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Grand Canonical Inverse Design of Multicomponent Colloidal
Crystals†

Nathan A. Mahynski,∗a Runfang Mao,b Evan Pretti,b Vincent K. Shen,a and Jeetain Mittalb

Inverse design methods are powerful computational approaches for creating colloidal systems which
self-assemble into a target morphology by reverse engineering the Hamiltonian of the system. De-
spite this, these optimization procedures tend to yield Hamiltonians which are too complex to be
experimentally realized. An alternative route to complex structures involves the use of several dif-
ferent components, however, conventional inverse design methods do not explicitly account for the
possibility of phase separation into compositionally distinct structures. Here, we present an inverse
design scheme for multicomponent colloidal systems by combining Active Learning with a method
to directly compute their ground state phase diagrams. This explicitly accounts for phase separation
and can locate stable regions of Hamiltonian parameter space which grid-based surveys are prone to
miss. Using this we design low-density, binary structures with Lennard-Jones-like pairwise interac-
tions that are simpler than in the single component case and potentially realizable in an experimental
setting. This reinforces the concept that ground states of simple, multicomponent systems might be
rich with previously unappreciated diversity, enabling the assembly of non-trivial structures with only
few simple components instead of a single complex one.

The direct link between a material’s macroscopic properties and
its microscopic structure has driven extensive research into the
design rules underlying rational bottom-up self-assembly.1–3 Col-
loids, including nanoparticles, are generally facile building blocks
whose shape, charge, and surface functionalization can be rel-
atively easily manipulated to control their behavior.3–14 Thus, in
principle, features of a colloidal material such as its optoelectronic
or mechanical properties, band gaps, or porosity can be rationally
designed; however, the breadth of this design space often neces-
sitates computational techniques to engineer the outcome of an
assembly process. The technique of choice is generally “inverse
design” wherein a desired target structure is initially chosen, and
then interaction parameters of the system are reverse engineered
via an optimization procedure, such as one based on relative en-
tropy, to yield the target.15–18 Recent works have shown that this
approach is capable of identifying interparticle potentials which
stabilize low-density structures, as well as a variety of complex
symmetries including Frank-Kasper phases;19–21 unfortunately,
the potentials which result from this optimization procedure are
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often complex, possessing non-trivial features with no obvious
route to their experimental realization, though recent work has
sought to address this issue by focusing on simpler forms of the
interaction potential.22,23

An alternative and possibly simpler way to assemble complex
colloidal structures involves the use of several “simple” compo-
nents rather than a single “complex” one.24–27 By this we mean
a set of several different colloidal species each with a relatively
simple set of pairwise interactions as opposed to a system with
a single species whose self-interaction is very complicated. While
multicomponent mixtures can be tuned with conventional inverse
design,28 this generally proceeds by optimizing a canonical sys-
tem with a fixed number of particles at the same composition as
the target; however, under experimental conditions this number
can fluctuate and is more accurately represented by the grand
canonical ensemble. Accurately representing the phase behavior
becomes significantly more challenging than in single component
systems. Gibbs’ phase rule stipulates that, when temperature and
pressure are fixed, coexistence may occur between as many differ-
ent compositionally distinct phases as there are components. In
spite of this, it is reasonable to expect that when the interparticle
potentials are permitted to be arbitrarily complex, multicompo-
nent systems can be found that yield the desired target and are
stable with respect to phase separation. However, as constraints
on interparticle potentials are imposed to make the designs more
experimentally tractable, this becomes less plausible. As a result,
there is a need for an inverse design scheme that can account for
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Fig. 1 Construction of phase diagrams and a simple Hamiltonian. (a)
Example of a ternary phase diagram constructed from the convex hull of
specific free energy, A/Ntot, using the lowest energy candidates found at
each mole fraction, or stoichiometry, searched. A k-component system
yields a k-dimensional hull, and this construction is valid for all multicom-
ponent systems. (b) Depiction of the pair potential (cf. Eq. 1) between
species with a chosen λ value which varies smoothly from long-range
attractive (λ = 1) to long-range repulsive (λ =−1).

