further, we show that incorporation efficiency can be increased 
through the addition of elongation factor P. 

Expanding nature’s repertoire of ribosomal monomers could 
yield new classes of enzymes, medicines, and materials with 
diverse genetically encoded chemistry1-5. Already, efforts to 
expand the genetic code have shown that natural and 
engineered translation systems are capable of selectively 
incorporating a wide range of non-canonical monomers into 
polypeptides, especially at the N-terminus6. For example, 
genetic code reprogramming with the flexizyme system7-9 (Fx, a 
transfer RNA(tRNA)-synthetase-like ribozyme that charges 
activated chemical substrates onto tRNAs) has shown 
incorporation of -amino acids with non-canonical sidechains10, 
-amino acids11-13, N-modified amino acids14, hydroxyacids15, 16, 
non-amino carboxylic acids9, 17-19, thioacids20, aliphatics9, 
malonyl substrates19, long-carbon chain amino acids (e.g., -, 
etc.)21,  and even foldamers22. These achievements make 
possible novel peptide drugs23-25 and new classes of sequence-
defined polymeric materials, such as aramids9, 19, 26.

While these works have deepened our understanding of 
molecular translation, they have also inspired continued 
studies. From a fundamental perspective, probing the limits of 
the natural translation apparatus will help determine the 
constraints on monomer size, shape, and chemistry that can be 
polymerized by the ribosome. From an application perspective, 
having access to an even broader repertoire of monomers for 
ribosome-mediated polymerization holds promise to further 
increase the number of bio-based products available through 
biomanufacturing.

Here, we set out to investigate the Fx-catalyzed tRNA 
charging of cyclic -amino acids (cAAs) and demonstrate 
subsequent in vitro incorporation of such amino acid derivatives 
into peptides by the ribosome. cAAs were selected because, to 
our knowledge, they have not yet been incorporated into a 
growing polypeptide chain by the ribosome. Moreover, their 
rigid structure should produce different helix geometries and 
peptide turn characteristics that will help shed light on the 
limitations and monomer compatibility of the natural 
translation machinery. We specifically test three cyclic -2,3-
amino acid derivatives (2-aminocyclobutanecarboxylic acid, 2-
aminocyclopentanecarboxylic acid, and 2-aminocylcohexane 
carboxylic acid) and their stereoisomers (Fig. 1). We first 
confirm that tRNA charging of cAAs is possible. Then, we assess 
incorporation into either the N-terminus or C-terminus of a 
peptide using an in vitro ribosome-mediated protein synthesis 
platform (PURExpressTM). Additionally, we investigate the effect 
of Elongation Factor P (EF-P), a bacterial protein translation 
factor, on C-terminal incorporation of different cAA 
stereoisomers into a peptide in our reactions.

 The goal of this work was to assess ribosomal synthesis of 
peptides with site-specifically introduced cAAs. A key question 
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Fig. 1 Expanding the chemical substrate scope of ribosome-mediated polymerization 
to cyclic -amino acid substrates. We explore the substrate specificity of the natural 
translation machinery for cyclic -amino acid (cAA) substrates using flexizyme-
catalyzed acylation and ribosome-mediated incorporation. Ten non-canonical cAAs 
comprising a variety of bulky cyclic structures are investigated.
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was to explore the possibility of incorporating such monomers 
at the C-terminus of a peptide. Before starting our investigation 
of cAAs, we compared the translation machinery’s 
compatibility of non-cyclic -amino acids to that of -amino 
acids in C-terminus incorporation. Two cyanomethylester (CME) 
substrates derived from - and -puromycin (Pu) containing a 
methoxybenzyl group on the -carbon (Fig. 2a) were prepared. 
We intentionally avoided using a naturally occurring functional 
group (hence the methoxybenzyl group) in the comparison to 
eliminate any bias the translation machinery may have towards 
a naturally occurring amino acid (both carbon chain and 
functional group), allowing more direct comparison of the 
monomer backbones. 

We used a short tRNA mimic (22nt), called the microhelix 
tRNA (mihx), to determine and optimize the yields of the Fx-
mediated charging of the - and -Pu analogues7, 8. Yields were 
determined using an acidic polyacrylamide gel (Fig. S1). We 
found that both monomers were charged, with efficiencies of 
31% and 87%, for the - and - substrates, respectively. 

