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Rotation of a submerged finite cylinder moving down
a soft incline†

Baudouin Saintyves,a,b Bhargav Rallabandi,c Theo Jules,a,d Jesse Ault,e Thomas
Salez, f ,g Clarissa Schönecker,h,i Howard A. Stone j and L. Mahadevank

A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at
a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the
cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque
generated by flow in the variable gap, and the viscous friction on the edges of the finite-length
cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder, the angle
of the incline, and the deformability of the substrate, which we express in terms of a single scaled
compliance parameter. By independently varying these quantities, we show that our experimental
results are consistent with a transition from an edge-effect dominated regime for short cylinders
to a gap-dominated elastohydrodynamic regime when the cylinder is very long.

1 Introduction

The interplay between lubricated flow and deformable surfaces
is ubiquitous in nature and engineering in settings spanning a
broad range of length scales, e.g. earthquakes1, avalanches2,
landslides3, lubrication of cartilaginous and artificial joints4–9 or
industrial bearings10. Often, this elastohydrodynamic coupling
is seen in the presence of confined flow where pressure gradi-
ents are likely to be large. Previous theoretical works have stud-
ied confined flows in the soft lubrication approximation and ac-
counted for the roles of elasticity11–16, fluid compressibility17,
the inertia of the fluid and the elastic medium18, and viscoelas-
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ticity of the substrate19. More recent works have focused on
elastohydrodynamic effects for liquids confined at the micro and
nano scales20–22, which has important consequences for surface
mechanical characterization23,24. For symmetrical objects, the re-
sults show that elastic deformations lead to a non-symmetric pres-
sure field and to the emergence of a friction-reducing lift force. Of
particular importance in nature are cases of freely moving parti-
cles close to soft surfaces as seen in flows of cells in vessels25 or
microfluidic devices26,27, the mobility of suspended or falling ob-
jects near elastic membranes28–31, the behavior of vesicles near
walls32 or the collisions between suspended particles33. It is only
very recently that a theoretical work34 addressed freely moving
objects and showed how a free falling cylinder can sediment, slide
and spin along a soft incline. A particularly interesting result is
that the elastohydrodynamic lift force can counteract sedimenta-
tion and lead to an emergent sliding steady state that has since
been confirmed experimentally35. The experimental study also
raised a new question associated with observations of rotational
motion, which led to a recent theoretical study of the rotation36

that remains untested.

In this article, we experimentally quantify the rotation of cylin-
ders falling along a soft incline. We show that there is a steady
rotation speed for finite-length cylinders that increases with sub-
strate deformability, qualitatively consistent with a recently de-
veloped theory for an infinite cylinder near a soft substrate36.
However, the latter fails to describe quantitatively our results. We
show that a complete theory that takes into account both the elas-
tohydrodynamic torque along the cylinder length and the viscous
friction on the edges of the cylinder is in quantitative agreement
with our experiments. In particular, for a given cylinder aspect
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ratio and incline angle, our other experimental parameters can
be combined into a single dimensionless compliance parameter;
when this compliance increases, i.e., the thickness of the substrate
increases or its stiffness decreases, the angular velocity follows a
relationship that contains two regimes, a first one dominated by
edge effects and the second by the elastohydrodynamic stresses
due to the substrate deformation. In contrast with the theory for
infinite cylinders developed previously, here the edge effects do
not allow for the existence of simple power law behaviors in the
range of our experimental parameters.

2 Experimental system and observations
The experiments follow the same protocol as described previ-
ously35, with metal cylinders of either aluminum or brass (densi-
ties ρ = 2720 and 8510 kg/m3) with radii a = 12.7 and 6.35 mm.
For both cylinders, the length L = 12.7 mm such that their respec-
tive aspect ratios are a/L= 1 and 1/2. The cylinders are immersed
in a silicone oil bath of density ρoil = 970 kg/m3 and viscosity
µ = [0.35− 30] Pa.s. They freely move down a rigid glass incline
(angle varied in the range α = [11− 45]◦) coated with a soft gel
with shear modulus G in the range [100−3×105] Pa (Fig. 1(a)).
The coating thickness is varied in the range he = [100−2000] µm.
The coatings are made of polydimethylsiloxane (PDMS) and poly-
acrylamide (PAA) in which we can change the concentrations of
monomers and crosslinkers to tune the shear modulus (see ex-
perimental protocol in ESI). The latter is measured on an Anton
Paar MCR501 rheometer with a CP50 cone-plate geometry, using
an amplitude of 0.1% for PAA and 0.5% for PDMS, with an an-
gular frequency of 10 rad/s. All our samples exhibit a rather flat
storage modulus response in frequency, showing elastic behaviors
with no significant time dependencies, even for the less reticu-
lated samples in both PDMS and PAA (see rheological curves and
more details on the experimental protocol in ESI).

