Analyst

Flow control in a laminate capillary-driven microfluidic device

Journal:	Analyst
Manuscript ID	AN-ART-11-2020-002279.R2
Article Type:	Paper
Date Submitted by the Author:	11-Jan-2021
Complete List of Authors:	Jang, Ilhoon; Colorado State University, Chemistry; Colorado State University Kang, Hyunwoong ; Hanyang University - Seoul Campus Song, Simon; Hanyang University, Mechanical Engineering; Hanyang University, Insitute of Nano Science and Technology Geiss, Brian; Colorado State University, Microbiology, Immunology, and Pathology Dandy, David; Colorado State University, Department of Chemical and Biological Engineering Henry, Charles; Colorado State University, Chemistry;

8 9 10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Flow control in a laminate capillary-driven microfluidic device

Ilhoon Jang^{a,b‡}, Hyunwoong Kang^{c‡}, Simon Song^{a,c}, David S. Dandy^d, Brian J. Geiss^e, and Charles S. Henry^{b*}

Capillary-driven microfluidic devices are of significant interest for on-site analysis because they do not require external pumps and can be made from inexpensive materials. Among capillary-driven devices, those made from paper and polyester film are among the most common and have been used in a wide array of applications. However, since capillary forces are the only driving force, flow is difficult to control, and passive flow control methods such as changing the geometry must be used to accomplish various analytical applications. This study presents several new flow control methods that can be utilized in a laminate capillary-driven microfluidic device to increase available functionality. First, we introduce push and burst valve systems that can stop and start flow. These valves can stop flow for > 30 min and be opened by either pressing the channel or inflowing other fluids to the valve region. Next, we propose flow control methods for Y-shaped channels that enable more functions. In one example, we demonstrate the ability to accurately control concentration to create laminar, gradient, and fully mixed flows. In a second example, flow velocity in the main channel is controlled by adjusting the length of the inlet channel. In addition, the flow velocity is constant as the inlet length increases. Finally, the flow velocity in the Y-shaped device as a function of channel height and fluid properties such as viscosity and surface tension was examined. As in previous studies on capillary-driven channels, the flow rate was affected by each parameter. The fluidic control tools presented here will enable new designs and functions for low cost point of need assays across a variety of fields.

Introduction

Capillary-driven microfluidic devices have gained popularity in the last decade as alternatives to traditional microfluidics. Instead of using an external pump to induce flow, capillary driven devices utilize the surface tension of a fluid acting on the channel wall (or fibers in the case of paper) to drive flow ³⁻⁵. Without the need for a pump, these devices can be operated outside centralized laboratories in resource limited settings without a power source ⁶⁻⁸. Pregnancy tests are an example of a capillary-driven analytical device, and their widespread use demonstrates the utility of this platform for at-home diagnostic testing ⁹⁻¹¹.

Capillary-driven microfluidics have been used in many applications, including the detection of bacteria, viruses, biomarkers, pesticides, and heavy metals ¹²⁻¹⁶. In each application, accurate and precise flow control is critical to realize a reduced assay time, simplified operation, and improved analytical performance ¹⁷. Flow is most commonly

^c Department of Mechanical Engineering, Hanyang University, Seoul, Korea, 04763 ^d Department of Chemical and Biological Engineering, Colorado State University,

- 58 ⁺ I.J. and H.K. contributed equally to this work.
- 59 Electronic Supplementary Information (ESI) available
- 60

controlled by valving and adjusting flow velocity ^{18, 19}. Passive control methods such as adjusting the contact angle with the channel surface ^{20, 21} and manipulating channel geometry ^{22, 23} are common ways to modify flow behavior because the capillary force is difficult to manipulate once flow begins. Capillary-driven microfluidic devices can also be made from porous materials like cellulose. Although paper-based devices have shown promise as diagnostic tools, the porous material has limitations in particle and reagent transport, low flow rate, and non-uniform flow as compared to other capillary-driven microfluidic devices. ^{24, 25}

Lamination-based methods that stack multiple layers of pre-cut paper or film to form microfluidic channels have been introduced to overcome the limitations of conventional porousbased devices. In this approach the channel geometry is defined on each layer and all layers are bonded using adhesive 26, 27, plasma bonding ²⁸, or toner ²⁹. Double-sided adhesive (DSA) is a common material for the fabrication of lamination-based microfluidic channels because the hollow channel can be generated directly on the DSA layer through a cutting process ^{27, 30}. Laminate capillary-driven microfluidic devices fabricated with porous material as one or more walls have shown a large increase in flow rate compared to single-layer alternatives ³¹⁻³³. Lamination-based methods can also combine various substrate materials including paper, ³¹ transparency film, ^{30, 34, 35} glass slide ²⁸, and acrylic ³⁶. A recent laminate microfluidic device composed of transparency films and DSA showed for the first time that capillary-driven flow and rapid mixing could be achieved without porous media ³⁵. Here, non-uniform flow and flow resistance caused by cellulose fibers is reduced, and