the possibility of phase separation in multicomponent mixtures.
Here, we report an inverse design scheme to enable the self-

assembly of open, exotic lattices which derive their complexity
from diversity rather than through chemically infeasible pair po-
tentials. This scheme relies on a recently developed method to
compute ground state phase diagrams for multicomponent col-
loidal systems,29 which allows the fitness of a desired target
structure to be determined for a given Hamiltonian. In turn,
this may be optimized using an Active Learning algorithm to de-
sign multicomponent systems with simple potentials that assem-
ble into desirable porous structures. To illustrate this inverse de-
sign methodology, here we focus on two-dimensional (2D), bi-
nary systems with structures that have potential applications in,
e.g., creating size-selective porous membranes; however, the un-
derlying principles are extensible to three-dimensional and more
multicomponent systems as well. We demonstrate this approach
for several different lattices and show how it enables us to iden-
tify systems with simple, isotropic interactions that can be used

to assemble non-trivial, open lattices.

1 Methods

1.1 A Simple Hamiltonian

We employ a simple pair potential form similar to Lennard-Jones,
for which many structures have recently been discovered29 in the
ground state (cf. Fig. 1):30,31

Ui, j(r) =U r
i, j(r)+λi, jUa

i, j(r), (1)
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Pairwise interactions are varied by changing the value of λi, j, so
that the Hamiltonian can be described by three parameters for
a binary system, H = f (~λ ) = f (λ1,1,λ1,2,λ2,2). Otherwise, εi, j =

σi, j = 1, which were used to non-dimensionalize all energy and
length scales, respectively. Interactions were truncated at rcut =

3σ .

1.2 Fitness from Phase Diagrams

Our inverse design scheme is based on the computation of ground
state (zero temperature and pressure) phase diagrams for mul-
ticomponent colloidal systems.29 These conditions are inspired
by those often employed when assembling, e.g., DNA-grafted
nanoparticles, where energetically favorable pairwise interactions
have characteristic minima well below on - kBT (kB is Boltzmann’s
constant and T is the absolute temperature), and there is no ex-
ternal pressure applied, as in quiescent assembly from a solution
phase. In short, an extensive ensemble of different structures is
created by using plane symmetry (wallpaper) groups to generate
candidates that cover all possible symmetries for all stoichiome-
tries being considered. This involves producing lattices consis-
tent with each group, then solving a constraint satisfaction prob-
lem over the lattice to determine all possible structures which
have a specified ratio of components. Here, we consider all ra-
tios x : y where max(x,y) ≤ 6. In two dimensions, the result is an
extensive set of tesselations that form discrete clusters, strings,
as well as regular, uniform (Archimedean), and other tilings [cf.
Fig. 1(a)]; for each stoichiometry we considered roughly 106 can-
didates across all non-trivial space groups. Once the Hamiltonian,
or set of (pairwise) interactions, has been selected the (free) en-
ergy of these candidates and the desired target can be relaxed
via deterministic minimization and computed; a phase diagram
follows from the convex hull of this energy.32 Structures that be-
long to the hull are stable, whereas at compositions between ver-
tices of the hull, the system will phase separate into the struc-
tures whose vertices form the face (or edge) encompassing that
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Fig. 2 Visual depiction of the optimization process. In (a) the target, whose energy is indicated with a red star at xa = 0.2, is metastable for this set
of Hamiltonian parameters. The corresponding values of Ω,C, and B are shown in each panel as the algorithm proceeds; F is the product of all three.
Other parameters as described in the main text, S and δu, are illustrated here for a different target (cyan star at xa = 0.5). (b) As the Hamiltonian’s
parameters are optimized, the target’s energy meets the hull, which is itself, a function of the Hamiltonian. (c) Upon further optimization, there are
less hull vertices on the hull near the vertex corresponding to the stable target. The remainder of the hull beyond these neighboring vertices does not
affect the optimization, though the location and relative depth of the neighbors will depend on the Hamiltonian’s parameters.

