ChemComm

Pressure-induced Dehydrogenative Coupling of Methane to Ethane by Platinum-loaded Gallium Oxide Photocatalyst

Journal:	ChemComm
Manuscript ID	CC-COM-03-2020-001730.R1
Article Type:	Communication

COMMUNICATION

Pressure-induced Dehydrogenative Coupling of Methane to Ethane by Platinum-loaded Gallium Oxide Photocatalyst

Fumiaki Amano,*ab Chiho Akamoto, a Mizuki Ishimaru, a Satoshi Inagaki^{b,c} and Hisao Yoshida^{d,e}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

 Pt/Ga_2O_3 exhibited high activity for dehydrogenative coupling of methane into ethane ($2CH_4 \rightarrow C_2H_6 + H_2$) in a fixed-bed flow reactor at 25 °C under 254-nm UV irradiation. The C_2H_6 formation was negligible at CH_4 pressure of 10 kPa, but it was linearly increased with an increase in the pressure to 300 kPa.

CH₄ is an abundant carbon source from natural gas including shale gas, methane hydrate, and renewable biogas.¹ The production of liquid fuels and chemicals from petroleum may be replaced by CH₄.^{2, 3} Therefore, catalytic conversion of CH₄ directly into higher hydrocarbons (C₂₊) is a crucial technology to cope with the concerns of energy security. However, controlling the product selectivity in the direct conversion is a big challenge in catalysis science.⁴⁻⁶ The most severe issue is the sequential reaction of the desired products, which are more reactive than CH₄, at the high temperatures required to activate the strong C–H bonds (439 kJ mol⁻¹).⁷ In this regard, the activation of CH₄ at low temperatures, which may improve the selectivity, is the holy grail of sustainable chemistry.^{1-3, 6, 8-12}

Photocatalytic activation of CH₄ proceeds at room temperature despite the endergonic reactions ($\Delta_r G > 0$).¹⁻³ Many heterogeneous photocatalysts have been investigated for the conversion of CH₄ to yield C₂H₆, which called a non-oxidative coupling of methane (NOCM), 2CH₄ \rightarrow C₂H₆ + H₂, $\Delta_r G = 68.6$ kJ mol⁻¹ at 25 °C.¹³⁻²³ The photocatalytic NOCM is induced by highly dispersed metal oxides supported on SiO₂ and zeolites under UV irradiation.¹³⁻²¹ Semiconductor photocatalysts are also investigated in the absence of oxidant for NOCM.^{19, 22} The issue in NOCM is the low quantum efficiency owing to the slow kinetics. Pt-loaded TiO₂–SiO₂:Ga (0.2 g) showed a CH₄ conversion rate of 0.70 µmol h⁻¹ with 90% selectivity of C₂H₆, but the apparent quantum efficiency (AQE) was very low (1×10⁻⁴ % at 350-nm UV irradiation).²³ The CH₄ conversion rate over β -Ga₂O₃ (0.2 g) was 0.05 µmol h⁻¹ for NOCM, and the AQE was about 0.01% at wavelengths 220–270 nm.¹⁹

In this study, we investigated the effect of CH₄ pressure, $P(CH_4)$ on the photocatalytic conversion of CH₄ in the presence of H₂O vapor. We expected that the high concentration of methyl radical (•CH₃) promotes the carbon-carbon bond formation to produce C₂H₆. In order to increase the collision frequency of CH₄ on the photocatalyst surface, $P(CH_4)$ was increased from 10 kPa to 300 kPa. First, we screened transition metal oxide photocatalysts loaded with a small amount of Pt cocatalyst, which is the best catalyst minimizing the overpotential necessary to drive H₂ evolution reaction.²⁴ Second, we focused on the highly active Pt/Ga₂O₃ to prove the concept that high $P(CH_4)$ induce the direct production of C₂H₆.