Next, we investigated whether the Fx substrates charged to 
tRNAs were accepted by the natural protein translation 
machinery. Given previous work with -amino acids 11, 13, we 
expected this to occur. We performed Fx-mediated acylation of 
tRNAPro1E2(GGU) under the same reaction conditions obtained 
from the mihx experiment. Unreacted monomers were 
separated from tRNAs using ethanol precipitation27 and the 
resulting tRNA fraction, which includes the substrate-charged 
tRNA (-Pu:tRNA vs. -Pu:tRNA), was added to the in vitro 
ribosome-mediated incorporation reaction (Fig. 2a). To 
normalize for differences in acylation yields, 2.8 times higher 
amounts of the -Pu:tRNA ethanol precipitation sample was 
added to the final reaction (Fig. S1d). For ribosome-catalyzed 
incorporation, we used the PURExpressTM system (ΔtRNA, Δaa, 
NEB), which contains a minimal set of components required for 
protein translation. We supplemented into the reaction only 
the 9 amino acids required to express a Streptavidin tag (amino 
acid sequence M+ WSHPQFEK) with the puromycin-derivative 

substrates incorporated downstream of the tag at the ACC 
codon on the template messenger RNA (mRNA). After 
incubation, we isolated the resulting peptide using affinity-
based purification and analyzed the peptide by mass 
spectrometry using MALDI. As expected, the peak 
corresponding to the theoretical mass of the peptide containing 
-puromycin was higher than the peptide containing -
puromycin (Fig. 2b). It was ~14 times higher, indicating the 
natural translation system can incorporate monomers with -
amino acid backbones at higher efficiencies compared to -
amino acid backbones, which requires an engineered 
ribosome12, 28, 29 for efficient incorporation. 

Next, we sought to examine the natural ribosome’s 
tolerance for different levels of steric bulkiness around the 
amine group. To test this, we designed three cAAs containing 
a cyclobutyl, cyclopentyl, and cyclohexyl backbone with 
different stereoisomeric characteristics (Fig. 1). In a previous 
study26, we synthesized two cyclopropyl ester substrates for Fx-
mediated acylation using 2-aminocylcopropanecarboxylic acid 
(3-cAA), however, the substrates were not able to be charged 
to tRNA by Fx presumably due to -characteristics in cyclic chain 
driving lactam formation. In this study, we synthesized 10 
additional dinitrobenzyl (DNB) ester substrates using cyclobutyl 
-amino acids (4-cAA) with two isomers (cis and trans), and 
cyclopentyl -amino acids (5-cAA) and cyclohexyl -amino 
acids (6-cAA) with 4 different stereoisomeric configurations 
(1R,2R, 1R,2S, 1S,2R, and 1S,2S) on the  and  carbon, 
respectively. Fx-mediated acylation using mihx (Fig. S1a-c) was 
carried out and the best reaction conditions giving high 
acylation yields were determined. The acylation yields for 4-
cAA were observed to be low (0-9%, Fig. 3), presumably due 
to the -characteristics of the amine on the substrates, which 
can efficiently form a lactam with a 6-membered ring (see Fig. 
S1e for a proposed mechanism). This result is consistent with 

Fig. 2 Ribosomal incorporation of - and -amino acids. The peptides were prepared in 
the PURExpressTM system using Fx-mediated tRNAPro1E2(GGU), purified via the Strep tag 
(WSHPQFEK), and characterized by MALDI. The peptide containing -Pu was found 14 
times higher than the peptide with -Pu at the C-terminus when the same amount of 
tRNAPro1E2(GGU) charged with - and -Pu was added to the PURE reaction, presumably 
because of the preference for L--amino acids of the natural translational machinery. 
The observed masses for the peptide with -Pu incorporated at the C-terminus are 1481 
[M+H]+, 1503 [M+Na]+, 1525 [M-H+2Na]+, 1547 [M-2H+3Na]+ Da and the peptides with 
-Pu are 1496 [M+H]+, 1518 [M+Na]+ Da, respectively. Data are representative of three 
independent experiments.
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Fig. 3 The yield (%) of flexizyme-mediated acylation for the 10 cAAs. The acylation 
reactions were performed using 6 different conditions (2 different pH (7.5 and 8.8) and 
3 different Fx (e, d, aFx)) to find an optimized reaction condition. 4-cAAs (1a-1b) were 
charged inefficiently presumably because of their propensity to form a cyclic product, 
lactam, while 5-cAAs (2a-2d) and 6-cAAs (3a-3d) were charged in high yield (40-60 %, 
n=3; mean values, where n is the number of independent experiments. See Fig. S1). 
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our previous observation, where only 8% acylation onto mihx 
was  observed for 5-aminopentanoic acid26. In contrast, the 
other eight 5- and 6-cAA substrates showed high acylation 
yield (~30 to 67 %) as the formation of lactam via the 
intramolecular nucleophilic attack by the primary amine is 
significantly slowed. Interestingly, the yields of acylation varied 
by the configuration of the substrates even under the same 
reaction condition, indicating stereoisomers have different 
interactions with tRNA and the active site of Fx. 

