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Using continuum based simulations we show that a rich variety of skyrmion liquid crystal states can be realized in the presence
of a periodic obstacle array. As a function of the number of skyrmions per obstacle we find hexagonal, square, dimer, trimer
and quadrimer ordering, where the n-mer structures are a realization of a molecular crystal state of skyrmions. As a function of
external field and obstacle radius we show that there are transitions between the different crystalline states as well as mixed and
disordered structures. We discuss how these states are related to commensurate effects seen in other systems, such as vortices in
type-II superconductors and colloids interacting with two dimensional substrates.

1 Introduction

Numerous hard and soft matter systems can be effectively
modeled as an assembly of interacting particles coupled to
a two dimensional (2D) periodic substrate. These include
atoms and molecules on surfaces1,2, vortices in type-II su-
perconductors3,4 or Bose-Eisenstein condensates5,6 interact-
ing with periodic pinning arrays, and charged7–11 or magnetic
colloids12,13 on optical traps or structured surfaces. Such sys-
tems exhibit a variety of commensuration effects in the form
of crystalline or superlattice states when the number of parti-
cles is an integer multiple of the number of substrate minima.
One example is the colloidal molecular crystal states found in
colloids on 2D arrays, where the colloids form localized clus-
ters with synchronized orientational degrees of freedom7–10.
In some cases plastic crystals7,8 can form in which the num-
ber of particles per trap is fixed but there is no orientational
ordering of the clusters.

Other particle-like objects are skyrmions, which arise when
the collective behavior of underlying microscopic degrees of
freedom leads to the formation of larger scale structures. For
chiral magnetic systems, the underlying degrees of freedom
are the spins14–16, while for chiral liquid crystal systems, they
are the molecular director orientations17–20.

When a chiral liquid crystal is subjected to frustration
by confinement or electric fields, twisted structures includ-
ing confined blue phases21, cholesteric bubbles22,23, and
cholesteric stripes also known as cholesteric fingers23–26 can
arise. In the case of very strong confinement or strong electric
fields, a uniform nematic phase is favored as a result of the un-
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winding of the chiral structures. Between the uniform nematic
and cholesteric stripe phases, stable meron lattices, which are
essentially a blue phase in which double twist cylinders form
a hexagonal lattice, are both theoretically predicted and exper-
imentally realized in the high chirality limit21,27,28. The blue
phase can be controlled using a self-assembled substrate29.
Baby skyrmions can also be stabilized between the cholesteric
stripe and uniform nematic phases18. Unlike merons or half-
skyrmions which are reported to exist only as lattices28,30,
skyrmions are observed as isolated local structures and are lo-
cal objects that behave like soft particles. In contrast, merons
are accompanied by defects or disclination lines. Due to
these properties, skyrmions are ideal candidates for particle-
like structures that can be controlled individually31.

There has been growing interest in skyrmions and merons in
liquid crystals due to the identification of new methods to cre-
ate and control such systems18,27,30,32–34. There is also work
examining how liquid crystal (LC) skyrmions can be manipu-
lated externally35, made to interact with barriers or pinning
sites36–38, or caused to form isolated or collective moving
states37,39.

Since LC skyrmions, which can be regarded as individual
particles, can also be arranged to form lattices and interact
with repulsive barriers, it is interesting to examine what types
of LC skyrmion states could be realized when the LC is cou-
pled a periodic substrate, and compare this behavior to the
types of ordering found in other systems of particles coupled
to ordered substrates. Duzgun and Nisoli40 recently proposed
that LC skyrmions interacting repulsively within a square or
triangular array of obstacles can exhibit frustration effects
similar to those found in artificial spin ice systems41,42. In
this work we extend these ideas to examine the types of non-
frustrated commensurate LC skyrmion lattices that can arise
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when the skyrmions are coupled to a square lattice of obsta-
cles of the type that could be created by patterned external
fields or surface anchoring37,38,40. We find that a rich variety
of crystalline states can be stabilized, including a square lat-
tice at a one to one matching, a dimer lattice for two skyrmions
per obstacle, and staggered trimer and quadrimer orderings at
three and four to one matching. These n-mer states are similar
to the colloidal molecular crystal states observed on periodic
substrates7–10; however, the skyrmions exhibit shape distor-
tions that do not occur in the colloidal system.