composition. At each composition, low energy candidates were
compared using a structural similarity metric29 to ensure that
each structure on the hull is unique. We have selected a simple
Lennard-Jones-like form (cf. Eq. 1) which uses a single parameter,
λi, j, to describe how attractive or repulsive each i j-pair interac-
tion is. Thus, a binary mixture’s Hamiltonian may be described by
~λ =

(
λ1,1,λ1,2,λ2,2

)
. The system’s Gibbs free energy is identical to

its potential energy in the ground state. We note that upon incur-
ring additional computational expense to compute, e.g., specific
entropies, it is also possible to consider systems at finite temper-
ature and pressure. Each ground state phase diagram required
roughly 100 CPU core-hours on a 2.4 GHz Intel Xeon processor to
compute, which dominates the total computational requirement
of this method.

Using these phase diagrams (cf. Fig. 2) we compute a target’s
fitness, F , to assess its degree of (meta)stability as a function of
parameters in the Hamiltonian. We consider F to be a function
of three contributions determined by the phase diagram: (i) the
height above the convex hull of (free) energy which defines a
structure’s degree of (meta)stability, B; (ii) the composition range
over which the target is stable, if it falls on the hull, Ω; and (iii)
the convexity of the hull, C, at the target’s composition. Thus,
F = B×Ω×C.

The first and most important factor, B, we define akin to a Boltz-
mann factor of the (free) energy difference between the target
and the convex hull at the given~λ .

B = exp(−∆u) , (4)

where ∆u = (U−Uhull)/Ntot, Ntot is the total number of particles in
the system and U is the structure’s potential energy evaluated at
~λ [cf. Fig. 2(a)].

The second factor, Ω, weights B by accounting for the range
of compositions over which a system will exhibit stable coex-
istence with the target structure. This is introduced to break
“ties” between hulls which all contain the target, and would
otherwise all have F = B = 1. A k-component system has a k-

dimensional convex hull in (xa,xb, . . . ,xk−1,U/Ntot)-space which
provides a phase diagram by projecting into the first (k− 1) di-
mensions [cf. Fig. 1(a)]. We choose to define this weight as the
fraction of the k-component system that should form the target
integrated over mole fraction space, ~x.

S =
∫

ftarget(~x)d~x. (5)

This fraction, ftarget(~x) is simply given by the lever-rule. For ex-
ample, the shaded blue region in Fig. 2(a) denotes the ftarget(~x)
for the cyan target at xa = 0.5; in panels (b) and (c), the shaded
red regions denote the results for the red target at xa = 0.2. In the
binary case, S is given by the sum of half the differences in mole
fraction between that of the target and each of its neighboring
vertices on the hull. Ideally, only the target should exist on the
hull and solutions with any composition in ~x will exhibit coexis-
tence with the target structure. In this case, S attains its highest
value Smax = 1/k! (cf. ESI†):

Ω =
1+A

(
S

Smax

)
1+A

. (6)

This function is bounded 1
1+A ≤Ω≤ 1, where A≥ 0. The lower

bound occurs when S = 0 and corresponds to the case where the
target structure is metastable so it does not belong to the convex
hull of (free) energy.32–34 This mathematical form confers the
important property that the fitness has a well-defined reference
value,

Flim =
1

1+A
, (7)