When the cylinder moves along the incline (undergoing both
translation and rotation), it deforms the substrate (Fig. 1(b)) and
its motion is recorded from the side with a camera. Image analysis
allows us to track the center of the cylinder and provides a direct
measurement of the translation speed of the cylinder uc, and its
rotation velocity uθ = aΩ, with a the cylinder radius and Ω the
angular speed. Figures 2(a) and (b) show the rotation angle as a
function of time for the aluminum cylinder for different coating
moduli and thicknesses, respectively. We observe that the rotation
speed Ω is constant, which is reminiscent of the constant sliding
speed observed earlier in similar experiments35. We also observe
that this rotation speed decreases when the coating becomes less
deformable, i.e., when the shear modulus G increases, or when
its thickness h decreases.

3 Scaling arguments and the finite size ef-
fect

We start by developing order-of-magnitude estimates for the ro-
tation speed Ω of a submerged finite-sized cylinder sliding with
speed uc along a wall with a soft coating. Since the cylinder ro-
tates with negligible inertia, the rotation speed is set by the con-
dition that the sum of torques due to elastohydrodynamics (in-
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Fig. 1 (a) Sketch of the experimental setup: a negatively-buoyant rigid
cylinder immersed in a viscous bath slides down a tilted wall that is coated
with a thin elastic layer. (b) Experimental image showing a side view of
the soft substrate deformation (red) by using a laser sheet with fluores-
cent particles placed at the surface. The white dashed line represents the
cylinder contour, centered at x = 0. The black dashed line corresponds to
the interface of the undeformed substrate. The white solid line follows the
center of the fluorescent particles’ emission, obtained by using a Gaus-
sian fit, showing the asymmetric deformation of the substrate-fluid inter-
face. The experimental parameters are G = 65 kPa, he = 1.5 mm, µ = 1
Pa.s, a = 12.7 mm, ρ = 8510 kg/m3, and α = 11◦. Figure adapted and
modified from 35.

duced by the substrate’s deformation due to sliding) τs and vis-
cous damping of the rotational motion τΩ vanishes36: τΩ+τs = 0.
The sliding torque itself has two contributions: one from the
curved surface of the cylinder, τcurved

s , and another one from the
ends τends

s , which we estimate below.
To estimate τcurved

s , we revisit scaling arguments for an infinite
cylinder translating along a soft layer34,36. Due to the confine-
ment of the flow under the cylinder within a fluid gap of thick-
ness hf� a (Fig. 1a), the typical transverse length scale of contact
scales as `=

√
2ahf. Lubrication theory37,38 predicts a fluid pres-

sure p ∼ µuc`/h2
f , which then deforms the underlying soft layer.

Assuming a localized linear response of the elastic layer to the
fluid pressure (Winkler foundation approximation), the deforma-
tion of the layer can be expressed as δ = he

2G+λ
p, where λ denotes

Lamé’s first parameter of the substrate. Thus, the ratio of the
characteristic deformation scale to the thickness of the fluid layer
is the compliance parameter Λ defined by ∗

Λ≡ µuchea1/2

(2G+λ )h5/2
f

∼ δ

hf
. (1)

∗The definition of Λ here differs from the one in 36 by a factor of
√

2.
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Fig. 2 (a) Evolution of the rotation angle of the cylinder as a function
of time for different shear moduli of the coating with the aluminium cylin-
der of radius a = 12.7 mm. These experiments were conducted at con-
stant coating thickness he = 600 µm. (b) Evolution of the rotation an-
gle as a function of time for different coating thicknesses with the alu-
minum cylinder. These experiments were made at constant shear mod-
ulus G = 31×103 Pa. For both panels, the viscosity and the incline angle
are fixed at µ = 1 Pa.s and α = 11◦ respectively.