We show that different structures can be accessed for fixed
skyrmion number when the size of the obstacles is changed or
the external field is varied. For the case of one to one match-
ing, we observe a transition from a square to triangular lattice
along with intermediate states in which the skyrmions form a
mixed structure due to their ability to adopt different sizes in
a single sample. There can also be pattern switching between
different states when the size of all or a portion of the radii of
the obstacles is varied or when an external field is changed,
suggesting that LC skyrmions on patterned substrates could
exhibit rapid large scale structural transitions that could be
useful for applications.

2 Numerical Methods

We model an assembly of N LC skyrmions interacting with
a square array of Nobs obstacles using continuum based sim-
ulations20,40. We consider the traceless tensor Q related to
the scalar order parameter S that quantifies the orientational
order of the chiral nematic liquid crystal state, which gives
rise to solutions that support skyrmions when the chiral liquid
crystal host is confined between two substrates with normal
surface anchoring. The free energy density has the form

f = (a/2)Tr(Q2)+(b/3)Tr(Q3)+(c/4)[(Tr(Q2)]2

+(L/2)(∂γ Qαβ )(∂γ Qαβ )− (4π/p)Lεαβγ Qαρ ∂γ Q
βρ

− [K(δ (z)+δ (z−Nz))+E2
∆ε]Qzz

(1)

The first three terms above control the nematic to isotropic
transition, the next two terms describe the elastic energies with
respect to a gradient in Q, favoring a twist with cholesteric
pitch p. Here we use a single elastic constant approximation
following the description of Hornreich and Shtrikman21. The
last term is due to the homeotropic surface anchoring at the
boundaries and the external electric field, where K is the cou-
pling strength, E is the electric field in the z-direction, and
∆ε is the dielectric anisotropy. On the confining surfaces, the
Q tensor is coupled to a uniaxial perfect ordering in the z di-

rection denoted by Qs =

(
−1/2 0 0

0 −1/2 0
0 0 1

)
. The electric field E

generated by applying a potential difference across the slab is
assumed to be constant and pointing in the z direction every-
where inside the slab neglecting the variations caused by the
anisotropy of the dielectric constants.

The states are evolved by simulating the following over-
damped equation:

∂Q(r, t)
∂ t

=−Γ
δF

δQ(r, t)
, (2)

where Γ is the mobility constant and F =
∫

f (x,y,z)dxdydz.
We denote the field alignment strength as α = E2∆ε . A z-
invariant structure can be achieved when vertical alignment of
molecules is produced solely by the background electric field
(i.e., by choosing a very small K ≈ 0 and appropriate value of
α)31,43. Recently, experimental realizations of structures with
weak z dependence have been achieved44. In the experiments,
2D skyrmions appear at around Nz ≈ p, and when Nz > p, they
become less stable. Since the experiments use surface anchor-
ing, both the size and the shape of the skyrmions are sensitive
to the cell thickness, whereas in our model, the background
field maintains the stability of the skyrmions, the skyrmion
shape is z invariant, and the skyrmion size is sensitive to the
background field. For K ≈ 0, a z invariant structure appears re-
gardless of the cell thickness, though in practice, there may be
some limitations on this invariance. The cell thickness is lim-
ited from below by how small a value of K can be generated
on the confining substrate. While there is no theoretical upper
limit on the thickness, experimental realizations are usually
performed within up to a few cholesteric pitch lengths. In any
event, the thicknes must remain much smaller than the size of
the parallel plates in order to avoid fringe effects which cause
variations in the background field strength in both the radial
and z directions. In this work we consider such a z-invariant
case and model the system as a 3D director (Q−tensor) con-
figuration lying on a 2D surface.