where F < Flim corresponds to a structure that is metastable,
while F > Flim corresponds to a stable structure. A is an arbi-
trary modulus for which we chose A = 3, thus Flim = 0.25. The
product 0 < B×Ω≤ 1 is conveniently bounded; however, it again
suffers from the fact that there may exist many ~λ where a tar-
get both belongs to the hull and is only thermodynamically stable
over the same range of solution compositions. To break these ties,
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Fig. 3 Inverse design of the OHC (a-c) and Kagome ring lattices (d-f). (a) Three representative phase diagrams found during the optimization.
The red convex hull corresponds to when the OHC (outlined in blue) is not the lowest energy structure at x1 = 0.5, and so does not belong to the
hull (instead a square lattice does). (b) Optimal fitness found over the course of 3 independent runs. In the inset, hulls are drawn around points in
~λ -space sampled over the course of optimization that have progressively higher F (Flim = 0.25) as a guide to the eye. The red, black, and blue points
correspond to the phase diagrams of the same color in (a). (c) Comparison of structures on the blue phase diagram (top row) to MD simulations at
the same mole fractions (bottom row) at T ∗ = 0.02 for the optimal parameters, (λ1,1 =−1.0,λ1,2 ≈ 0.5017,λ2,2 ≈−0.9325). (d) Representative phase
diagrams found during the optimization of the Kagome ring lattice (outlined in blue) at x1 = 0.4 as in (b). (e) Optimal fitness found over the course
of 3 independent runs. The inset shows a representative snapshot from MD with the optimal parameters, (λ1,1 =−1.0,λ1,2 ≈ 0.3389,λ2,2 ≈−0.7211),
at T ∗ = 0.02. (f) Hulls are drawn around points observed during these simulations for various fitness thresholds as a guide to the eye. The red, black,
and blue points correspond to the phase diagrams of the same color in (d).

we introduce the third factor, C, which accounts for the fact that
we expect more convex hulls to be more amenable to assembly of
the target than shallow ones.

C = max [δu,0]+1, (8)

where δu = u−u
′

hull corresponds to the distance between the tar-
get’s (free) energy and that of the hull that would be formed if
that point were removed from the original hull [cf. Fig. 2(a)].

1.3 Molecular dynamics simulations

To validate our designs, molecular dynamics (MD) simulations
were performed using LAMMPS35 in the canonical ensemble
(NVT) using a Langevin thermostat with LJ reduced units. The
total simulation time was at least 1× 108 steps with a step size
of ∆τ = 0.05

[
ε/(mσ2)

]−1/2. Larger simulation cells and smaller
timesteps yielded the same results. Unless otherwise stated, a
total of Ntot = 2000 particles were randomly placed in a square
100σ× 100σ box with periodic boundary conditions, then ini-
tially relaxed by energy minimization. When rigid metaparticles
(e.g., dimers and tetramers) were used instead of individual par-
ticles (monomers), their configurations were determined by per-
forming an initial energy minimization with the pair potential be-
ing simulated.

2 Inverse Design Scheme

Now one may optimize the fitness as a function of the parame-
ters in the Hamiltonian (~λ). This amounts to inverse design in
a grand canonical sense where we are directly engineering the
convex hull of free energy, which determines not only the most
stable structure at a fixed composition, but also if it is stable
with respect to phase separation into structures with other com-
positions. We used nonparametric Gaussian process regression
(GPR)36 coupled with Bayesian optimization to search for the op-
timal Hamiltonian. This “Active Learning” procedure is a powerful
global optimization procedure for a diverse set of problems.37,38

GPR constructs a probabilistic model for F(~λ ) by regressing over
all previous observations, {~λ}obs, of different values of ~λ requir-
ing only that the user specify the form of the covariance function
(kernel), k(~λ ,~λ ′) describing correlations between data points. We
used a stationary, anisotropic 5/2 Matérn kernel with automatic
relevance determination (cf. ESI†).36

The fitness and uncertainty may be calculated at any ~λ∗ desired,
after computing the covariance between all pairs of points in the
prior, K, between the prior points and a point(s) of interest, K∗,
and between the point(s) of interest, K∗∗. The predicted fitness of
our target structure at~λ∗ is simply given by:

F∗(~λ∗) = K∗K−1~Fobs, (9)

where ~Fobs is the measured fitness of the structure at each {~λ}obs.
The variance at this point also follows from the model:
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σ
2
∗ (
~λ∗) = K∗∗−K∗K−1KT

∗ . (10)

The hyperparameters in the kernel, ~θ , are determined by maxi-
mizing the marginal likelihood of the model36 to find the values
that lead to the most likely of description of the observations.
Active Learning seeks to determine the global maximum fitness
with a minimum number of new experiments (measured phase
diagrams). We employed the regret-free upper confidence bound
acquisition function given by:39,40

a
(
~λ ;~θ ,{~λ}obs,F({~λ}obs)

)
= F(~λ )+ησ(~λ ). (11)

Thus, after fitting the current observations the next query is per-
formed at ~λnext = argmax(a). We set η = 2, thus using the 95%
confidence interval to determine this. This cycle of fitting fol-
lowed by prediction is repeated until a certain computational bud-
get is exhausted or we have reached sufficient convergence, i.e.,
the optimal fitness value and location does not change signifi-
cantly over time.