We performed photocatalytic conversion of CH₄ with H₂O vapor using a fixed-bed flow-type reactor under UV irradiation at 25 °C (Fig. S1, ESI+). Hexachloroplatinate(IV) (H₂PtCl₆, 0.1 wt% as Pt) was loaded on each metal oxide powder by an incipient-wetness impregnation method. The Pt precursor-loaded powder (50 mg) was coated on a glass substrate using water and dried at room temperature. The Pt precursor is quickly reduced to Pt⁰ during the initial period of the photocatalytic reaction promoting H₂ evolution.²⁵ The light source was a 40-W low-pressure mercury lamp (wavelength 254 nm, light intensity 33 or 15 mW cm⁻², irradiation area 25 cm²). The gas mixture of CH₄/Ar/H₂O was continuously supplied to the reactor (volume 5 × 5 × 0.025 cm³) at a flow rate of 20 mL min⁻¹. The products in the flow system were analyzed by gas chromatography (GC).

We screened 12 oxide powders for photocatalytic H_2 evolution under the stream of 10-kPa CH_4 and 3-kPa H_2O at 1 atm. The physical properties of the oxides are reported in ESI+

^{a.} Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.

^{b.} Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

^c Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

^{d.} Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan.

^{e.} Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8520, Japan.

⁺Electronic Supplementary Information (ESI) available: Experimental details, characterization of the oxide samples, SEM and TEM images of Ga_2O_3 , the effect of $P(CH_4)$ on the time courses of product formation rate, TG–DTA, and ESR study. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Journal Name

(Tables S1, S2, Fig. S2–S5). Figure 1 shows the H₂ evolution rate, $r(H_2)$, with 0.1wt% Pt-loaded oxide at 5-min and 65-min photoreaction. Pt/TiO₂ samples (P 25 and ST-01) and Pt/Ta₂O₅ exhibited moderate photocatalytic activity. Pt/ZrO₂ was deactivated in 60 min during the photoreaction. Pt/Ga₂O₃ exhibited the highest activity under 254-nm UV irradiation.²⁶⁻²⁹ Since the bandgap of β -Ga₂O₃ was 4.6 eV, the photoexcitation required UV irradiation of wavelengths < 270 nm. The loading of a small amount of Pt cocatalyst significantly enhanced the $r(H_2)$ of Ga₂O₃ (Fig. S6, ESI+).³⁰ Not only H₂PtCl₆ but also tetraammineplatinum(II) chloride (Pt(NH₃)₄Cl₂) could be used for the precursor of Pt cocatalyst (Fig. S7, ESI+). The stability and durability of Pt/Ga₂O₃ were confirmed in a long-term test and repeated reactions (Fig. S8 and S9, ESI+).

Figure 1. H₂ evolution rate from CH₄ and H₂O with 0.1 wt% Pt-loaded metal oxides under UV light irradiation (254 nm, 33 mW cm⁻²) for 5 min and 65 min. The metal oxides are Y₂O₃, TiO₂(P 25)^o, TiO₂(ST-01)^b, ZrO₂, Nb₂O₅, Ta₂O₅, WO₃, ZnO, Ga₂O₃, In₂O₃, GeO₂, and SnO₂. Total pressure (P_{total}) =101 kPa. CH₄/H₂O/Ar = 10/3/88.

We selected the highly active TiO₂ and β -Ga₂O₃ photocatalysts for further investigation. Both oxides have been reported to exhibit good performance for photocatalytic H₂ evolution reactions,²⁵⁻³¹ since they have suitable band structures. Figure 2 shows the time course of product formation rates from CH₄ and H₂O vapor with Pt/TiO₂(ST-01) and Pt/Ga₂O₃. ST-01 is an anatase TiO₂ photocatalyst with a large BET specific surface area (S_{BET}). The S_{BET} of ST-01 and β - Ga_2O_3 was 302 m² g⁻¹ and 10 m² g⁻¹. A continuous H₂ evolution (0.21 $\mu mol\ min^{-1}$) was observed for Pt/TiO2. The O2 evolution indicates the progress of water splitting $(2H_2O \rightarrow O_2 + 2H_2)$ even in the presence of CH₄. The CO₂ generation is explained by photocatalytic steam reforming of methane (photo-SRM, $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$)³⁰⁻ 32 or oxidation by the evolved O₂ (CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O). The ratio of H₂: O₂: CO₂ was 1: 0.26: 0.075 for Pt/TiO₂. In the case of Pt/Ga₂O₃, the evolution of H_2 and O_2 was much higher than that of Pt/TiO₂ but gradually decreased with time. After 3-h photoreaction, the $r(H_2)$ was 1.98 μ mol min⁻¹, and the ratio of H₂ : O₂ : CO₂ was 1 : 0.30 : 0.065. The CO₂ production was constant during photoreaction. However, there was no production of C_2H_6 and other oxidized products under the condition of $P(CH_4) = 10 \text{ kPa.}^{\ddagger}$