^a Institute of Nano Science and Technology, Hanyang University, Seoul, Korea, 04763

^{b.} Department of Chemistry, Colorado State University, CO, USA, 80523

CO, USA, 80523 ^{e.} Department of Microbiology, Immunology and Pathology, Colorado State

University, CO, USA, 80523

^{*}Corresponding author: <u>Chuck.Henry@colostate.edu</u>

Journal Name

ARTICLE

1 2

3

4

5

6

7

8

9

accurate and rapid flow functionality can be realized. The hollow channel in this device was also made with transparent film so direct visualization of particles and flow is possible. Therefore, laminate devices made of transparency film enabled flow and analytical applications that could not be achieved in conventional, porous-based capillary driven channels. However, previous studies of flow control in capillary-driven devices were focused on porous materials, so there is a need to 10 investigate flow control methods in laminate capillary-driven 11 microfluidic devices. Furthermore, although the electrode valve 12 system has been implemented in capillary-driven microfluidic 13 devices,²⁰ no attempts at passive valving have been reported.

14 In this study, we present several different flow control methods 15 for a laminate capillary-driven microfluidic device. Emphasis is 16 placed on flow control methods that utilize geometric changes 17 in microfluidic channels of the same untreated material 18 19 without needing any additional equipment. The microfluidic channels used in this study were fabricated using DSA and 20 transparency film layers and were composed of a multi-layered 21 channel. First, we developed push valve and burst valve 22 23 systems that can be implemented in a multi-layered channel geometry. The systems are similar to the simultaneous inflow 24 system introduced in a previous study ³⁵, but the fluid stop time 25 and open functions were improved. We then developed a flow 26 control method applicable to a Y-shaped device which has two 27 inlets and one outlet. The two fluids introduced through each 28 inlet channel are mixed in the junction and flow through the 29 straight main channel. The geometry of the inlet channels were 30 modified to control the flow rate and mixing characteristics of 31 two fluids in the main channel. Finally, we confirmed the flow 32 rate variation due to the channel height and fluid properties 33 such as viscosity and surface tension. Given the current lack of 34 flow control and valving in many capillary-driven devices, we 35 anticipate the new fluidic control systems we present will have 36 a significant impact in field of low-cost, point-of-need 37 38 diagnostics.

Experimental

39

40

41

42 Deionized (DI) water, 10 wt% and 20 wt% glycerin aqueous 43 solutions (Sigma Aldrich), and 2.44 and 4.80 mM concentrations 44 of sodium dodecyl sulfate (SDS) solutions were used for the 45 experiments to control surface tension. All solutions were dyed 46 with tartrazine (yellow dye, 1.9 mM) and erioglaucine (blue dye, 47 0.800 mM). Two types of capillary-driven microfluidic devices 48 were fabricated by laminating double-sided adhesive (467MP, 49 3M) and transparency film (PP2500, 3M) as shown in Figure 1. 50 The thickness of DSA and transparency film is 50 and 100 µm, 51 respectively. The channel geometry was designed using drawing 52 software (CorelDRAW X4, Corel) and defined on each layer by 53 laser cutting (Zing 10000, Epilog Laser) before assembling all 54 layers. We applied a multi-layered inlet geometry in all devices. 55 The Y-shaped device (Figure 1a) consisted of two inlet channels 56 and one main channel designed with 45 mm length and 3 mm 57 width. The width of the inlet channel is 3 mm and was fabricated 58 in three lengths ranging from 2.5 mm to 10 mm. Each inlet 59 channel was placed in a different vertical position, and the main 60

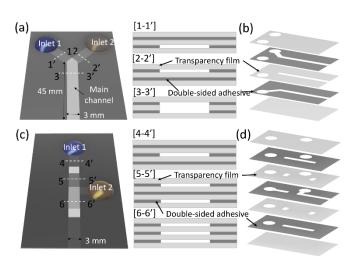


Figure 1 Schematics of the y-shape and valve device. (a) The yshape device consisted of two inlet channels placed in the different vertical positions, as shown in the cross-sectional view of [1-1'] and [2-2'], and the main channel with a larger height than inlet channels. (b) Channel geometries of the y-shape device defined on each layer. (c) The valve device with the cross-sectional views for three different locations along the channel. (d) Channel geometries of the valve device defined on each layer.

channel formed between the top and bottom transparency film layers, as shown in the cross-sectional view. Three different heights of main channels were fabricated from 200 μ m to 400 μ m by increasing the number of double-sided adhesive (DSA) layers sandwiched between transparency film. As a result, the inlet channels heights ranged from 50 µm to 150 µm, depending on the height of the main channel. Figure 1b shows all geometries of the transparency film and DSA layers for the Yshaped device. Details of the channel geometry are shown in the supporting information S1. The valve device (Figure 1c) was fabricated using 3 layers of DSA and 4 layers of transparency film (Figure 1d) and composed of a push valve and burst valve systems. The length and width of the main channel are 45 mm and 3 mm, respectively, and the inlet channels were formed in the middle DSA layer. For the experiments, 30 µL of blue and yellow solutions were pipetted into each inlet of the horizontally oriented device. All experiments were performed at approximately 25°C and 30% relative humidity and recorded via a portable camera (iPhone 11 Pro, Apple) under the lab lighting environment. We analyzed the distance variation of the flow front over time and the dye concentration distribution in the main channel area using MATLAB (MathWorks). The concentration was calculated based on the hue variations between blue and yellow colors, and details are described in the supporting information S2.