In this framework, previous theoretical studies11–16 have shown
that for Λ� 1 the translation of an infinite cylinder leads to an
elastohydrodynamic lift force F ∼ Λµuc`

2L/h2
f , which was con-

firmed experimentally35. This is accompanied by an elastohydro-
dynamic sliding torque that scales nominally as µuca`L/(hf + δ ),
where hf +δ is the typical gap size between the cylinder and the
deformed substrate. We then invoke δ ∼ h f Λ [(1)] and expand
the previous expression in powers of Λ for Λ� 1. Recognizing

that the contributions proportional to Λ0 and Λ1 are zero for an
infinite cylinder34,38 we find that τcurved

s ∼ Λ2µuca`L/hf
36.

The rotational damping torque scales as τΩ ∼ µΩa2`L/hf; bal-
ancing it with the sliding contribution yields the scaling relation-
ship36

aΩ

uc
∼ Λ

2 (infinite cylinder). (2)

Thus, infinite cylinders do not rotate when Λ = 0 (a rigid sub-
strate)38. However, this feature is modified for compact bodies
such as spheres, where translation and rotation are coupled even
when all boundaries are rigid.

For the finite-sized cylinders in experiments, we generically ex-
pect a nonzero rotation rate Ω0(hf/a,a/L) even as Λ→ 0 due to
three-dimensional flows near the cylinder ends. These flows pen-
etrate a width ` into the fluid gap from the ends of the cylin-
der. The shear rate ∼ µuc/h f acting over an effective area ∼ `2

leads to an estimate of the sliding torque µuca`2/hf ∼ µuca2 due
to end effects for a rigid substrate. We note that this estimate
for the torque is independent of hf despite being generated by
a lubrication flow. In lubrication flows with gap-independent
scaling estimates for torque, detailed calculations typically re-
veal logarithmic corrections39,41,42. Including such a correc-
tion yields τends

s ∼ µuca2 log(a/hf), so the total sliding torque is
τs = τcurved

s +τends
s . Then, the torque balance τΩ+τs = 0 yields the

rotation rate with end effects included,

aΩ

uc
= k1

a
L

(
hf
a

)1/2
log
(

a
hf

)
+ k2Λ

2. (3)

The first term on the right side is identified with aΩ0/uc (end
effects) and the second with (2) (curved surface), with constants
of proportionality k1 and k2. Thus, we expect two independent
sources of rotation, one due to end effects and another due to the
elastohydrodynamic torque over the length of the cylinder, with
distinct dependences on the parameters of the system. Below, we
will place the scaling relation (3) on quantitative footing through
detailed calculations. As we will show, there is indeed a cross-
over from end-dominated to softness-dominated rotation in our
experiments as Λ increases.

Despite using a compressible description here, we wish to em-
phasize that this is not a necessary physical condition to trig-
ger rolling due to elastohydrodynamic effects. Indeed, previous
works have demonstrated that these effects can emerge from an
incompressible substrate as well19,36. But scalings available in
the literature correspond to the limiting cases of thick (he/l� 1)
and thin (he/l� 1) layers while our case corresponds to an inter-
mediate regime. We estimate `∼ (3a/4)Λ tanα ∈ [0.3,1.2] mm, so
that he/` ∈ [0.1,2]. A theory for such an intermediate regime has
only been developed at first order in dimensionless compliance13,
thus not considering the rolling motion. Further developments
with such a finite-thickness incompressible model are beyond the
focus of this work, whose main aim is to address end effects and
their consequences for long and short rolling cylinders.
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Fig. 3 (a) Dimensionless angular velocity aΩ/uc as a function of the
elastic substrate’s shear modulus G, for the aluminum cylinder of radius
a = 12.7 mm (a/L = 1), and the brass cylinder, of radius a = 6.35 mm
(a/L = 1/2). The thickness of the elastic substrate is he = 600 µm. The
solid lines correspond to the theoretical prediction of (9) for a/L = 1 (red)
and a/L = 1/2 (blue) with c =−0.715. (b) Dimensionless angular velocity
aΩ/uc as a function of the elastic substrate’s thickness he, for the alu-
minum cylinder of radius a = 12.7 mm (a/L = 1), and the brass cylinder
of radius a = 6.35 mm (a/L = 1/2). The shear modulus of the elastic
substrate is G = 31× 103 Pa. The solid lines correspond to the theoreti-
cal prediction (9) for a/L = 1 (red) and a/L = 1/2 (blue) with c = −0.715
as a fit parameter. For both studies, the viscosity and incline angle are
µ = 1 Pa.s and α = 11◦ respectively. The standard deviation obtained
from the angle measurements as a function of time, and averaged on all
the experimental points, is 0.05.