The adsorption of CH₄ on the solid surface is not stable since the symmetrical tetrahedral geometry has no dipole moment and small polarizability.⁵ Thus, we increased the *P*(CH₄) to improve the collision frequency of CH₄ molecule on the surface of Pt/Ga₂O₃. Figure 3 shows the time course of the photocatalytic CH₄ conversion using Pt/Ga₂O₃ under high *P*(CH₄). We have succeeded in the detection of C₂H₆ at *P*(CH₄) = 98 kPa. We also detected CO formation. At *P*(CH₄) = 98 kPa, the rate of C₂H₆ production, *r*(C₂H₆), was slowly increased with time and reached to 0.18 µmol min⁻¹ after 3-h photoreaction. The production of CO₂ and C₂H₆ at *P*(CH₄) = 98 kPa was significantly higher than that at *P*(CH₄) = 10 kPa (Fig. 2b). The increase in the yield of CO₂ and C₂H₆ indicates that the high *P*(CH₄) facilitates CH₄ activation and increases the concentration of activated methane species like •CH₃. The O₂ evolution was initially high but diminished with irradiation time. We further increased the total pressure to 3 atm using a back-pressure valve and found that C₂H₆ production was much increased by increasing *P*(CH₄) from 98 kPa to 300 kPa. The steady-state *r*(C₂H₆) was 0.58 µmol min⁻¹ at 300 kPa. The ratio of H₂ : CO₂ : CO : C₂H₆ was 1 : 0.17 : 0.024 : 0.19.§ There was no O₂ evolution at *P*(CH₄) = 300 kPa.

Figure 2. Formation rate of products over (a) Pt/TiO₂(ST-01) and (b) Pt/Ga₂O₃ at P_{total} of 101 kPa (CH₄/H₂O/Ar = 10/3/88). UV light (254 nm, 15 mW cm⁻²) was irradiated for 3 h (60–240 min time on stream).

Figure 3. Formation rate of products over Pt/Ga_2O_3 at P_{total} of (a) 101 kPa (CH₄/H₂O = 98/3) and (b) 303 kPa (CH₄/H₂O = 300/3) under 254-nm UV irradiation (15 mW cm⁻², 60–240 min time on stream).

Figure 4a shows the effect of $P(CH_4)$ on the formation rate over Pt/Ga₂O₃ after 3-h photoirradiation. The effect of $P(CH_4)$ on the time courses of H₂, C₂H₆, and CO₂ are shown in Fig. S10, ESI⁺. The C₂H₆ formation was gradually increased with time on stream. The $r(C_2H_6)$ after 3-h photoreaction was monotonically increased with an increase in $P(CH_4)$ from 10 kPa to 300 kPa. In the absence of CH₄, water splitting was induced as proved by

Journal Name

that the H₂/O₂ ratio is 2. The increase in $P(CH_4)$ increased CO₂ production in contrary to the decrease of O₂ production. H₂ production was also increased with $P(CH_4)$ owing to the progress of photo-SRM.³⁰ However, the production rate of H₂ and CO₂ was almost constant at $P(CH_4) \ge 100$ kPa. The monotonous dependence on $P(CH_4)$ was characteristic of C₂H₆ production.

Figure 4. Effect of P(CH₄) on (a) the product formation rate and (b) the carbon-based selectivity in the photocatalytic reaction on Pt/Ga₂O₃. The values were taken from the time course in the flow-type reactor after 3-h photoirradiation. The GC system could not analyze CO when P(CH₄) < 98 kPa due to the interference with Ar.

