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Abstract:

Lubricated sliding on soft elastic substrates occurs in a variety of natural and technological settings. It very 

often occurs in the iso-viscous elasto-hydrodynamic lubrication (EHL) regime (e.g., soft solid, low pressure).  

In this regime, for sliding of a smooth sphere on a soft solid, a �Hertz-like� effective contact region forms. 

Much of the fluid is squeezed out of the contact region although enough is retained to keep the solid 

surfaces fully separated. This is accompanied by complex deformation of the soft solid.  The behavior of 

such soft lubricated contacts is controlled by a single dimensionless parameter 1/� that can be interpreted 

as a normalized sliding velocity. Solving this fundamental soft-lubrication problem poses significant 

computational difficulty for large �, which is the limit relevant for soft solids� As a consequence, little is 

known about the structure of the flow field under soft lubrication in the intake and outlet regions. Here 

we present a new solution of this soft lubrication problem focusing on the �Hertz� limit. We develop a 

formulation in polar coordinates that handles difficult computational issues much better than previous 

methods. We study how hydrodynamic pressure, film thickness and hydrodynamic friction vary with �� 
Scaling laws for these relationships are given in closed form for a range of ��not previously accessible 

theoretically but that is typical in applications. The computational method presented here can be used to 

study other soft lubrication problems. 

1. Introduction

Lubricated sliding in which an intervening liquid layer separates two solid surfaces is ubiquitous in nature 

and in technology. When at least one of the solids is soft, we obtain an important subclass: Soft Lubrication 

or Elasto-Hydrodynamic Lubrication (EHL)  1�3 .  Technological phenomena governed by soft lubrication 

include sliding of rubbery tires or shoe soles on a hard surface.  Some parts of our body rely on soft 

lubrication to function; examples are joints, eyeballs, eyelids, and contact lenses. Lubricated elastic 

contacts have been extensively studied, traditionally with a heavy emphasis on stiff metal contacts such 

as in bearings 4,5 and pistons6,7.  For more compliant materials the effect of deformation qualitatively alters 

the contact geometry and pressure profile, as well as hysteretic friction forces8�12. Typically, the EHL 

regime occurs when there is a continuous fluid film separating the contacting surfaces.  Material 

compliance and lubricant viscosity strongly affect friction behavior in this regime.  As velocity is decreased 

and load is increased, the system enters the boundary lubrication regime, where there are breaks in the 
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liquid film.  Here adhesive forces form areas of dry contact as well as hysteretic forces from material 

deformation begin to contribute to the friction response.  In this regime sample roughness and inelasticity 

control the friction behavior.  The problem of liquid drainage for compliant contacts under lubricated 

conditions has been studied for both thick and thin complaint layers 13�16.  Our focus in this work is on the 

low Hersey number range of the EHL or soft lubrication regime, i.e., under conditions such that the solid 

surfaces remain separated by a thin liquid film.  In many of these cases we can additionally assume that 

the liquid is Newtonian with a constant viscosity (iso-viscous).

Specifically, we consider a basic problem: the lubricated sliding of a rigid sphere on a soft, flat, and 

elastic substrate in the iso-viscous EHL regime. This work was motivated by our recent experimental study 

of this problem17.  Briefly, we slide a spherical glass indenter on the lubricated surface of a thick slab of 

polydimethylsilocane (PDMS). These tests are performed using different combinations of sliding velocity, 

normal load and sphere radius. Our result shows that, consistent with EHL theory, suitably normalized 

hydrodynamic friction plotted against the normalized sliding velocity collapses to a master curve, which 

means that hydrodynamic lubrication is controlled by a single dimensionless parameter which is the 

normalized sliding velocity (defined later).