Next, we acylated the 4, 5, and 6-cAAs onto tRNAfMet, 
which decodes the AUG codon on mRNA, allowing 
incorporation of substrates at the N-terminus. Following 
acylation, purified tRNAs were for ribosome-mediated 
incorporation in the PURExpressTM translation reaction and the 
resulting peptides were analyzed by mass spectrometry as 
described above. A peak corresponding to the theoretical mass 
of peptides containing 4-cAAs was not observed, most likely 
due to substrate limitations arising from low acylation yields. 
However, we found that 5- and 6-cAAs that could be charged 
onto tRNAfMet(CAU) were successfully incorporated into a 
peptide at the N-terminus (Fig. S2 and S3), which is in good 
agreement with the previous observation that the natural 
translational machinery is flexible towards extended backbone 
monomers for N-terminal incorporation4, 6, 9, 22, 23, 30. Full 
incorporation of the cAAs was not observed and semi-
quantitative analysis suggests a range of incorporation 
efficiencies between 7-64% (Fig. S2 and S3).  To test C-terminal 
incorporation, we repeated the experiment described above 
with 5- and 6-cAAs acylated onto tRNAPro1E2(GGU) decoding a 
Thr (ACC) codon. Although the mass spectrometry data 
revealed limited yields of the desired product, all 5-cAAs were 
found to be incorporated (Fig. 4a, peaks marked as red and 
orange circles), while corresponding peaks for (1S, 2R)-6-cAA 
were not found (Fig. 4c). These results (Fig. S4 and S5) suggest 
that the natural ribosome is limited in elongation with 
substrates featuring modified backbones, where not only the 
position of the primary amine but the overall steric bulkiness 
around the amine may be relevant. 

To address poor monomer compatibility with the translation 
apparatus, recent works have demonstrated the importance of 

optimizing translation factor concentrations and in particular 
EF-P31. EF-P is a bacterial translation factor that accelerates 
peptide bond formation between consecutive prolines, and has 
been shown to help alleviate ribosome stalling. In the case of β-
amino acids, the use of engineered β-aminoacyl-tRNAs based 
on tRNAPro in which the sequence of the T-stem and D-arm 
motifs, interacting with EF-Tu and EF-P, respectively, have been 
optimized increases incorporation efficiency31. 

Based on previous work, we hypothesized that EF-P would 
similarly enable higher incorporation of the cAAs that are 
charged to tRNAPro1E2 bearing an engineered D-arm and T-
stem13. To test this hypothesis, active EF-P was prepared by co-
expressing three accessory genes, YjeA, YjeK, YfcM in E. coli as 
previously described32 (see SI for detailed preparation). Purified 
EF-P (10 M final concentration) was then supplemented into 
the PURE system containing the substrates charged to 
tRNAPro1E2(GGU). In the resulting MALDI spectra, we discovered 
peaks corresponding to the theoretical mass of a peptide 
containing all tested 5- and 6-cAAs with significantly enhanced 
intensity (Fig. 4b,d, and Fig. S6) compared to the experiments 
performed without EF-P (Fig. 4a,c, and Fig. S6). 

In summary, our work expands the range of backbone-
extended amino acid substrates for molecular translation. 
Specifically, we showed that a diverse repertoire of 10 cAAs 
amino acids could be acylated to tRNA by the Fx system and that 
these acylated tRNA-monomers could be used in ribosome-
mediated polymerization using the wild type ribosome. We 
observed different levels of incorporation efficiency based on 
stereoisomeric properties and demonstrated that the 
combination of an engineered tRNA and additional EF-P 
improves cAA incorporation. Our observations suggest 
opportunities for ribosome engineering33.

Taken together, our results unlock the use of cAAs for 
molecular translation. As such, we expect this work to motivate 
new directions in repurposing the translation machinery for 
monomers bearing such non-canonical structures. Ribosomally 
synthesized polymers containing site-specifically introduced 
cAAs could lead to novel peptide drugs and peptide-based 
polymers that require programmed stereochemistry.

Fig. 4. Incorporation of bulky cAAs in the presence of EF-P. 10 M (in final) of EF-P in the in vitro protein translation system yields higher intensity of peptide containing a 5- and 
6-cAA at the C-terminus. The red, orange, and yellow circles represent the mass of peptide containing a 5-cAA at the C-terminus, corresponding to [M+H]+ = 1415, [M+Na]+ = 
1437, and [M-H+2Na]+ = 1459, respectively. The green, blue, and purple represent the peptide containing a 6-cAA with a mass of [M+H]+ = 1429, [M+Na]+ = 1451, [M-H+2Na]+ 
=1473, respectively. See SI for full spectrum. The grey bar represents the peptide with a sequence of fMWSHPQFEKST, where fM is formylated Met.
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