As in other work 20,40, we use obstacles that are produced
by strongly aligning the directors along the z-axis. These ob-
stacles are repulsive barriers of radius r which are realized by
applying an additional electric field within the barrier region
that is much stronger than the background field. The same ef-
fect can be achieved by means of strong surface anchoring lo-
calized within the barriers, which enters the free energy equa-
tion identically. We use the electric field because it permits
dynamic control of the barrier size, shape, and strength. (See
the discussion section for arguments regarding field.) We first
let the system relax, swell the skyrmion size, and then bring
the skyrmions to a fixed size, which allows for a dynamical an-
nealing effect. Experimentally this would be achieved varying
the external field. Since we discuss the effect of electric field
on skyrmion size in great detail in a previous work20, here we
merely note that reducing the background electric field causes
the skyrmions to swell, and increasing it causes them to shrink.
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Fig. 1 The liquid crystal skyrmions (blue rings) and obstacle
locations (black circles) obtained from a continuum based
simulation of a chiral liquid crystal state. In each case α = 0.3. The
colors represent the orientation of the director field. (a) The 1:1
matching at an obstacle radius of r = 15 showing a square skyrmion
lattice. (b) The 2:1 state at r = 10 with an alternating dimer ordering
as indicated by the white dashed lines. (c) The 3:1 state at r = 15
where there is trimer ordering with a small shift at every other
plaquette. (d) The 4:1 state showing a quadrimer ordering at r = 10.
Here the size of the square cells is L = 60.

After the relaxation, we reduce the background field to swell
the skyrmions instead of modifying the strong extra field that
produces the barriers. For the periodic obstacle array we find
that a single swell cycle is adequate; however, for more com-
plex geometries or a random array, a repeated swell cycle can
be applied. We focus on a system size of 4× 4 barriers for
filling ratios of skyrmions to obstacles of 1 : 1 up to 4 : 1. For
specific cases we have also considered larger arrays of up to
20×20 which show the same ground states45.

3 Results

In Fig. 1(a) we show the location of the barriers of spacing
L = 60 and the skyrmions at r = 15. Here there is a 1:1
matching of the number of skyrmions to the number of ob-
stacles. The skyrmions form a square lattice located in the
center of the interstitial regions between the obstacles. Fig-
ure 1(b) shows the case of two skyrmions per obstacle with

r = 10, where the system forms a dimer lattice as indicated by
the dashed lines connecting pairs of skyrmions. The dimers
have an additional long range orientational ordering, and each
dimer is alternately vertical or horizontal. In Fig. 1(c), at the
3 : 1 matching with r = 15, the skyrmions form an ordered
trimer state as indicated by the lines. The trimers exhibit an
additional small canting from one plaquette to the next. At
4 : 1 with r = 10 in Fig. 1(d), the skyrmions form a quadrimer
state which is the same for each plaquette. These states are
similar to the N-mer orderings found in colloidal molecular
crystal systems for colloids interacting with square or trian-
gular substrates7–10. In particular, the dimer state has been
described as an anti-ferromagnetic Ising model on a square
lattice9, where the orientation of the dimer corresponds to the
two possible orientations of an effective spin. A similar dimer
state was also predicted for vortices in a Bose-Einstein con-
densate on a square lattice at the second matching filling5. The
trimer ordering in the colloidal system7 differs from that for
the skyrmions in Fig. 1(c). The colloidal trimers have stripe or
columnar orientational ordering due to the longer range mul-
tipolar charge interaction between trimers, whereas the LC
skyrmion trimers experience only short range repulsion and
have only weak orientational ordering along the horizontal di-
rection. The LC skyrmion state has the same ordering as the
colloidal state at the fourth filling for the square lattice7. We
call the states in Fig. 1(b,c,d) LC skyrmion molecular crystals
since the N-mers have both positional and orientational order.