Many studies have examined lubricated sliding of compliant materials with a sphere-on-flat contact 

geometry to investigate the effects of properties such as material modulus, lubricant viscosity, bulk 

viscoelasticity, and surface roughness 18�25.  All these works are based on the lubrication theory developed 

by Reynolds 26.  The EHL problem requires the simultaneous solution of the Reynolds and the elasticity 

equations. Since the Reynolds equation is highly nonlinear, there is no analytical solution for the sphere-

on-flat contact problem. EHL problems are solved numerically by discretizing the calculation domain and 

using the finite element or finite difference method to iteratively solve the Reynolds and elasticity 

equations until the liquid film reaches a stable shape and the hydrodynamic pressure balances the applied 

load27�29. However, this problem has many numerical difficulties, especially in the EHL or soft lubrication 

regime. In this regime, the discretized Reynolds equation become ill-conditioned resulting in failure of 

standard methods 29�31. Another well-known numerical difficulty is the calculation of the elastic 

deformation32�35.  Standard methods bear tremendous computational cost because of the mathematical 

coupling between surface points.  However, this is precisely the regime of interest for lubrication of soft 

solids, and where our experiments are carried out.  No accurate solutions have been obtained for 

conditions that approach truly soft lubrication.  The purpose of our work is to rectify this deficiency. 

1.1 Brief background

To place our work in context, we begin with a brief description of the state of the art in solution of 

soft lubrication problems.  In 1951, Petrusevich 36 devised the first successful numerical scheme to solve 

the problem of a 2D cylinder undergoing lubricated sliding on an infinite elastic substrate.   However, his 

method only works for light loads.    When solving the Reynolds equation, numerical instability usually 

occurs as the applied load increases. Typically, during iterations, the hydrodynamic pressure starts to 

oscillate in the direction of fluid flow, usually just upstream of the center of the contact region37�39. For 

small applied normal loads, the oscillations gradually fade away and the solution converges. However, 

oscillations continue to build up at higher loads and the numerical scheme fails 37,39. . Furthermore, the 

iteration number for convergence is larger for higher loads than the smaller loads. Since the deformation 

at each grid point depends on the contribution from every other grid point, the number of arithmetic 

operations for one iteration is on the order of  where  is the number of nodes. This means for higher 
2

n n
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loads, much more calculation time will be spent on the evaluation of elastic deformation.  Due to these 

difficulties, the results of several previous studies were limited to light loading conditions 30,40. In 1959, 

Dowson and Higginson 28 introduced the inversed method for the line load problem and obtained 

solutions for higher loads.   In a series of papers, Hamrock and Dowson 29�31,41 introduced a forward 

iteration method to solve the problem of a rigid sphere undergoing lubricated sliding on an infinite elastic 

substrate, which is normally referred to as the point contact problem.   However, their method could only 

tackle light to medium normal loads and failed when the sphere was subjected to large normal loads.  

Evan et. al 38,39 extended the inverse method28 to solve the point-contact problem for higher loads.  

However, this method is not autonomous as it requires considerable manual intervention.  Many existing 

works focused on fluids which exhibit pressure-sensitive viscosity.  This feature introduces extra physical 

parameters in the problem that are usually irrelevant for soft lubrication; as a result, it is difficult to 

develop universal scaling laws indicating how physical quantities such as applied normal load, sliding 

velocity, film thickness, viscosity, elastic modulus, radius of sphere, are related to each other.  In addition, 

the role of pressure-sensitive viscosity is negligible for typical soft solids42.  There is a need for a robust 

computational method to solve EHL problems in the regime where � is a large number (>>100) and fluid 

viscosity is constant. Here we mention a recent work of Putignano43 who suggested a generalized 

numerical method to deal with lubricated contact between linear viscoelastic surfaces. The viscoelastic 

deformation of the surfaces was linearized as a function of hydrodynamic pressure and velocity of the two 

surfaces. The surfaces� viscoelastic deformation was further coupled to Reynold equation for full solution 

of hydrodynamic pressure and film thickness. His iteration scheme is similar to this present work except 

that we consider only elastic deformation.

Here we mentioned some related contact mechanics problems in the EHL regime. For example, Daddi-

Moussa-Ider et al44 obtained explicit analytic expressions for the lift force acting on a rigid sphere 

undergoing lubricated sliding on a finite elastic membrane by applying the Lorentz reciprocal theorem.   

Rallabandi et al45 studied the rotation of an rigid cylinder sliding near a thin elastic coating and showed 

analytically that the angular velocity of the cylinder scales with the cube of the sliding speed.