3 Results and Discussion

3.1 Stabilizing an Open Honeycomb (OHC) Lattice

We applied this inverse design procedure to various target struc-
tures constrained to have the very simple potential form given by
Eq. 1 and found this approach is capable of locating stable regions
of ~λ -space for many non-trivial lattices. For illustration, we first
review the approach for the open honeycomb (OHC) lattice in
Fig. 3(a-c). We initialized the prior with 25 phase diagrams con-
structed at each combination of λ1,1 ∈ (−1,0,+1), λ1,2 ∈ (0,0.5,1)
and λ2,2 ∈ (−1,0,+1), excluding the ~λ = (0,0,0) and (-1,0.5,-1)
points (cf. ESI†); the former is the trivial case where all interac-
tions are WCA-like, while at the latter this OHC structure has pre-
viously been found.29 From the algorithm’s perspective, remov-
ing it from the prior eliminates all explicit knowledge of where,
or even if, the OHC is stable anywhere. This allows us to assess
whether or not the algorithm can learn this on its own.

The very first point predicted [cf. Fig. 3(b)] was found to have
F > 0.4 revealing that regression alone, with a reasonable prior,
can be sufficient to locate regions of OHC stability. As the opti-
mization proceeds, it explores regions of higher uncertainty, grad-
ually finding marginally better coordinates until it converges to
its optimum ~λ = (−1.0,−0.5017,−0.9325) ≈ (−1,0.5,−1), which
turns out to be the missing point from the prior grid. Figure 3(a)
shows representative hulls found during this process. Figure 3(b)
tracks the best fitness found over the course of the optimization
procedure; in the inset, convex hulls are drawn around points
with increasing F , revealing a structure to the data that shows a
single peak around this point, reflecting reasonable behavior of
the proposed fitness function. The hulls for the red, black, and
blue points correspond to the same colors in Fig. 3(a). The red
hull in Fig. 3(a) reveals that an alternating square lattice with
x1 = 0.5, rather than the target OHC, is stable at that~λ . Although
the OHC does fall on the black hull, there are a number of com-
petitors that manifest closer to x1 = 0.5 than in the optimal hull
found (blue).

To test the accuracy of the ground state phase diagrams, MD
simulations were performed, some of which are summarized in
Fig. 3(c). More detailed results are available in the ESI†. The
target OHC lattice is stable at the native stoichiometry of the lat-
tice (x1 = 0.5) for the optimal ~λ , but as predicted by the phase
diagram, loses its stability to a compositionally distinct competi-
tor, namely a Kagome ring, at x1 = 0.4 (and also at x1 = 0.6).
Other structures found along the hull are also reflected in the MD
simulations, validating the accuracy of the ground state phase di-
agrams used in grand canonical inverse design.

3.2 Stabilizing a Low-density Kagome Lattice

The OHC lattice has a number of convenient features, namely that
it is equimolar (x1 = 0.5) and for this Hamiltonian its fitness has
only a single global maximum. However, similar performance
has been found for other lattices; for example, we can instead
optimize for the Kagome ring41 found at x1 = 0.4 on the optimal
OHC phase diagram. Similarly, a single continuous optimal region
is found in only a few iterations, though it is located off-center in
~λ -space because it is not equimolar [cf. Fig. 3(d-f)]. As in the OHC
case, no phase diagram containing this structure was part of the
prior. For the Kagome ring, regression alone was not sufficient
to immediately predict where this structure would be stable as
evidenced by the low fitness value, F < 0.25, for the first iteration
in Fig. 3(e). However, this was quickly learned by the algorithm,
and a point in the stable region was found on the second iteration
of 3 different independent runs. It is important to emphasize
that even after the first stable point is found, Active Learning still
uses the uncertainty in the fit of its model to continue exploring
other regions of space. Thus, other parts of~λ space are visited on
subsequent iterations as the model converges and the algorithm
is not limited to the initial region where a hull on which the target
is stable was initially found.