Results and discussion

Push valve and burst valve systems

Given the critical need to control when flow is delivered, we first sought to determine if we could make simple, power-free valves for capillary-driven microfluidic devices. Systems where two

4 5 6

7

8

9

10

11

12 13

14

15

39

40 41

42

43

44 45

50 51

52

57

58

59 60 Journal Name

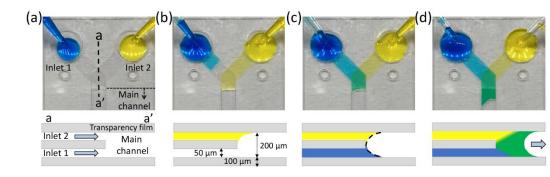


Figure 2 Sequential images and side-sectional schematics of the simultaneous inflow system at the moments of (a) pipetting the solutions, (b) arriving the junction, (c) making a combined meniscus, and (d) entering into the main channel.

16 flows come together at the same point in a channel, called 17 simultaneous inflow systems, are essential in capillary-driven 18 devices composed of multiple inlets but arrival of fluids at 19 different times can cause air to be trapped within the channel 20 and/or inconsistent flows ³⁷. A simultaneous inflow system in 21 the capillary-driven microfluidic device containing a high aspect 22 ratio (channel width over channel height) step-change feature, 23 as introduced recently ³⁵, can address this problem. Figure 2 24 shows sequential images and the side-sectional schematics for 25 the simultaneous inflow system implemented in our Y-shaped 26 device. We injected dyed DI water at each inlet region. The Y-27 shaped device consists of two separate inlet channels with a 50 28 µm height connected to the main channel (Figure 2a). Although 29 two fluids are pipetted at the same time, one fluid arrives at the 30 junction first (Figure 2b), because the flow through the inlet 31 channel is very fast (<1 s) and it was not possible to consistently 32 synchronize fluid delivery to the inlets. However, the fluid 33 arriving first cannot continue to flow into the main channel 34 because of the transparency film in the middle layer at the 35 junction. As a result, the fluid meniscus loses contact with the 36 transparency surface on one side. When second fluid reaches 37 the junction and creates a combined meniscus in the main 38

channel (Figure 2c), both fluids start flowing into the main channel (Figure 2d). We refer to this form of valve as a burst valve because it bursts open when the second fluid arrives. The geometry of the stacked inlets enables simultaneous flow from two different inlets using a burst valve. However, there is a limit to achieving the valve function that stops the fluid for a long time because the fluid still contacts one side of the channel surface. The meniscus contact on one side of the channel surface decreases the burst pressure dramatically ³⁸ and the flow stop lasts for less than 30 seconds.

To implement a more stable fluidic valve, we fabricated a multilayer microfluidic device by stacking 3 layers of DSA and 4 layers of transparency film (Figure 3). The updated valve device has an inlet in the middle layer and a significant gap between both top and bottom sides of transparency film layers at the valve area as shown in Figure 3a. When the flow enters the inlet of the valve system, it stops at the valve. The principle of a fluid stop is the same as that of the simultaneous inflow system, but the fluid can be stopped longer than the Y-shaped device since the fluid loses both the top and bottom contact surfaces. The length of the fluid stop can be affected by fluid properties such as surface tension and contact angle, injected volume, and

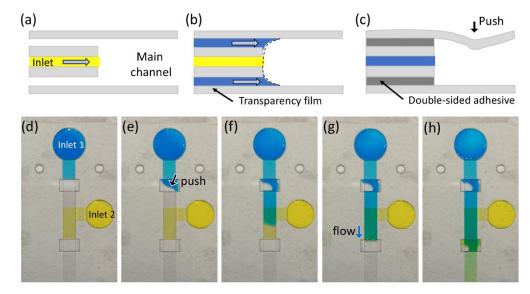


Figure 3 Side-sectional schematics when (a) the flow stop, (b) burst valve system forming a single meniscus, and (c) push valve system. Sequential images of the valve device showing the moments of (d) flow stop, (e) push valve open, (f) push valve release, (g) form a single meniscus, and (h) burst valve release.