More relevant is the fact that very little is known quantitatively about the structure of the pressure 

and flow fields near the intake and outlet regions of a sphere undergoing lubricated sliding in the �Hertz� 

limit of soft solids, high loads or slow sliding velocities.  Here we note the work of Snoeijer et al 46 which 

carefully studied lubricated sliding of a rigid cylinder under Hertz conditions.  They also provided limited 

results for the sphere case, which is the focus of this paper. For the soft solid/small sliding velocity/high 

load or �Hertz� regime, we need to develop a numerical scheme to study the behavior in this limit.  In all 

previous works, the Reynolds equation and elasticity equation were solved in Cartesian coordinates. 

However, as the applied load increases, the liquid film thins, and the hydrodynamic pressure converges 

to the elastic Hertz pressure 47 except near the inlet and outlet region, where a boundary layer exists to 

smooth out the infinite pressure gradient of the Hertz solution.   The disadvantage of a numerical set up 

in Cartesian coordinates is that there is no simple way to refine the mesh locally to capture the pressure 

spike (when it exists) or the pressure gradient (which is large, whether or not the viscosity is pressure 

sensitive).  

In this work, we have developed a method to study the EHL problem well within the EHL limit. It is 

based on formulating the problem in polar coordinates The numerical result of hydrodynamic friction 

matches the experimental data very well.  We show that with suitable normalization, the problem 

depends on a single dimensionless variable that combines properties and parameters such as normal load, 
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Here the linear elastic theory is used to calculate substrate�s deformation.  As shown by Lin et al.48 the 

Hertz approximation based on linear theory is actually very good even for contact radius  up to 0.3 times a

sphere radius, . In the experiments and in the simulations . Note that because normalized R / 0.3a R 


displacement of the surface, , so even fairly large contact radius corresponds to quite small � �2
/ /R a R� :

surface displacements. Eqn (1a-c) and (2) completely specify the sliding problem and are to be solved with 

the boundary condition:

(3)� � 0�� �p r

2.1 Normalization

We demonstrate that the solution is controlled by a single parameter by introducing the following 
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This normalization is motivated by the classical result of Hertz contact theory where the contact radius 

 and the normal load N are related to the indentation depth by 47:Ha
0h
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16
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respectively. Recall that the Hertz pressure distribution  is axisymmetric and is given byHp
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In eqn (4), we have normalized the radial distance by the Hertz contact radius eqn (5a) and the 

normalized load by the Hertz load eqn (5b) to within a numerical constant.

The normalized forms of eqn (1) and (2) are:
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where: 
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and is the dimensionless parameter defined by�
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Our normalization implies that the normalized normal load , normalized pressure  and normalized N p

film thickness  have the form:u
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Eqn (6a) states that the solution is completely determined by a single dimensionless parameter . If �
one interpret  as a normalized sliding velocity, then the normalized normal load depends only on the 1/ �

normalized velocity and vice-versa. Our  is equivalent to the dimensionless parameter   1/ � 3D!
introduced by Snoeijer et al46. 

2.2 Hertz limit and asymptotic behavior of hydrodynamic pressure 

Our experiments are in the regime of large  which corresponds to large normal indentation depths or �
slow velocities in (6d).  In this regime, the pressure distribution is expected to converge to the Hertz 

pressure, eqn (5c), which in normalized form is:
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However, the convergence cannot be uniform since the pressure gradient given by the Hertz theory 

is infinite and discontinuous according to eqn (7a,b) whereas the actual pressure should be continuously 

differentiable everywhere.  Thus, there must exist an internal boundary layer, , at the inlet and outlet �
region. In normalized coordinates, this boundary layer is located at . We anticipate the thickness of 1r �

this boundary layer ,  ,will vanish as . Also, we expect that, as , the film 
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thickness  goes to zero for all .  Thus,u 1r �
 �
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For the non-uniform mesh in the radial direction, the finite difference for the first and second order 

derivatives are obtained from the Taylor expansion:   
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To ensure that the finite difference of the first and second derivatives in the radial direction preserves 

2nd order accuracy, a special arrangement of non-uniform mesh is selected as suggested by 49, i.e.,

, (12)11

b
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j j

L ra
d

L L
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where  is the length of the radial segment where the non-uniform mesh is deployed,  and  are two L a b

coefficients to control the mesh interval size. In this work, we selected  and adjust  to ensure that 0b � a

the grid number of the radial segment reaches the desired value. 