We next consider the effect of changing the background
field and also the obstacle radius for the 1 : 1 filling. We
change the background field to control the size of the
skyrmions and we change the extra field inside the barriers to
control the barrier size. For vortices and other particle based
systems on a square array at the first matching filling, there
can be a transition from a square lattice at strong coupling
where the substrate dominates the behavior to a triangular lat-
tice at weak coupling where the particle-particle interaction
dominates the behavior46,47. For hard disks at a 1 : 1 match-
ing on a square lattice, there can be a transition to a hexagonal
lattice and even a rhombic phase as a function of substrate
strength and disk size48. In Fig. 2(a) we show the phase dia-
gram as a function of the obstacle radius r versus background
field α for the 1 : 1 filling, where we observe five phases. For
large fields α > 0.35, skyrmions do not appear and the system
has a uniform background. For large defect radius r > 5.0,
there is an extended region in which the system forms a com-
mensurate square lattice, as illustrated in Fig. 2(b). The square
lattice extends over the range 6.0 < r < 16.0, but we focus on
the regime r < 7.0 since this is where additional phases oc-
cur. When r is small but α is large, the skyrmions have more
room to distort, allowing them to form a hexagonal lattice as
shown in Fig. 2(c). There is a window at r = 3 where, for
small α , the skyrmions can more easily change shape to cre-
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Fig. 2 (a) The phase diagram as a function of obstacle size r vs the
background field α for the system in Fig. 1(a) at a 1:1 matching of
LC skyrmions to obstacles. Blue triangles: square lattice states,
shown in panel (b); red squares: hexagonal lattices, shown in panel
(c); green squares: mixed state, shown in panel (d); black triangles:
disordered or irregular states, shown in panel (e). For fields greater
than α = 0.35, skyrmions do not form, while for 6.0 < r < 16.0
there is only a square lattice state.

ate a mixed state as illustrated in Fig. 2(d). In this case, half of
the skyrmions become elongated and the overall pattern has
a superlattice ordering. At small obstacle radius and small
field we find a disordered state with skyrmions in a mixture
of sizes, as shown in Fig. 2(e). For other fillings, a similar
phase diagram can be constructed, where obstacles of large
size produce N-mer states, while disordered or hexagonal lat-
tices generally form for smaller r. The transitions shown on
the phase diagram are continuous due to the deformability of
the skyrmions.

The fact that different patterns can arise as a function of
obstacle size suggests that various types of pattern switching
could be achieved by suddenly changing the sizes of all or a
portion of the obstacles. An example of how this could be
achieved for fixed skyrmion number is shown in Fig. 3, where
half of the obstacles have radius r1 and the other half have
radius r2. Here the background field is fixed at α = 0.2. When
r1 and r2 are both large, the system forms a square lattice as
shown in the upper right panel. If r1 and r2 are both small, a
hexagonal lattice appears as illustrated in the lower left panel,
while for the cases of r1 much smaller than r2 or r2 much

Fig. 3 The different possible states for LC skyrmions on a square
lattice at a 1:1 filling where the obstacles have two different radii, r1
and r2. When r1 and r2 are both large, the system forms a square
lattice (upper left). When r1 and r2 are both small, hexagonal
ordering emerges (lower right). For r1 � r2 or r2 � r1 (lower left
and upper right), a dimer lattice emerges. The arrows indicate the
different routes that could be taken to get from one state to another.

smaller than r1, the system forms the dimer lattice indicated
in the upper left and lower right corners. The arrows indicate
the possible routes along which the different patterns could be
switched. This suggests that LC skyrmions interacting with
ordered structures can undergo large scale switching behaviors
that could be useful for creating devices.

In Fig. 4 we plot the ratio of the distance between
skyrmions, as indicated in the rectangular box in the inset,
of side a and side b versus r2/r1 for the system in Fig. 3,
where we fix r1 = 15 and vary r2. We show results for ex-
ternal field values of α = 0.16 to α = 0.32. When a/b = 1.0,
we find a square lattice, while for a/b = 0.5, a dimer lattice
appears. Upon increasing α , the transition to the square lattice
shifts to higher ratios of r2/r1; however, at α = 0.32 the sys-
tem remains in the square lattice for all values of r1/r2 since
the skyrmions are so small that they no longer interact with
one another and show little distortion from their initial posi-
tions. This indicates that not only can the skyrmion pattern
be switched, but also the geometric ratio of the pattern can be
controlled as function of the electric field.
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Fig. 4 The ratio of the sides a/b (shown in the inset) vs r2/r1 for
samples from Fig. 3 with 1 : 1 matching at r1 = 15. When
a/b = 1.0, the system forms a square lattice, while for a/b ≈ 0.5, an
ordered dimer lattice appears. For varied α or changing obstacle
size, transitions occur between the two states.