Journal Name

ARTICLE

1 2

3

4

5

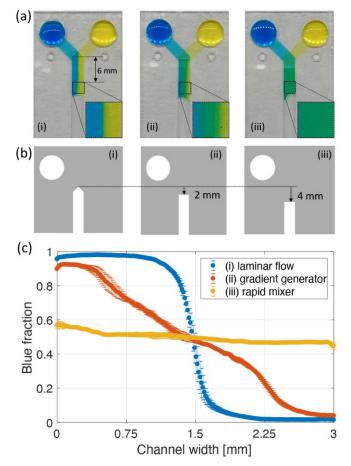
6

7

8

9

channel height. Among the several factors that affect the fluid stop, the injected volume is important because it is related to the pressure gradient in the inlet channel. Large amounts of fluid at the inlet can increase the pressure gradient, resulting in fluid stop failure. A stop function of more than 30 min can be achieved by injecting the exact amount of fluid that fills the channel upstream of the valve.


The valving system can be divided into two types depending on 10 the valve opening method. The first type is a burst valve with 11 two flow channels above and below the inlet channel (Figure 12 3b). The trigger principle of the burst valve is similar to the 13 simultaneous inflow system in a Y-shaped device, but the burst 14 valve requires fluids arriving through both channels. All fluids 15 entering the valve area are mixed to form a single meniscus with 16 subsequent flow downstream. The push valve is another type of 17 valve and is opened when the transparency film layer of the 18 19 valve area is pressed (Figure 3c). Since the transparency film of the top layer is flexible, it can be bent to contact fluid to initiate 20 flow by changing the meniscus shape. Push valves were 21 previously introduced in a microfluidic channel through a 22 23 polydimethylsiloxane (PDMS) cover layer ³⁹, but this is the first demonstration in a lamination-based device. Unlike the burst 24 valve, the push valve can be implemented for controlling a 25 single fluid. 26

We designed a valve device that includes a push valve and a 27 burst valve to demonstrate two valve systems for capillary-28 driven microfluidic devices (Figure 3d). The two inlets connect 29 to the middle layer of the device and are filled with blue- and 30 yellow-colored DI water. After initial injection, the blue flows to 31 the push valve and the yellow flows to the burst valve and flow 32 33 stops. Figure 3e shows the push valve opened by depressing the valve area. After the valve is opened, the fluid begins to fill the 34 valve area that has a height of 350 µm. However, the fluid does 35 not evenly fill along the channel direction because the height of 36 the valve area is 7 times greater than the inlet channel and 37 38 restricting fluid flow through the inlet channel. As a result, air is trapped in the valve area when the fluid front enters the 39 downstream channel and blocks airflow. Even if air bubbles 40 were in the valve region, the downstream channel shows 41 uniform flow (Figure 3f). After the push valve is activated, the 42 flow from the push valve channel activates the burst valve upon 43 reaching this second zone. As shown in Figure 3g and 3h, blue 44 dye combines with the yellow dye of the middle channel 45 forming a single meniscus in the burst valve region and constant 46 flow downstream. Since all layers are assembled by hand, as the 47 number of layers increases, alignment errors can occur, 48 resulting in unexpected fluid flows such as fluid stop failure and 49 channel blocking. However, controlling the injected volume 50 worked well to control the valve function, even if there is still an 51 error in the device. These valve systems were able to stop the 52 fluid for more than 30 min in the microfluidic channel, and the 53 opening function could be successfully achieved by manual 54 pressing and fluid inflow. 55

Flow control by changing inlet geometry

58 Since the main channel consisted of an untreated surface with59 straight geometry, flow cannot be manipulated in the middle of

the main channel. Therefore, to generate the desired flow in the main channel, the flow entering the main channel should be controlled as well. We devised a method to change the mixing characteristics of two solutions and flow velocity in the Yshaped device by changing the geometry of the inlet channels. First, we changed the geometry of the middle layer to control the concentration distribution of the dyes in the main channel. In the Y-shaped device, the middle layer of transparency film has an important role. This layer enables the simultaneous inflow into the main channel as well as fluid transport to the junction without mixing. The geometry of the middle layer in the junction area also determines how the two fluids enter the main channel. Figure 4a shows three types of Y-shaped devices that consist of five layers and have two inlet channels at different vertical locations. These devices have the same geometries for all layers except for the middle layer. Each geometry of the middle transparency film layer for three types of Y-shaped devices is shown in Figure 4b. Interestingly, each Yshaped device generated a non-mixed, gradient, and fully mixed

Figure 4 (a) Three types of the Y-shaped device generating (i) non-mixing, (ii) a concentration gradient, (iii) fully mixing concentration profile. (b) Different geometries of the middle transparency layers. (c) Blue fraction distributions with respect to the channel width. Each value indicated in the plot calculated by averaging an enlarged image shown in Figure 4a. Error bars represent the standard deviation between experiments for each value.