Substituting eqn (10), (11) into (6a), we obtained the discretized version of eqn (6a)

(13)1 1 1 1� � 	 		 	 	 	 �, , , , , , , , , , ,i j i j i j i j i j i j i j i j i j i j i jA p B p C p D p E p F

The coefficients  and  are functions of mesh spacing, normalized liquid film thickness ,i jA , , , ,, , ,i j i j i j i jB C D E ,i jF

and . They are given in the Appendix. �

The singular point  requires special numerical attention. Specifically, the singularity at  is 0r � 0r �
regularized by integrating both sides of eqn (6a) over a small circular domain  centered at origin, i.e.,D
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Applying divergence theorem to the left-hand side (LHS) of eqn (14), we obtained
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We use finite difference scheme to evaluate both sides of eqn (15). This allows us to solve for the 

pressure  at , which is eqn (16). The details of derivation from eqn (15) to (16) is shown in SI. 0p 0r �
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The 1st term of eqn (16) is the weighted averaged pressure of the nearest nodes surrounding the 

center point  while the 2nd term is accounting for the non-axisymmetric effect of sliding on the 0r �
pressure distribution. 

The boundary condition is illustrated in Fig. 2(b). On the boundary  and , reflective 0� � � ��

symmetry requires  and . Using centered difference scheme, we obtained the boundary 0
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On the boundary , the pressure is zero,                 (17b)2r � 0�, i np

It is known that negative pressure can occur near the exit region 47,50.   In our simulations, this region 

as well as the magnitude of the negative pressure is found to be vanishing small for large so this is not �
a serious physical concern.  Nevertheless, in the results below we follow the conventional approach which 

is to eliminate this region of negative pressure by imposing the Reynolds condition. The Reynolds 

condition states that there exists a curve at the downstream of the outlet region such that any point 4

on satisfies the condition that the pressure  and  where  is the in-plane 4 � � 0* *
,P r � � � � 0* *

, /dP r dn� �
r

n
r

normal vector of . Additionally, downstream beyond  the pressure is zero everywhere. Enforcing the 4 4
Reynolds condition is to disallow negative pressure anywhere. Numerically, at each iteration we set the 

pressure to be zero in the outlet region whenever it turns negative during the iterative solution. Results 

without imposing the Reynolds condition are given in the supporting information. In the �Hertz limit�, the 

Reynolds condition only affects the pressure profile in a very small region near the outlet. In particular, it 

has no effect on the hydrodynamic friction.

2.4 Evaluation of the substrate surface displacement in polar coordinates

The conventional way to evaluate the surface displacement of the substrate, eqn (6b), is to approximate 

the continuous hydrodynamic pressure with an uniform distribution of pressure in each of small 

subdomains centered at each grid points.  As pointed out in the introduction, calculation of the elastic 

deformation is computationally expensive.   Some researchers tackle this difficulty using a method called 

�differential deflection� 35,51.  This method adds an additional layer of approximation since it accelerates 

the elasticity calculation by neglecting the contribution of far-field grid points.   Our polar coordinates 

approach allows us to use the conventional and more accurate approach without running into 

computational difficulties.  However, some non-trivial adjustments have to be made to evaluate eqn (6b).  

Specifically, unlike the uniform mesh in Cartesian coordinate where the subdomains are rectangles, the 

subdomains in our polar coordinates systems are irregular quadrilaterals. For any rectangular domain, the 

surface displacements due to a uniform pressure can be evaluated in closed form 32,47.  The calculation of 
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2.5 Iteration scheme 

The numerical set up for the Reynolds and the elasticity equations is given in the previous section. The 

solution of the EHL problem requires the simultaneous solution of the Reynolds, eqn (6a), and the 

elasticity equations, eqn (6b). The nonlinearity of the Reynolds equation requires this to be done 

iteratively.  The standard methods are: (i) relaxation method, (ii) the Newton-Raphson method. The 

relaxation method 29 is easy to implement and less memory-demanding, but usually requires more 

iterations to converge. The Newton-Raphson method 27,52 requires much more memory but requires fewer 

iterations to converge. It is widely used in line-contact EHL problem because of the fast quadratic converge 

rate. However, the Newton-Raphson is proved to be inefficient when solving the point-contact EHL 

problem because of the huge non-sparse Jacobian matrix, which is difficult to handle numerically.  Here 

we used the forward relaxation method 29 where the normalized pressure in the iteration is related � �1

,

n

i j
p

	

to the pressure in the nth iteration by� �
,

n

i j
p
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where  is the relaxation factor.!