4 Discussion

Our results should be general for even higher fillings N, lead-
ing to higher order N-mer states. For finite thermal fluctua-
tions, the different states could show additional effects such
as a transition from a molecular crystal state to a plastic crys-
tal state in which the N-mers are randomly rotating, similar
to what has been observed in colloidal molecular crystal sys-
tems7–10. Beyond commensurate states, there should also be
a number of incommensurate states at non-integer matchings,
which could form partially disordered states or rational com-
mensurate states when the ratio of skyrmions to obstacles is ra-
tional. In particle based systems, incommensurate states form
kinks or antikinks49–51. In the LC skyrmion system, however,
due to the ability of the skyrmions to change size, the kinks
can shrink or expand in order to reduce the energy cost of
the defect, so that LC skyrmions could be much more robust
to disordering due to incommensurations. Additionally, the
irregular phase found at low background fields could exhibit
glassy behavior. These results could also be extended to other
obstacle lattice geometries such as triangular lattices, mixed
lattices, quasiperiodic lattices, or random arrays.

In commensurate-incommensurate systems, a variety of dy-
namics can arise49,50 when the system is driven. Driving of
LC systems has already been demonstrated39, so the dynam-
ics of the skyrmions could be explored for driving over a peri-
odic substrate. Finally, similar states could arise for magnetic
skyrmions coupled to a periodic obstacle array, and there are
already proposals on how to create such substrates for mag-
netic skyrmions on an anti-dot lattice52. Similarities between

the Hamiltonian for the liquid crystal skyrmions and that for
magnetic skyrmions have already been noted19,39.

Our model for the barriers is simple but sufficient: we pro-
duce the barriers by applying a strong extra field perpendicu-
lar to the plane of the LC cell. The field is uniform inside the
barrier and zero outside. In real physical systems, such sharp
gradients do not exist, but we use this approximation for thin
samples to impose the effect of a barrier; in the SI we include
results showing smooth gradients of the field. For the dynamic
switching of the lattice structure, we allow the size of the bar-
riers to be variable. This model can be modified in order to re-
flect possible experimental challenges. For instance, varying
the barrier size does not imply that it is necessary to change the
size of the electrodes; it can be achieved by varying the field.
The size of the barrier does not need to be changed slowly,
since the purpose of reducing the barrier size is to switch to a
different packing ratio of skyrmions. The extra field produc-
ing the barrier can be turned off abruptly as well. We note that
there will be fringe effects, since the field will be maximum at
the center of the barrier and decay along the radius. Therefore,
when the potential difference is reduced or even turned off, the
effective radius of the barriers will continuously drop instead
of changing instantaneously. We also propose that very small
electrodes can be used so that the fringe effect is amplified
and the field actually goes to zero at a certain distance from
the center. In a separate work31, we demonstrate that the elec-
tric field from point electrodes successfully produce repulsive
regions with controllable size that drive skyrmions, and we
show that if point electrodes are placed at distances ±H from
the middle of the parallel plates, the field vanishes within a ra-
dius ≤ 2H. In the supplementary material, we include a single
layer simulation of dynamic switching in which the barriers
are produced by point electrodes (α = α0 exp(−5r2/r2

0)) and
the effective size is controlled by varying the strength of the
electric field.

5 Summary

We have used continuum based simulations to examine the or-
dering of liquid crystal skyrmions interacting with a square
obstacle array which could be created using anchoring or with
fields. As a function of filling, we find that a variety of
crystalline states can be stabilized, including a square lattice,
an alternating dimer lattice, a trimer state, and a quadrimer
state. We refer to the dimer and higher order N-mer states as
skyrmion LC molecular crystal states in analogy to colloidal
molecular crystals. For the commensurate 1 : 1 filling, we
map out the phase diagram as a function of barrier size and
field and show that five different phases arise: no skyrmions,
a square lattice, a hexagonal lattice, a disordered state, and a
mixed phase. The mixed phase consists of a superlattice of
skyrmions of different sizes. We also show that the system
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can exhibit pattern switching between dimer, hexagonal and
square lattices as a function of the ratios of the sizes of al-
ternating obstacles. This can be generalized to programmed
switching of obstacles in any pattern. We discuss future di-
rections such as incommensurate states, other obstacle lattice
geometries, and driving. Liquid crystal skyrmions represent
another system that can be used to realize commensurate states
for an assembly of particle-like objects coupled to a periodic
substrate.
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