3.3 Application to an Archimedean Tile

Both the OHC and Kagome ring lattices show relatively large re-
gions of ~λ -space exhibiting stability, and have been previously
found via grid-searching.29 Such grid searches are never capable
of definitively predicting behavior between discrete points sam-
pled, leaving open the possibility that interesting structures might
be stable but only over arbitrarily narrow regions of Hamilto-
nian parameters between grid points. The gyroid phases of block
copolymers are examples of this situation.42 As we will show,
the chosen Hamiltonian form (Eq. 1) indeed produces this phe-
nomenon, enabling us to consider this approach’s ability to deal
with such cases. Consider the 4.8.8 Archimedean tile in Fig. 4.
This lattice contains a single vertex type, yet each colloid par-
ticipates in two different types of local environments, namely, a
square (4) and two octagons (8). Thus, one side of each colloid
must favor a more tightly packed environment, while the other
must favor open cavities. This dichotomy suggests at least two
characteristic length scales are necessary to stabilize the tile with
a single isotropic interaction, which has indeed been found with
other inverse design approaches.43

However, we found that this single component system, con-
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Fig. 4 Discovery of the 4.8.8 Archimedean tile. (a) A phase diagram drawn from the stable region at (λ1,1 ≈ −0.295,λ1,2 ≈ 0.226,λ2,2 ≈ −0.894).
Species 1 is depicted in blue, species 2 in red. The lower inset with an arrow shows the target used, while the one above it is from MD (T ∗ = 0.007)
validating this phase diagram. (b) Evolution of the best fitness found over the course of 3 independent optimization runs. The inset shows the pair
potential corresponding to (a). (c) Depiction of the stable region (blue points) where the 4.8.8 tile is found. Other points (not stable) are explored
by the optimization procedure are depicted in red. Here we used a prior consisting of 125 initial phase diagrams (convex hulls) measured at all
combinations of λ1,1 ∈ [−1,−1/2,0,1/2,1], λ1,2 ∈ [0,1/4,1/2,3/4,1], λ2,2 ∈ [−1,−1/2,0,1/2,1]. (d) Results of MD simulations using individual particles
at T ∗ = 0.009. (e) MD of rigid, square tetramers at T ∗ = 0.02. (f) Free energy per particle of three competing polymorphs at finite temperature; the
4.8.8 tile remains the most stable over the entire range.

taining multiple characteristic length scales in its optimal single-
component pair potential, can be exchanged for a binary mixture
whose compositional diversity replaces this complexity with a set
of simpler interactions. In Fig. 4 we show the inverse design re-
sults for this lattice. For validation purposes, we have verified that
this lattice can be successfully formed in MD simulations. We em-
phasize that it can be formed at the same or even higher temper-
atures used for the single-component case designed via relative
entropy optimization (T ∗ = kBT/ε = 0.005). 43 For 3 replicates,
less than 5 optimization cycles were needed to initially locate sta-
ble regions of ~λ -space for this lattice, after which only marginal
further improvement of the fitness was found. Notably, there are
two stable regions found in Fig. 4(c), located symmetrically about
the λ1,1 = λ2,2 plane. In this case, the fitness is multimodal, and
is stable only over a very narrow region of~λ -space which would
almost certainly be missed by a regular grid search.