4 Theory
As discussed above, two-dimensional theory predicts zero hydro-
dynamic torque on a non-rotating (infinite) cylinder sliding along

rigid walls (Λ = 0). We show below that three-dimensional end-
effects qualitatively modify this result for a cylinder. End effects
are confined to a penetration depth ` into the lubrication gap,
so both ends are hydrodynamically isolated in our experiments
since L = O(a)� `. We focus on the flow near one of the ends,
which we place at y = 0 so that the gap lies in y > 0. It is conve-
nient to introduce dimensionless coordinates (X ,Y ) = (x,y)/`, and
a dimensionless lubrication pressure P(X ,Y ) = p(x,y)/(µuc`/h2

f ).
Since the gap thickness abruptly diverges at the ends of the cylin-
der, P must vanish at Y = 0. We consider end-effects in the
limit of Λ→ 0 (a rigid substrate), so the gap is approximately
parabolic, h(x) = h f + x2/(2a). Defining the dimensionless gap
profile H(X) = h(x)/h f = 1+X2, the pressure in the gap satisfies
the Reynolds equation

∇ · (H3
∇P+6HeX ) = 0 , subject to (4a)

P(X ,0) =
∂ P
∂Y

(X ,∞) = P(±∞,Y ) = 0, (4b)

where ∇ = eX ∂X + eY ∂Y .

We seek a solution P(X ,Y ) = P2d(X)+P′(X ,Y ), where P2d(X) =

2X/(1+X2)2 is the pressure due to an sliding infinite cylinder,
which satisfies (4) except for the condition at Y = 0. As we dis-
cuss below, it is sufficient to analyze the large-X behavior of P′.
Defining η = Y/X (the tangent of the angle in the XY plane),
we seek an asymptotic solution in inverse powers of X with the
form P′(X � 1,Y ) ∼ ∑n X−n fn(η). From the boundary condition
at Y = 0 and the asymptotic behavior P2d(X � 1) ∼ 2X−3, it is
clear that the leading term of the expansion introduced above is
P′(X� 1,Y )∼−2X−3Q(η). Substituting this expression into (4a)
and retaining the most slowly decaying terms at large X yields

(1+η
2)

d2Q
dη2 +2η

dQ
dη
−6Q = 0, subject to (5a)

Q(0) = 1 and
dQ
dη

∣∣∣∣
η→∞

→ 0, (5b)

which admits the solution

Q(η) =
(

3η
2 +1

)(
1− 2

π
arctanη

)
− 6η

π
. (6)

This determines the asymptotic behavior P′(X � 1,Y ) ∼
−2X−3Q(Y/X). The perturbation scheme can developed further
to obtain corrections to P′ [the next term is of the form X−5 f5(η)]
although the leading term suffices for our purposes. A similar
pressure distribution is generated at the opposite edge of the
cylinder. We find from (6) that for fixed X � 1, the leading-order
solution to the end-pressure decays as Y−3 as Y → ∞. Since the
opposite edge of the cylinder is at Y = L/`, corrections to the pres-
sure due to overlapping of the two end solutions are expected to
scale as `3/L3 ∼ a3/2h3/2

f /L3 and are thus small for L = O(a).