56

57

60

53

54

55 56 57

59 60

Journal Name

flows just after the junction region, all of which were formed 3 instantly when the two fluids entered the main channel. 4

To confirm the device performance, we analyzed the blue dye 5 fractions in the rectangular area 6 mm distance from the 6 junction area for three devices. This is because the 6mm 7 distance is sufficient to present the mixing characteristics for a 8 200µm height channel.³⁵ Figure 4c shows the average blue 9 fractions in a 6 mm distance with respect to the channel width. 10 In this plot, 1 corresponds to all blue while 0 indicates pure 11 yellow dye. Since the laminar flow device was designed where 12 two fluids meet side by side as they enter the main channel, 13 blue and yellow dyes flow without mixing, and blue and yellow 14 dyes are clearly divided at the middle of the channel. The 15 gradient generator has a transparency film layer in the middle 16 of the junction area. This small change of the middle layer 17 design made a different pressure gradient across the channel 18 19 width and generated a concentration gradient within the channel. In this design, blue and yellow dyes flow through the 20 left and right sides of the junction area, respectively, due to the 21 distance difference of the flow path in inlet channels. As a result 22 23 of the pressure gradient, a concentration gradient was formed immediately after the junction area. The concentration gradient 24 was measured using the 1 to 0 scale and was nearly linear across 25 the channel width as indicated by orange symbols in the Figure 26 4c. Finally, if the middle transparency film layer was extended 27 downstream, the device creates a fully mixed flow of blue and 28 yellow dyes as indicated by the uniform and an average blue 29 fraction value of 0.50 ± 0.03 . Structurally, a slight concentration 30 variation occurred along the channel width because the 31 distance difference between the left and right sides in the 32 channel from the inlet cannot be exactly equal. However, we 33 confirmed that the mixing ratio of the two fluids was relatively 34 constant compared with the concentration generator. Also, the 35 symmetrical distribution of blue fraction means that the flow 36 from two inlets was accurately controlled by geometrical 37 38 change. We used a middle transparency layer with a different geometry as shown in Fig 4b to control the concentration 39 distribution in the main channel. Variations in the channel width 40 or inlet channel angle can lead to different pressure 41 distributions across the channel width. Therefore, when the 42 devices have a different geometry, the middle layer should be 43 redesigned to form the desired concentration distribution. 44

The flow rate in the main channel can also be tuned by changing 45 the length of the inlet channels. Figure 5a shows the images of 46 the Y-shaped device with different inlet channel lengths. Three 47 different lengths of 2.5, 5, and 10 mm between the inlet and the 48 junction area were tested. All images were captured 2 s after 49 the same injected volume of blue and yellow dye entered the 50 main channel. We then analyzed the distance (Figure 5b) and 51 velocity (Figure 5c) variation over time in the main channel. The 52

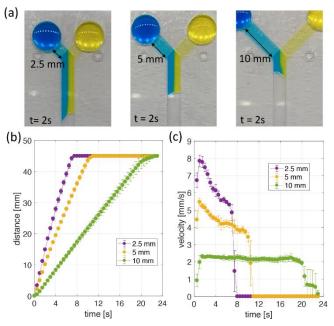


Figure 5 (a) Y-shape devices with three different inlet length channels. All images show 2 s after blue and yellow dyes begin to flow through the main channel. (b) Flow distance in the main channel and (c) velocity variations over time for three different inlet channel devices. All data were calculated every 0.5 s and indicate the average (symbol) with the standard deviation (error bar) for three repeated experiments.

flow velocity in the main channel increased as the inlet channel length decreased. The 2.5 mm inlet channel device achieved a flow velocity of up to 8 mm/s, and the 10 mm inlet channel device filled all channels while maintaining a flow velocity of about 2.2 mm/s. Although the pressure drops occurring at the flow front in the main channel of all devices are the same, the short inlet channel could generate a fast flow velocity due to its lower flow resistance. Interestingly, Y-shaped devices with this configuration do not follow traditional Washburn characteristics where flow velocity decreases over time, and this characteristic was more pronounced as the inlet channel resistance increased. Constant flow velocity might be caused by the significant difference in channel height between the inlet and main channel regions, because this makes relatively high flow resistance in the inlet channel even if the flow distance of the main channel increases.

Flow rate variation due to channel height and fluid properties We next explored factors that affect the flow velocity in the laminar flow Y-shaped device fabricated by the lamination method. First, the velocity as a function of main channel height was examined. Several studies have shown that channel height

Table 1 Fluid properties for different viscosity and surface tension. The viscosity and surface tension values for the concentrations of each substance were predicted by empirical formulas in the reference.1, 2

55 56		Concentration (wt%)	Viscosity (cP)		Concentration (mM)	Surface tension (mN/m)
57		0	0.89		0	72
58	Glycerin	10	1.14	SDS	2.44	60
59		20	1.52		4.8	50