Figure 4b shows the effect of P(CH₄) on the product selectivity on a per carbon basis (C-%). The selectivity of C₂H₆ is defined as the ratio of carbon atoms of the produced C_2H_6 to that of all products containing carbon. The selectivity of C_2H_6 was gradually increased with $P(CH_4)$ and almost saturated at $P(CH_4)$ = 300 kPa. The selectivity of C_2H_6 was 67 C-%, which corresponds to two-thirds of CH₄ molecules becoming ethane and the rest to CO_{χ} . The AQE of the Pt/Ga₂O₃ was calculated from the $r(H_2)$, assuming that one H_2 molecule requires two electrons. The AQE was gradually increased and saturated to be 13% at $P(CH_4) > 100$ kPa (Fig. S11, ESI+). Recently, Li et al. reported H_2 evolution from aqueous H_2O under CH_4 using TiO_2 photocatalysts.^{33, 34} The AQE (13%) of the Pt/Ga₂O₃ in this study was higher than that of the gas-solid-liquid Pt/TiO₂ system (4.7% at 254-nm irradiation with C₂H₆ selectivity of 62 C-%). The high efficiency is provided by the intrinsic activity of Ga_2O_3 , the loading of Pt cocatalyst, and the photocatalytic reaction conditions. Noted that the error in material balance was less than 10%, assuming that $\mathsf{C_2H}_6,~\mathsf{O_2},~\mathsf{CO},~\text{and}~\mathsf{CO_2}$ come from dehydrogenative reactions (Fig. S12, ESI+). The small amount of missing was related to the formation of carbon species on the photocatalyst surface, which was confirmed by thermogravimetry-differential thermal analysis (TG-DTA, Fig. S13, ESI+).

The rate of CH_4 conversion per photocatalyst weight was often reported to compare the performance of the

photocatalytic system. However, this evaluation is not accurate because the reaction rate is not always proportional to the photocatalyst weight.³⁵ When we tentatively calculated it from the formation rate of carbon-contained products, the CH₄ conversion rate was 2090 μ mol g⁻¹ h⁻¹ (1.74 μ mol min⁻¹ over 50-mg Pt/Ga₂O₃), which was much higher than the reported values.²³

We measured electron spin resonance (ESR) spectra of the Ga₂O₃ powder at –196 °C. The Ga_2O_3 evacuated at room temperature for 30 min generated a sharp signal at around 326 mT (q = 2.003) by UV irradiation (Fig. S14, ESI+). The presence of CH₄ (10 kPa) changed the intensity and the shape of the ESR signal. The interaction with CH₄ suggests that the radical species are related to the photogenerated holes trapped in the surface states (h_{tr}⁺). The UV-induced signal was not observed for the dehydrated Ga₂O₃, which was pre-evacuated at 200 °C to remove the adsorbed water species (Fig. S15, ESI+). Therefore, the hole trapping site interacts with the hydroxyl group or the water molecules adsorbed on the surface. The h⁺ trapped in the surface hydroxyl group $(h_{tr(OH)}^{+})$ would be like a surface hydroxyl radical (•OH_s). We could not detect the ESR signal of •CH₃ in the gas phase,³⁶ but the C₂H₆ is considered to form via the coupling of •CH₃ on the surface. The proposed reaction mechanism can be expressed as follows.

$$Ga_{2}O_{3} + h\nu \rightarrow e^{-} + h_{tr(OH)}^{+}\#(1)$$

$$CH_{4} + h_{tr(OH)}^{+} \xrightarrow{k} CH_{3} + H^{+}\#(2)\#$$

$$\cdot CH_{3} + \cdot CH_{3} \rightarrow C_{2}H_{6}\#(3)$$

$$2H^{+} + 2e^{-\frac{Pt \text{ cocatalyst}}{2}}H_{2}\#(4)$$

The valence band maximum of Ga₂O₃ (Figure S4, ESI+) can thermodynamically induce one-electron oxidation of CH₄ (CH₄ \rightarrow •CH₃ + H⁺ + e⁻, *E* = 2.06 V vs. SHE).⁹ When the oxidation of CH₄ by the trapped h_{tr(OH)}⁺ expressed by equation (2) is the ratedetermining step, the *r*(C₂H₆) is proportional to the *P*(CH₄) and the concentration of h_{tr(OH)}⁺.