The X-component of the dimensionless horizontal velocity in
the reference frame of the sliding cylinder, expressed in units of uc

is VX = 1
2 Z(Z−H) ∂ P

∂X + Z−H
H , where Z = z/h f is the dimensionless

coordinate spanning the fluid gap (see Fig. 1). The component
of the shear stress responsible for its rotation, in units of µuc/h,
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is σXZ = ∂ VX
∂Z

∣∣
Z=H = H

2
∂ P
∂X + 1

H , whose integral over the area of
the lubrication gap yields the hydrodynamic sliding torque on the
cylinder. Noting the symmetry of σXZ about X = 0, including both
(hydrodynamically non-interacting) ends of the cylinder, and re-
calling that the torque generated by the two-dimensional case is
identically zero, the dimensionless torque can be expressed (in
units of µuca`2/hf) as 4

∫ X∞

0
∫

∞

0
H
2

∂ P′
∂X dY dX , where X∞ represents

the outer “edge” of the lubrication gap. As is typical in lubrica-
tion flows with constant-curvature gap profiles, this outer limit
corresponds to the radius of the cylinder [x = O(a)], which gives
X = O(a/`)40. An estimate of the previous integral at large X
shows that it diverges as logX∞. Formally, we make a change of
variables in the integral from (X ,Y ) to (X ,η) and isolate the di-
vergence to obtain the dimensional sliding torque

τc =
4µuca`2

hf

∫ X∞
∫

∞

0

1
X

(
3Q+η

dQ
dη

)
dη dX

=
32
3π

µuca2
(

log
(

a
hf

)
+ c
)
. (7)

The constant c absorbs the ambiguity in defining X∞, nonsingu-
lar contributions from the lubrication flow (i.e., from terms of P′

decaying as X−5 or faster) and the torque due to end-effects out-
side the fluid gap. The latter contribution includes the torque
on the flat faces of the cylinder, which is generated by stresses
of O(µuc/a) acting over an area of O(a2) with a moment arm of
O(a). Evaluating c requires a matched asymptotic approach that
we do not pursue here; instead we will estimate it from a fit to
our experiments. The result (7) is reminiscent of the torque on a
translating sphere of radius a, for which the factor of 32/(3π) is
replaced by 4π/5 and the constant c≈−1.89539.

Since the cylinder is free to rotate and has negligible inertia,
the sum of the sliding torque and the rotational torque τΩ =

−2
√

2πµa2LΩ0(a/hf)
1/2 38 vanishes, yielding the rotation rate of

a translating finite cylinder near a rigid wall

aΩ0

uc
=

8
√

2
3π2

a
L

(
hf
a

)1/2(
log
(

a
hf

)
+ c
)
. (8)

This result is expected to dominate for stiff substrates (Λ� 1)
in our experiments. The leading contribution to Ω due to the
softness of the substrate (denoted Ω2) was shown for an infinite
cylinder36 to be aΩ2/uc = (21/128)Λ2. Modifications to Ω2 due
to end effects scale as `/L� 1 and will be neglected here.

Thus, the angular speed of a translating finite cylinder is Ω ≈
Ω0 +Ω2, or

aΩ

uc
=

8
√

2
3π2

a
L

(
hf
a

)1/2(
log
(

a
hf

)
+ c
)
+

21
128

Λ
2. (9)

This theoretical prediction makes precise the estimate (3) and
reduces to the infinite-cylinder and the rigid-wall results in the
respective limits a/L→ 0 and Λ→ 0.

For gravity-driven motion along a soft incline the translation
speed uc and the gap thickness h f are not independently con-
trolled quantities. Rather, they are set simultaneously by a bal-
ance of the cylinder’s buoyant weight, the elastohydrodynamic

lift force and the hydrodynamic drag on the cylinder and are
therefore determined by the physical and geometric properties
of the system34,35. Introducing the Poisson ratio ν [so that
λ = 2Gν/(1−2ν)] and using known results34,36, the dimension-
less compliance Λ, defined in (1), can be recast as

Λ =

{
221/10

34/5

(
1−2ν

1−ν

)1/5
}

κ, where (10a)

κ =

(
ρ∗ghe cosα

2G tan3 α

)1/5
and ρ

∗ = ρ−ρoil . (10b)

The fluid gap thickness h f for gravity-driven sliding can be ex-
pressed as34,36

hf
a

=

(
3
8

Λ tanα

)2
(11)