This journal is C The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

Journal Name

ARTICLE

1 2

3

4

5

6

7

8

9

10

11

15

17

19

21

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

is a key factor in determining the flow rate. ^{32, 40} The height of the channel in this system was increased by changing the number of DSA layers forming the inlet channel. As the number of DSA layers between transparency film layers increased from

one to three, the height of the main channel increased from 200 to 400 μ m as shown in Figure 6a. Although the height of the inlet and main channels changed, two fluids entered the main channel at the same time on all devices. Figure 6b shows the distance variation of the flow front over time in the main channel, and Figure 6c shows the flow velocity over time 12 calculated from the distance variation result. As in previous 13 experimental and theoretical studies, it was confirmed that the 14 flow rate of the Y-shaped device increased as the channel height increased $^{40,\ 41}$. The 200, 300, and 400 μm height channels 16 caused flow to travel 45 mm in 11.6 ± 0.6 , 4.2 ± 0.1 , and 2.6 ± 0.3 s, respectively, with maximum flow velocity of 4.9 ± 0.1 , 18 13.3 ± 0.3 , and 21.1 ± 1.6 mm/s. After calculating the flow rate, we confirmed that the 400 μm channel produced more than 8 20 times the flow rate compared to the 200 μm channel over the same time. The flow velocity varied with the channel height, but 22 it is not affected by the channel width change because the fluid flow in the microfluidic channel, which has a small aspect ratio (height/width), can be assumed to be two-dimensional flow.⁴² Next, the flow rate as a function of fluid viscosity and surface 26 tension was examined. We used the laminar flow Y-shaped

Figure 6 (a) Cross-sectional view of the y-shape device with three different channel height. (b) Flow distance in the main channel and (c) velocity variations over time for three devices. Distance variations over time for different concentrations of (d) glycerin and (e) SDS solutions in the y-shape device with 200 μ m of the main channel height. All data were calculated every 0.5 s and indicate the average (symbol) with the standard deviation (error bar) for three repeated experiments.

Table 2 Velocity variations in the y-shape device for different
concentrations of glycerin and SDS.

Velocity (mm	/s)	SDS concentration (mM)					
velocity (iiiii	/ 3/	0	2.44	4.8			
Glycerin	0	4.34 ± 0.08	3.96 ± 0.17	3.43 ± 0.13			
concentration	10	3.41 ± 0.06	3.24 ± 0.18	2.99 ± 0.17			
(wt%)	20	2.71 ± 0.06	2.53 ± 0.10	2.34 ± 0.15			

device with a height of 200 μ m and 5 mm inlet channel. As the fluid viscosity increases, the viscous drag due to friction increases and the flow rate decreases. The surface tension is another parameter affecting the capillary pressure which is the driving force for the flow. As the surface tension decreases, the capillary force decreases, resulting in a lower flow rate. To quantify the effects of viscosity and surface tension we mixed glycerin and SDS surfactant with DI-water. The viscosity and surface tension for the concentration of each added substance are shown in Table 1. For experiments, we pipetted the same solution into each inlet and measured the distance variation over time. Figure 6d shows the front distance versus time as a function of glycerin concentration. For glycerin mass fractions of 0, 10, and 20 wt%, it took 10.4 \pm 0.2, 13.2 \pm 0.2, and 16.6 \pm 0.4 s to reach 45 mm, corresponding to average flow velocities of 4.34 ± 0.08 , 3.41 ± 0.06 , and 2.71 ± 0.06 mm/s, respectively. Compared with 0 wt% glycerin, the 10 wt% mixture velocity decreased by 22% and the 20 wt% mixture decreased by 37%. In capillary-driven flow, the flow rate is predicted to be proportional to the surface tension and inversely proportional to the viscosity ⁴³. The predicted decrease in flow velocity due to increased viscosity is 22% and 41% respectively compared to 0 wt% case, similar to the actual experimental values.

Figure 6e shows the front distance over time as the SDS concentration of the mixture is varied to create surface tensions of 72, 60, and 50 mN/m; the resulting average flow velocities were 4.34 \pm 0.08, 3.96 \pm 0.17, and 3.43 \pm 0.13 mm/s, respectively. Although the surface tension of 60 and 50 mN/m SDS solutions decrease 16.7 and 30.6 % compared with the 72 mN/m case, the flow velocity decreases 8.8 and 21.0 %, respectively. This is because the contact angle decreases as the surface tension decreases ⁴⁴, which affects the capillary action. Despite these differences, the trend of flow rate decreases due to surface tension decrease based on the Washburn equation is clearly observed. In addition to changing the surface tension and viscosity separately, we also determined the impact of simultaneously varying the viscosity and surface tension. Table 2 shows the average flow velocity to travel 45 mm for each glycerin/SDS concentration. For all cases, the standard deviation is less than 6.5%, showing good reproducibility. Here, flow rates are independently affected by viscosity and surface tension and the flow rate decreases as the viscosity increases and the surface tension decreases. Therefore, to design the capillary-driven flow device made of film and to control the flow rate, the viscosity and surface tension of the fluid used should be considered.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Journal Name