Our numerical scheme is autonomous and requires no manual intervention. A flow chart of our 

numerical scheme is shown in Fig. 4. Briefly, in the numerical calculation we fix the vertical position of the 

sphere.   We then provide a guess of the initial hydrodynamic pressure distribution. This initial guess 

should be a continuously differentiable function of position and this rules out the Hertz pressure. If the 

Hertz pressure is used as the initial guess, the numerical procedure oscillates and fails to converge. For 

the initial guess in our calculation, we used a 5th order polynomial function to approximate the Hertz 

pressure.  This initial guess avoids the infinite gradient of the Hertz pressure domain at . The 1r �
simulation starts with a small , for which it is easy to get a converged solution.  The result is used as the 0�

next initial guess for a larger . We used this process to march from small  to the desired , which is �
0� �

about 3 orders of magnitude larger. As  gets increasingly larger, the simulation tends to be unstable, �

which requires one to decrease the relaxation factor to stabilize the simulation. Typically, from  to 0 10� �

the , the relaxation factor  decreases from (over relaxation) to  (under relaxation). In 10000� � ! 1 4. 0 1.

our numerical scheme, we track the relative error  to check for convergence. If the relative /
new old old

p p p�

error becomes too large, we reduce the relaxation factor by 60% percent and restart the simulation.
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Fig. 4 Flow Chart of our numerical scheme

3. Results and Discussion. 

3.1 Hydrodynamic pressure and scaling law for �

The pressure profiles along the x-axis and y-axis for different  are shown in Fig. 5.  Also plotted is the �

Hertz pressure, eqn (7a).  Fig. 5 shows that the pressure approaches the Hertz pressure as  increases. �

Increasing  means that more liquid is squeezed out under the indenter and the film thickness gets �

smaller.  Fig. 5 shows that the pressure profile is smoother in the intake region than the exit - flow is 

slower in the intake region.   In the iso-viscous EHL simulation, we did not observe any high pressure spike, 
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Fig. 8 Film thickness profile at different cross-section; (a) cross-section along  axis; (b) cross-section x

along  axis. The results of different  are presented. The imbedded figures show y 100 200 500 1000, , ,� �

details of the film thickness at the �Hertz� contact region.  

The profile of the liquid film thickness along the x-axis and y-axis for different  is shown in the Fig. �

8.  In the �contact� region , the thickness of the liquid film is largest at the center  and decreases 1r 
 0r �

very slowly until  reaches the intake and exit regions.  In particular, the film thickness at the intake region r

is noticeably larger than the exit region where the liquid flows rapidly, due to the rapid decrease of 

hydrodynamic pressure.   The normalized film thickness at the center of the sphere  and the minimum 
mid

u

normalized film thickness  at the outlet were extracted from our numerical results and plotted in Fig. 
min

u

10. These thicknesses obey the following scaling laws shown in eqn (22a,b). 
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0 5826

0 6626

0 9051

0 9283

.

.

min

.

.

mid
u

u

�

�

�

�

�

�

Contour plots of the film thickness in the contact region ( ) for different  are shown in the Fig. 1r � �

9.  Liquid enters into the contact region from the positive  direction.  As expected, the film thickness is x

thinner at the region where the fluid exits. To further check our numerical results, we compare the 

normalized film thickness at the inlet region  with the result of Snoeijer et al46. There is 1 0,  0r �� � �
excellent agreement between the two results. This comparison is given in the supplementary information.
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Fig. 9 Film thickness contour in the Hertzian contact region  for different  value. (a)  , (b) 1r � � 100� �

 , (c)  , (d) . 300� � 500� � 1000� �
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Fig. 10  Dependence of liquid film thickness at  ( ) and minimum film thickness ( ) on . 0r � mid
u

min
u �

Fitting functions for , are also plotted. 
mid

u
min

u

3.3 Velocity field

Our recent work has shown that small fluorescent particles can be used to capture the fluid velocity field 

during sliding17. Since the flow velocities are proportional to the pressure gradient, this particle tracking 

method allows indirect measurement of the hydrodynamic pressure.   In Reynolds theory, the normalized 

velocities and pressure gradients are related by

(23a)� �� �3 , cos
r r

z w
v z w z h p

u
� �

�
� � � 	

(23b)� �� � 1
3 , sin

z w
v z w z h p

r u
� �� �

�
� � � �

Where ,  and is the normalized position of the plane where the velocity field is /r rv v v� /v v v� �� z

measured.  The average velocities are obtained by integrating through the film thickness, i.e.,