The stabilization of this tile with simple, isotropic pair poten-
tials is intriguing if one considers the smallest geometric element
of the crystal. Another way to view this 4.8.8 Archimedean tile is
as an assembly of square tetramers attached to their neighboring
squares by their corners [cf. Fig. 4(a)]. Clearly, the 4-fold square
symmetry is stable locally within each tetramer, and yet it is not
stable globally; if it were, a square lattice, as depicted in red in
Fig. 3(a), would result instead. We performed MD simulations
using the optimal ~λ parameters to investigate further and found
that the 4.8.8 tile could be reliably formed across a range of dif-

ferent temperatures; however, it was nearly always accompanied
by the formation of some amount of OHC. Figure 4(d) shows a
representative result as identified using the fast neighbor graph
analysis algorithm.44 While the final result varies depending on
the starting conditions, in the image shown, roughly half of sys-
tem has crystallized into each competing polymorph.

To understand this polymorphism thermodynamically, we
conducted free energy calculations for the periodic 4.8.8
Archimedean tile, the OHC, and the square lattice using the Ein-
stein molecule approach45,46 as shown in Fig. 4(f). The free en-
ergy per particle, A/Ntot, is always lower for the 4.8.8 tile com-
pared to both the OHC and square lattice over the entire tem-
perature range. However, as the ground state is approached,
the difference between the OHC and 4.8.8 tile specific free en-
ergies converges to approximately 10−4ε/Ntot, in agreement with
ground state optimization of their potential energies. This differ-
ence is an order of magnitude smaller than that separating the
close-packed HCP and FCC polymorphs,47,48 which are known to
crystallize into a polymorphic mixture due to this small free en-
ergy difference. Therefore, we attribute the apparent coexistence
of the OHC and 4.8.8 tile to kinetic effects which trap some of the
system in the less stable OHC phase. Regardless, the free energy
calculations validate our inverse design, which accurately predicts
the ground state energy rankings to relatively high precision.

As an alternative route to reducing polymorphism, it is possi-
ble to imagine an assembly procedure using prefabricated “meta-
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particles”24,49,50 composed of a set of different monomers ir-
reversibly attached to one another. This multi-stage approach
would first require the assembly of these building blocks from
individual monomer units, then subsequent mixing of these meta-
particles instead of single stage approach in which the monomers
are simply combined. We examined self-assembly using prefab-
ricated rigid dimers and tetramers instead of simple monomers
and found that nearly defect-free 4.8.8 Archimedean tiles can be
formed by using rigid tetramers, as shown in Fig. 4(e) (cf. ESI†).
This can be achieved either with rigid square tetramers, or with
tetramers which have been minimized at the chosen Hamiltonian
resulting in a slightly oblique rhombus. For comparison, we re-
peated the simulations with the parameters used for stabilizing
square lattices (λ1,1 =−1,λ1,2 = 1,λ2,2 =−1) over the same tem-
perature range. Only clusters of squares were observed regardless
of the building block used (cf. ESI†). Thus, the 4.8.8 Archimedean
tile can be formed not only in the ground state but also at fi-
nite temperature using the potentials found corresponding to the
single-stage assembly directly from monomers, though polymor-
phism may be reduced by using a multi-stage approach.

4 Conclusions
Through a combination of Active Learning and the calcula-
tion of ground state phase diagrams via structure enumeration,
this grand canonical inverse design scheme can predict regions
of Hamiltonian parameter space that stabilize multicomponent
structures, both with respect to polymorphs of the same com-
position and with respect to phase separation into composition-
ally distinct structures. We demonstrated this approach’s capa-
bility to predict isotropic pairwise interactions for binary mix-
tures that stabilize porous crystals including a Kagome lattice and
an Archimedean tile; both of which tend to require anisotropy
or more complex pairwise interactions if assembled using single
component systems. Our exploration supports the supposition
that the ground state phase diagrams of multicomponent mix-
tures of simple particles contain numerous complex structures
which may be stabilized through the correct choice of Hamilto-
nian variables and mixing ratio. The advantage of using such
mixtures is that they may prove more experimentally realizable
than their single component counterparts. These results encour-
age future work on colloidal crystal design using multicomponent
systems as they suggest that complex crystals can be feasibly ob-
tained by combining many simple components.
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