Conclusions

In this work, we present flow control methods that create flow characteristics which can be utilized in the development of laminate capillary-driven microfluidic devices for point-of-need diagnostics. All flow controls were implemented by changing channel geometries without changing the device material. The device consisted of several layers of the transparency film and double-sided adhesive and was fabricated by laminating all layers after defining the channel geometries on each layer. First, two types of valve systems able to perform fluid stop and release functions without using additional equipment were developed and tested. The valve systems can stop the fluid for up to 30 min depending on solution conditions, which is longer than the stop time of the simultaneous inflow system. It should also be noted that the stop time may vary depending on the fluid properties and inlet conditions that affect the pressure in the inlet channel. Therefore, optimization of the inlet geometry and injection volume according to the desired flow behavior is necessary. The push and burst valve systems were operated either by pressing the top layer of the valve area or through the inflow from a second channel, respectively. Next, we developed flow control methods by changing the inlet geometry to adjust concentration fields and flow rate in the Y-shaped device. The methods discussed can produced tailored solute concentration profiles such as the three demonstrated here, and specifically tune flow rates. The flow and mixing characteristics of the device were quantified by simultaneously measuring changes of fluid front location and blue dye intensity distributions over time. Finally, various factors affecting the flow rate were examined. We measured the flow rate of the Y-shaped device for changes in channel height, viscosity, and surface tension. Through the flow control methods and flow characteristics presented in this study, it was confirmed that the laminate capillary driven device can sensitively and accurately control the flow through the channel geometry. The fabrication cost of these devices is very cheap compared to conventional microfluidic devices, and the optimizing the number of device layers and alignment processes of each layer will increase productivity. In addition, since the device consists of a hollow channel unlike the paper-based device, several biofluids such as whole blood, plasma, urine, saliva could be loaded and work through the channel, even if it contains particles. We expect these features will be of great help in developing practical capillary-driven sensor applications utilizing sequential reagent delivery, electrochemical detection, and particle movement.

Conflicts of interest

There are no conflicts to declare

Acknowledgements

This work was financially supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (Nos. 2018R1A6A3A11043917) to HK and SS. Additional funding was provided by grants from the National Institutes of Health (R33ES024719) and the National Science Foundation (CHE1710222) to CSH.

References

8.

- 1. N.-S. Cheng, Industrial & Engineering Chemistry Research, 2008, 47, 3285-3288.
- 2. K. J. Mysels, *Langmuir*, 1986, **2**, 423-428.
- M. Alava, M. Dubé and M. Rost, *Advances in Physics*, 2004, 53, 83-175.
- 4. J. Xiao, H. A. Stone and D. Attinger, *Langmuir*, 2012, **28**, 4208-4212.
- E. Elizalde, R. Urteaga and C. L. A. Berli, *Lab on a Chip*, 2015, 15, 2173-2180.
- X. Li, D. R. Ballerini and W. Shen, *Biomicrofluidics*, 2012, 6, 011301.
- A. K. Yetisen, M. S. Akram and C. R. Lowe, *Lab on a Chip*, 2013, 13, 2210-2251.
 - E. T. S. G. da Silva, D. E. P. Souto, J. T. C. Barragan, J. de F. Giarola, A. C. M. de Moraes and L. T. Kubota, *ChemElectroChem*, 2017, **4**, 778-794.
- 9. Katarzyna M. Koczula and A. Gallotta, *Essays in Biochemistry*, 2016, **60**, 111-120.
- 10. E. B. Bahadır and M. K. Sezgintürk, *TrAC Trends in Analytical Chemistry*, 2016, **82**, 286-306.
- 11. S. Zhao, S. Wang, S. Zhang, J. Liu and Y. Dong, *Chinese Chemical Letters*, 2018, **29**, 1567-1577.
- 12. S. Altundemir, A. K. Uguz and K. Ulgen, *Biomicrofluidics*, 2017, **11**, 041501.
- 13. T. Ozer, C. McMahon and C. S. Henry, *Annual Review of Analytical Chemistry*, 2020, **13**, 85-109.
- 14. E. Noviana, D. B. Carrão, R. Pratiwi and C. S. Henry, Analytica Chimica Acta, 2020, **1116**, 70-90.
- 15. T. Akyazi, L. Basabe-Desmonts and F. Benito-Lopez, *Analytica Chimica Acta*, 2018, **1001**, 1-17.
- C. Carrell, A. Kava, M. Nguyen, R. Menger, Z. Munshi, Z. Call, M. Nussbaum and C. Henry, *Microelectronic Engineering*, 2019, 206, 45-54.
- 17. E. Fu and C. Downs, *Lab on a Chip*, 2017, **17**, 614-628.
- 18. S.-G. Jeong, J. Kim, S. H. Jin, K.-S. Park and C.-S. Lee, *Korean Journal of Chemical Engineering*, 2016, **33**, 2761-2770.
- H. Lim, A. T. Jafry and J. Lee, *Molecules*, 2019, 24, 2869.
 T. Mérian, F. He, H. Yan, D. Chu, J. N. Talbert, J. M. Goddard and S. R. Nugen, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2012, 414, 251-258.
- 21. J. Songok and M. Toivakka, *Microfluidics and Nanofluidics*, 2016. **20**. 63.
- 22. A. Apilux, Y. Ukita, M. Chikae, O. Chailapakul and Y. Takamura, *Lab on a Chip*, 2013, **13**, 126-135.
- B. J. Toley, J. A. Wang, M. Gupta, J. R. Buser, L. K. Lafleur, B. R. Lutz, E. Fu and P. Yager, *Lab on a Chip*, 2015, **15**, 1432-1444.
- 24. M. M. Gong and D. Sinton, *Chemical Reviews*, 2017, **117**, 8447-8480.
- 25. M. P. Nguyen, N. A. Meredith, S. P. Kelly and C. S. Henry, Analytica Chimica Acta, 2018, **1017**, 20-25.
- A. W. Martinez, S. T. Phillips and G. M. Whitesides, *Proceedings of the National Academy of Sciences*, 2008, **105**, 19606-19611.