; (24a)21 1

2 2
,

, cos

h

r
w

r ave rh

w

v dz
v p u

dz

� �
�

7 � � 	
�
�

(24b)21 1

2 2
,

, sin

h

w

ave h

w

v dz
v p u

rdz

�

� �� �
�

7 � � �
�
�
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Fig. 11 Components of the average velocity of the flow flowing into the two rings  and  (a) 0 5.r � 1 0.r �
the averaged radial flow velocity ; (b) the averaged swirl flow velocity .
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Fig. 11 plots the average velocities field ( , ) on the circles  and . For the 
,r ave

v
,ave

v� 0 5.r � 1 0.r �

averaged radial component , the velocity of the flow entering the circle  is smaller than that 
,r ave

v 1 0.r �

exiting the ring. This is because the liquid film is thicker in the intake region.  However, for , the 0 5.r �
flow velocity entering and exiting the ring is practically the same since the film thickness varies but little. 

For the averaged swirl velocity component , Fig. 11(b) shows that the velocities on both circles are 
,ave

v�

similar. The magnitude of  versus  is a sinusoidal function. The flow splits at and meet at . 
,ave

v� � 0� � � ��

As expected,  reaches its maximum at .
,ave

v� 2 3 2/ , /� � ��

3.4 Hydrodynamic friction Ff

The shear traction between the sphere and the liquid layer gives rise to hydrodynamic friction . Due to 
fF

reflection symmetry, only the shear traction component  contributes to the hydrodynamic friction. 
zx8

This stress component is:

(25)� � 1
3 2,x x

zx zx x

v v
p z h w

z z u
8 � 8 �

� �
7 $ � � � � 	

� �

where  is the normalized shear stress and  is the normalized film thickness. 
0 3

2
8 8 �8

� � �
� �zx zx zx

h R

v v G
u

Since the average through thickness  depends only on , the average through thickness shear stress 8 zx �

must be given by  where f is a function that depends only on .  This is consistent with � � � �1 2� �/
/vG R f �

the results of Meeker et al.,53,54.  In the following, we denote the normalized the hydrodynamic friction by 

(26)
2

0

3

2

f

f

F
F

Gh�
�
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The normalized hydrodynamic friction and normal force are determined by integrating and the 
zx8

hydrodynamic pressure over . In normalized form, we have:
Hr a�

(27a)
1 1

1 1
3 ,f zx xz h

r r

F dxdy p u dxdy
u

8
� ��

� �

, -
7 � 	1 2

. /
�� ��

(27b)
1r

N pdxdy
�

7 ��

Eqn (27a,b) state that  and the normalized normal force  depend on the single parameter , f
F N �

Hence there is an universal relation between these quantities.  The normalized friction force  and the f
F

applied normal force  versus  are plotted in Fig. 12.  As  increases the normalized normal force   N � � N

is independent of .   This is expected since the normal force must converge to the Hertz normal force.   �

This is because the contribution of the boundary layer to the normal force is insignificant as the thickness 

of the boundary layer vanishes as  goes to infinity.   Indeed, according to eqn (4,5b),  should � � �1N � ?

approach , as confirmed by our result in Fig. 12. The blue curve in Fig. 12 shows that the normalized 4 / 3�
friction force obeys the scaling law eqn (28). 

 (28)
0.4398

4.806fF � �� 1� ��

Since the normal load N is given by the Hertz solution for , we must have:1� ��

(29)

2/3

0

3

16

N
h

G R

, -
� 1 2
. /

Thus,  in this regime can also be expressed in terms of the normal load as:�

(30)

4 3 4 32 4 3

0

1 3 5 3

2 2 3 2 3

3 3 3 1616

� � �
�

� � �
, - , -� � �1 2 1 2. /. /

/ / /

/ /

h G G N N

R v Rv G R vG R

This expression for  is useful for sliding experiments carried out with a fixed normal force (instead of a �
fixed normal displacement).
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Fig. 12 Normalized friction and Normal force versus . �

3.5 Comparison with experiments

For experimental analysis, samples were fabricated using poly(dimethylsiloxane) (PDMS, Dow Sylgard 184, 

Dow Corning) with a 10:1 base to cross linker ratio.  Samples were cast as flat 2mm thick slabs, with a 

Young�s modulus of approximately 3MPa.  Sliding experiments were completed using a spherical glass 

indenter as the contacting surface (R=2 mm) and PDMS base as the lubricant due to its wetting properties.  