All parameters involved in κ [defined in (10b)] are either known
or directly measured in our experiments. The right hand side in
(10a) is a dimensionless quantity that depends on the Poisson
ratio ν , albeit only weakly. In the range of interest for hydrogels
(i.e., 0.45 < ν < 0.495), this quantity takes values between 1.25
(for ν = 0.45) and 0.8 (for ν = 0.495) and thus remains of order
unity in the experimentally-relevant range. Finally, we substitute
(11) into (9) to the angular speed for gravity-driven motion near
a thin, compressible coating on an incline of angle α;

aΩ

uc
=

√
2a

π2L
(Λ tanα)

(
2log

(
8

3Λ tanα

)
+ c
)

+
21

128
Λ

2. (12)

End effects dominate the rotation rate at small Λ, although the
gap thickness is still set by elastohydrodynamic stresses. The
term quadratic in Λ becomes important when Λ & (a/L) tanα.
In the limit of very stiff substrates, we expect aΩ/uc ∝

(he/G)1/5 log(G/he), in contrast with the two-dimensional predic-
tion aΩ/uc ∝ (he/G)2/5.

5 Comparison between experiments and
theory

We now compare the prediction of the theory with the results of
the experiments. The evaluation of the compliance Λ in (1) and
(10)(a) requires us to know the value of the Poisson ratio ν . For a
given system, experimental measurements of the Poisson ratio ap-
pear to be sensitive to protocols, sample geometries and chemical
compositions. In experimental conditions similar to ours, previ-
ous works reported values ranging in [0.46−0.47] for PAA and in
[0.47− 0.48] for PDMS43–45. Note that values as high as 0.496
have also been reported in the latter case when changing the
experimental protocol46. We choose the central value ν = 0.47
to compare our theory with experimental data, although as indi-
cated in ESI, the results are relatively insensitive to the choice of
ν in the experimentally-relevant range: 0.45–0.49.

The theoretical prediction for the scaled rotational speed aΩ/uc

in (9) includes a constant c that is expected to be independent
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Fig. 4 (a) Experimental dimensionless angular velocity aΩ/uc as a func-

tion of the modified scaled compliance κ =
(

ρ∗ghe cosα

2G tan3 α

)1/5
. The red sym-

bols correspond to the aluminum cylinder with a/L = 1, while the blue
symbols correspond to the brass cylinder with a/L = 1/2. The circles and
the squares correspond, respectively, to variations in G and he. The black
dashed line corresponds to the infinite cylinder case (9) with a/L = 0,
ν = 0.47. The colored dashed lines correspond to the theory taking into
account only the end effect (8), with c = −0.715. The solid lines corre-
sponds to the finite-size theory (9), with c = −0.715. (b) Experimental
scaled angular velocity (aΩ/uc)

exp as a function of the theoretical scaled
angular velocity (aΩ/uc)

theory (9). Red circles - aluminum cylinder with
a/L = 1, blue circles - brass cylinder with a/L = 1/2, triangles - aluminum
cylinder (a/L = 1) with viscosities µ ∈ [0.35− 30] Pa.s, incline angles
α ∈ [11−45◦], moduli G∈ [16−280] kPa, thicknesses he ∈ [300−1000] µm,
and the black line has slope 1.

of the compliance Λ. As `/L� 1 we assume the end flows to
be decoupled from each other and we thus expect c to be in-
dependent as well of the aspect ratio of the cylinder. In order
to compare the theory to the experiments we force c to be the
same for experiments involving different cylinders (and thus as-
pect ratios). In Fig. 3, we show the behavior of the scaled angular
speed aΩ/uc as a function of the coating film’s shear modulus G
(Fig. 3a) and thickness he (Fig. 3b). We observe that the finite-
size theory, which includes both the cylinder edge-effect term and
an elastohydrodynamic term (the latter corresponding to an infi-
nite soft-lubricated cylinder) predicts remarkably well the exper-
imental results with a single constant c =−0.715, with increasing
scaled angular velocities for decreasing stiffness G and increasing
coating thickness he (increasing κ). The value for c is consis-
tent with the typical value obtained for a sphere near a rigid wall
(c≈−1.89539).