$$r(C^{2}H^{6}) = 0.5k[h^{+}_{tr(OH)}]P(CH^{4})\#(5)$$

As shown in Figure 4a, the C_2H_6 formation over Pt/Ga_2O_3 was monotonically increased with an increase in $P(CH_4)$. Figure 5 shows the kinetic analysis of the dependence of $r(C_2H_6)$ on $P(CH_4)$. The reaction order of C_2H_6 formation was 1.04 with respect to the CH₄ concentration. The first-order kinetics is consistent with the rate law derived from the proposed reaction mechanism (Eq. 5). The coupling between \bullet CH₃ molecules should be much faster than the C–H bond cleavage. If •CH₃ does not react with another •CH₃ due to the low concentration, the $h_{tr(OH)}^{+}$ promotes further overoxidation. The $r(CO_2)$ was saturated at least $P(CH_4) = 50$ kPa (Figure 4a), suggesting that the rate-determining step for CO_2 generation includes the reaction of the adsorbed C_1 species. The $r(H_2)$ was also saturated at high $P(CH_4)$, implying that the rate-determining step of H₂ evolution is related to the C–H bond cleavage of the adsorbed C₁ species. We confirmed that the product formations were dependent on the light intensity, but $r(C_2H_6)$ was saturated at high light intensity (Fig. S16, ESI+). This suggests

COMMUNICATION

that high photon flux accelerates overoxidation of CH_4 rather than selective oxidation to C_2H_6 . The role of Pt was found to promote proton reduction since the $r(H_2)$ was significantly increased by the loading of a small amount of Pt (Fig. S6 and S7, Takenaka 4C

ESI+). The formation of Pt metal particles was confirmed for the Pt/Ga₂O₃ after photocatalytic reaction by UV-Visible spectroscopy (Fig. S17, ESI+). Transmission electron microscopy revealed that Pt nanoparticles were highly dispersed on the Ga₂O₃ surface, and the particle size is less than at least 2 nm (Fig. S18, ESI+).

Figure 5. Relationship between $P(CH_4)$ and the C_2H_6 formation rate over Pt/Ga_2O_3 under 254-nm UV irradiation (15 mW cm⁻²) at $P(H_2O) = 3$ kPa.

In conclusion, we have found that dehydrogenative CH₄ coupling by Pt/Ga₂O₃ photocatalyst was induced under high $P(CH_4)$ in the presence of H₂O vapor. C₂H₆ formation was not observed at $P(CH_4) = 10$ kPa, but proportionally increased with $P(CH_4)$. The C₂H₆ formation rate was significantly high (35 µmol h⁻¹ on 50-mg Pt/Ga₂O₃) at $P(CH_4) = 300$ kPa. The C₂H₆ selectivity was 67 C-% when the CH₄ conversion rate was 104 µmol h⁻¹. The AQE of Pt/Ga₂O₃ was 13% at 254-nm irradiation. The interaction of CH₄ on the photocatalyst surface was critical not only to the CH₄ conversion but also to the product selectivity in the photocatalytic system at room temperature.

This work was supported by the Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), grant numbers JPMJPR15S1, JPMJPR16S2, and JPMJPR18T1.

Notes and references

 \ddagger We could not analyze a small amount of CO in the presence of Ar carrier due to the interference in GC analysis.

§ The formation of methanol and propane was not detected by GC in this study.

- H. Song, X. Meng, Z. J. Wang, H. Liu and J. Ye, *Joule*, 2019, 3, 1606-1636.
- 2. J. Baltrusaitis, I. Jansen and J. D. Schuttlefield Christus, *Catal. Sci. Technolog.*, 2014, **4**, 2397-2411.
- 3. K. Shimura and H. Yoshida, Catal. Surv. Asia, 2014, 18, 24-33.
- X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan and X. Bao, *Science*, 2014, **344**, 616-619.
- P. Schwach, X. Pan and X. Bao, Chem. Rev., 2017, 117, 8497-8520.
- K. Ohkubo and K. Hirose, Angew. Chem. Int. Ed., 2018, 57, 2126-2129.