Experiments were performed using normal loads ranging from 18.6 to 238.1mN and sliding velocities 

ranging from 0.025 to 1mm/s, with a total of 72 load and velocity combinations tested.  The scaled results 

of these experiments are plotted in Fig. 13, where they collapse onto one master curve.  Also plotted is 

the numerical prediction using eqn (28). The experiments and the numerical results show excellent 

agreement. The experimental data in Fig 13 used a viscosity value for PDMS base, , of  in order � 2Pa s�

for the data to best match the theory.  This viscosity is somewhat lower than the manufacturer�s reported 

value of about .  The difference might be caused by the fact that the viscosity is quite sensitive to 5Pa s�
temperature.
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Fig. 13 Comparison of experimental data with numerical prediction using eqn(28)
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4. Summary and discussion 

A detailed analysis is carried out to study the lubricated steady sliding of a rigid sphere on an infinite elastic 

substrate. In contrast to most of previous works, we assume pressure independent viscosity, which is a 

reasonable assumption in EHL problem for typical soft substrate. The solution of the EHL problem in this 

regime is determined by a single dimensionless parameter  which can be interpreted as the inverse of �
a normalized sliding velocity. Our focus is on the �Hertz� limit where .  This corresponds to large 1� ��

normal load, small viscosity and slow sliding speed.   This regime is known to present numerical difficulties.   

We have developed a new numerical scheme to overcome these difficulties � our scheme can handle  �

as large as .  Our scheme uses polar coordinates, which reduces the computation time.  The use of a 410

non-uniform mesh in the radial direction near the inlet and outlet region also increases accuracy.   Our 

scheme is autonomous and requires no manual intervention.   Using this scheme, we studied in detail the 

structure of the hydrodynamic pressure and flow field near the inlet and outlet region.  The dependence 

of pressure gradient, film thickness and size of boundary layer on  is given in closed form.  These �
universal scaling laws give important insight to the flow mechanics in this highly confined regime. Our 

calculation allows us to determine the dependence of hydrodynamic friction on . We check this �
dependence against our recent experiments and find excellent agreement.

The numerical formulation and numerical scheme presented in this work can be used to simulate a 

wide variety of point-contact EHL problems, such as indentation of a sphere into an elastic layer covered 

with liquid layer, sliding a sphere in lubricant with pressure-sensitive viscosity and so on.  Our scheme is 

well suited to study the large force, small sliding velocity regime where conventional numerical methods 

tend to be unreliable.

Appendix 

1. Asymptotic behavior of solution for far field  � 1 2

For the far field where , we expect that the pressure and displacement goes to zero, so that:1r ��

,     (A1)

2 2

0
2 2

r r
h w u h h� � # � 	 # 1r ��

Substituting eqn (A1) into (6a) and neglecting the variation of  in  direction, the eqn (6a) reduces to:u �

(A2)

2
7 5 8 cosp p r

r r
r r

�
� � �

� � � ��  � 	 � �� � � �� � � �� � � �

A solution of the form: , would satisfy the (A2). The coefficient is easy to obtain. It turns out 
3

cosp Ar ���

that the far field pressure  is completely determined by the Reynolds equation and is � �1p r ��

independent of elasticity.

, (A3)
34

5
cosp r �

�
�� 1r ��
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2. Coefficient of the discretized Reynolds equation, eqn (13)

The coefficients of the discretized form of the Reynolds equation, eqn (13), is shown in eqn (A4a~f). Note 

that the , , , ,  and  are functions of the mesh grid size, the grid position, film thickness 
,i jA ,i jB ,i jC ,i jD ,i jE ,i jF

and . These coefficients need to be updated in each iteration of solving eqn (13).�

(A4a)
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� �
2
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, -� � �1 2. /+
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A u u u
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