Combining all these experimental results allows us to plot a
master curve for aΩ/uc as a function of the modified scaled com-

pliance κ =
(

ρ∗ghe cosα

2G tan3 α

)1/5
, as shown in Fig. 4(a). We choose

to plot the data as a function of κ rather than Λ as the former
can be calculated from experimental parameters that we can di-
rectly measure, and is independent of ν . The values of κ are very
similar to those of Λ for ν = 0.47 (Λ ≈ 1.15κ). In fact the factor
between Λ and κ is rather insensitive to ν (e.g. about 0.93 for
ν = 0.49), and so κ is a good physical estimate of the scaled com-
pliance Λ for our experimental conditions. We observe that, with
a unique constant c =−0.715, the experimental results are consis-
tent with the theoretical master curves (curves showing that the
choice of ν does not affect this agreement within the aforemen-
tioned range are shown in ESI). In Fig. 4(b), we have plotted the
values measured for aΩ/uc as a function of its theoretical predic-
tion from (9), for the same c constant and the same data as in
Fig. 4(a), but also with experiments where all parameters were
varied, including the inclination angle. This unique master curve
for both cylinders confirms the good agreement between theory
and experiments over more than a decade.

6 Discussion

We have also plotted separately the contributions of both terms
in (9), namely the contribution of end effects for a finite-length
cylinder, and the elastohydrodynamic contribution for an infinite
cylinder, as shown in Fig. 4(a). Our experimental data lie in the
crossover region between these two limiting behaviors. At high
values of the compliance i.e., for soft or thick substrates, the ex-
perimental data for both aspect ratios appear to collapse together
and converge toward the infinite cylinder theory, consistent with
a regime where edge effects (and thus cylinder length) do not af-
fect the rotation behavior. We note that at intermediate values of
the compliance, edges effects tend to increase the scaled angular
velocity with respect to the infinite-cylinder prediction. Finally,
at small compliances, the elastohydrodynamic torque does not af-
fect the rotation anymore, and the latter is solely generated by
end effects (near a rigid wall). The crossover location depends
on the aspect ratio. We can indeed see that, for the brass cylinder
with a/L= 1/2, the rotation behavior is closer to the infinite cylin-
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der one than in the case of the aluminum cylinder, with a/L = 1,
where end effects play a more significant role.

It is also interesting to note that the theory predicts an angu-
lar velocity either smaller or larger than in aΩ/uc ∼ 1. The lat-
ter regime corresponds to the rolling of a cylinder in no-slip dry
contact with a rigid incline and should be reached in our system
typically for κ ∼ 2. However, the range of parameters explored
in our experiments could not allow us to verify the existence of
“super-rolling” behaviors for higher compliances.

7 Conclusion
Our experiments on the rotation of an immersed finite-size cylin-
der moving down and near a soft incline have shown that there
is a steady-state rotation with an angular speed that increases
with the compliance of the substrate. While this observation is
qualitatively consistent with a recent theoretical prediction for an
infinite cylinder36, this earlier infinite cylinder (2D) theory fails
to describe our experimental observations quantitatively. A mod-
ified theoretical description for a finite-length cylinder that takes
into account the additional torque created by viscous friction on
both its edges does allow for a quantitative agreement with our
experiments, which are typical of many applications. In particu-
lar, we have shown that for small compliances and small cylinder
lengths, the contribution of the elastohydrodynamic torque to the
rotation becomes small relative to those contributions from end
effects, even when the gap thickness is still set by a finite elasto-
hydrodynamic lift force. This result gives more realistic insights
on the behaviors of finite-size objects in motion or in interaction
close to soft interfaces, and pave the way for new theoretical de-
velopments accounting for geometric and mechanical properties
that are relevant to more specific biological, geophysical and en-
gineering processes. In particular, further work to develop a com-
plete finite-size incompressible theory would clarify the relevance
of the use of a compressible model versus an incompressible one
in the aforementioned contexts.
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Rotation of a submerged finite cylinder  
moving down a soft incline 

 

A  fluid-immersed solid cylinder moves along a soft incline and rotates at a rate that depends 
on its aspect ratio and the stiffness of the incline.  
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