- 7. Y.-R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, Boca Raton, 2007.
- 8. A. Hu, J. J. Guo, H. Pan and Z. Zuo, *Science*, 2018, **361**, 668-672.
- 9. F. Amano, A. Shintani, K. Tsurui, H. Mukohara, T. Ohno and S. Takenaka, *ACS Energy Lett.*, 2019, **4**, 502-507.
- A. Sato, S. Ogo, K. Kamata, Y. Takeno, T. Yabe, T. Yamamoto, S. Matsumura, M. Hara and Y. Sekine, *Chem. Commun.*, 2019, 55, 4019-4022.
- 11. Q. Han, A. Tanaka, M. Matsumoto, A. Endo, Y. Kubota and S. Inagaki, *RSC Adv.*, 2019, **9**, 34793-34803.
- 12. N. Levin, J. Lengyel, J. F. Eckhard, M. Tschurl and U. Heiz, *J. Am. Chem. Soc.*, 2020, **142**, 5862-5869.
- Y. Kato, H. Yoshida and T. Hattori, *Chem. Commun.*, 1998, DOI: 10.1039/a806825i, 2389-2390.
- H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, J Phys Chem B, 2003, 107, 8355-8362.
- 15. H. Yoshida, M. G. Chaskar, Y. Kato and T. Hattori, J. Photochem. Photobiol. A Chem., 2003, **160**, 47-53.
- 16. L. Yuliati, T. Hattori and H. Yoshida, *Phys. Chem. Chem. Phys.*, 2005, **7**, 195-201.
- 17. L. Yuliati, T. Hamajima, T. Hattori and H. Yoshida, *J. Phys. Chem. C*, 2008, **112**, 7223-7232.
- 18. L. Yuliati and H. Yoshida, Chem. Soc. Rev., 2008, 37, 1592-1602.
- 19. L. Yuliati, T. Hattori, H. Itoh and H. Yoshida, *J. Catal.*, 2008, **257**, 396-402.
- L. Li, G. D. Li, C. Yan, X. Y. Mu, X. L. Pan, X. X. Zou, K. X. Wang and J. S. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 8299-8303.
- 21. L. Li, Y. Y. Cai, G. D. Li, X. Y. Mu, K. X. Wang and J. S. Chen, Angew. Chem. Int. Ed., 2012, **51**, 4702-4706.
- L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H. H. Li, R. Yuan, X. H. Huang, X. Wang, X. Wang and J. Long, *Energy Environ. Sci.*, 2018, 11, 294-298.
- 23. S. Wu, X. Tan, J. Lei, H. Chen, L. Wang and J. Zhang, *J. Am. Chem. Soc.*, 2019, **141**, 6592-6600.
- Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, *Science*, 2017, **355**, eaad4998.
- F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama and B. Ohtani, *Chem. Mater.*, 2009, **21**, 2601-2603.
- 26. T. Yanagida, Y. Sakata and H. Imamura, *Chem. Lett.*, 2004, **33**, 726-727.
- 27. L. Yuliati, H. Itoh and H. Yoshida, *Chem. Phys. Lett.*, 2008, **452**, 178-182.
- 28. H. Tsuneoka, K. Teramura, T. Shishido and T. Tanaka, *J. Phys. Chem. C*, 2010, **114**, 8892-8898.
- 29. Y. Sakata, Y. Matsuda, T. Nakagawa, R. Yasunaga, H. Imamura and K. Teramura, *ChemSusChem*, 2011, **4**, 181-184.
- K. Shimura, T. Yoshida and H. Yoshida, J. Phys. Chem. C, 2010, 114, 11466-11474.
- H. Yoshida, K. Hirao, J. I. Nishimoto, K. Shimura, S. Kato, H. Itoh and T. Hattori, J. Phys. Chem. C, 2008, 112, 5542-5551.
- 32. K. Shimura and H. Yoshida, *Energy Environ. Sci.*, 2010, **3**, 615-617.
- L. Yu, Y. Shao and D. Li, Appl. Catal. B Environ., 2017, 204, 216-223.
- 34. L. Yu and D. Li, Catal. Sci. Technolog., 2017, 7, 635-640.
- H. Yoshida, S. Mizuba and A. Yamamoto, *Catal Today*, 2019, 334, 30-36.
- D. J. Driscoll, W. Martir, J. X. Wang and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 58-63.

Journal Name

Table of contents entry

 Pt/Ga_2O_3 induced photocatalytic dehydrogenative coupling of CH_4 to yield C_2H_6 under high CH_4 pressure.