	0		10	n	3	NI	3	m	0
,	U	u			а	1.1	а		

2	
3	
4	
5	
5	
6	
7	
8	
9	
1	0
1	1
1	
1	
1	
1	5
1	
1	
	8
1	9
	0
2	
2	2
2	3
	4
	5
2	6
2	7
	8
	9
3	0
3	1
3	
3	3
	4
3	5
3	
	8
3	9
4	
4	
4	2
4	3
4	
•	
	5
	6
4	7
4	
4	
5	0
5	1
Э	
5	3
5	4
5	5
_	6
2	_
5	
5	8

ARTICLE

1

- 27. P. K. Yuen and V. N. Goral, *Lab on a Chip*, 2010, **10**, 384-387.
- E. T. da Costa, M. F. Mora, P. A. Willis, C. L. do Lago, H. Jiao and C. D. Garcia, *ELECTROPHORESIS*, 2014, **35**, 2370-2377.
- 29. F. R. de Souza, G. L. Alves and W. K. T. Coltro, *Analytical Chemistry*, 2012, **84**, 9002-9007.
- 30. A. W. Taylor and D. M. Harris, *Review of Scientific Instruments*, 2019, **90**, 116102.
- R. B. Channon, M. P. Nguyen, A. G. Scorzelli, E. M. Henry, J. Volckens, D. S. Dandy and C. S. Henry, *Lab on a Chip*, 2018, 18, 793-802.
- 32.
 C. K. Camplisson, K. M. Schilling, W. L. Pedrotti, H. A. Stone

 and A. W. Martinez, *Lab on a Chip*, 2015, **15**, 4461-4466.
- 33. S. Jahanshahi-Anbuhi, A. Henry, V. Leung, C. Sicard, K. Pennings, R. Pelton, J. D. Brennan and C. D. M. Filipe, *Lab* on a Chip, 2014, **14**, 229-236.
- 34. N. S. Moreira, C. L. S. Chagas, K. A. Oliveira, G. F. Duarte-Junior, F. R. de Souza, M. Santhiago, C. D. Garcia, L. T. Kubota and W. K. T. Coltro, *Analytica Chimica Acta*, 2020, 1119. 1-10.
- 135.I. jang, D. Carrao, R. Menger, A. R. Moraes de Oliveira and2C. S. Henry, ACS Sensors, 2020, DOI:310.1021/acssensors.0c00937.
- 4 36. M. Islam, R. Natu and R. Martinez-Duarte, *Microfluidics* 5 *and Nanofluidics*, 2015, **19**, 973-985.
- 37. J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. van der Wijngaart and G. Stemme, *Sensors and Actuators B: Chemical*, 2004, **100**, 463-468.
- 38. A. Glière and C. Delattre, Sensors and Actuators A: Physical,
 2006, 130-131, 601-608.
- 0
 39.
 M. Hitzbleck, L. Avrain, V. Smekens, R. D. Lovchik, P.

 1
 Mertens and E. Delamarche, Lab on a Chip, 2012, **12**, 1972

 2
 1978.
- 3
 40.
 R. B. Channon, M. P. Nguyen, C. S. Henry and D. S. Dandy,

 4
 Analytical Chemistry, 2019, **91**, 8966-8972.
- 41. I. Jang, K. E. Berg and C. S. Henry, Sensors and Actuators B:
 Chemical, 2020, **319**, 128240.
- 42. H. Bruus, *Theoretical microfluidics*, Oxford university press Oxford, 2008.
- 9 43. Y. Zhu and K. Petkovic-Duran, Microfluidics and Nanofluidics, 2010, **8**, 275-282.
- T. Young, Philosophical Transactions of the Royal Society of London, 1805, 95, 65-87.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx