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Clustering and phase separation in mixtures of dipolar and active 
particles
Ryan C. Maloney,a Guo-Jun Liao,b Sabine H. L. Klappb and Carol K. Hall*a

The self-assembly of colloidal particles in dynamic environments has become an important field of study because of 
potential applications in fabricating out-of-equilibrium materials. We investigate the phase behavior of mixtures of passive 
dipolar colloids and active soft spheres using Brownian dynamics simulations in two dimensions. The phase behaviors 
exhibited include dipolar percolated network, dipolar string-fluid, isotropic fluid, and a phase-separated state. We find that 
the clustering of dipolar colloids is enhanced in the presence of slow-moving active particles compared to the clustering of 
dipolar particles mixed with passive particles. When the active particle motility is high, the chains of dipolar particles are 
either broken into short chains or pushed into dense clusters. Motility-induced phase separation into dense and dilute 
phases is also present. The area fraction of particles in the dilute phase increases as the fraction of active particles in the 
system decreases, while the area fraction of particles in the dense phase remains constant. Our findings are relevant to 
the development of reconfigurable self-assembled materials.

1 Introduction
The collective behavior of self-propelled (active) matter – 
materials that convert energy from an internal or external 
source into translational or rotational motion1,2 – is of interest 
across a broad range of sciences. From a biological 
perspective, the study of active matter aids in the 
understanding of the movement of bacteria colonies,3,4 fish 
schools,5,6 bird flocks,7 and even pedestrian traffic.8-10 From a 
fundamental physics perspective, the study of active matter 
has yielded insights into phase separation dynamics,11-13 meso-
scale turbulence,14-16 swarming,17-20 swirling,21 and laning.22,23 
Computer-simulated and artificial active colloidal particles are 
an ideal model system for studying the collective behavior of 
active matter because we have greater control over the 
interactions between constituent particles in these systems 
than we do over interactions in biological systems.24-31 
Mixtures of active and passive particles, in particular, display 
interesting collective behavior including active-passive 
segregation,32-34 flocking,35 and facilitation of attraction-
induced phase separation.36

Perhaps the most well studied model for simulating 
systems of active particles is the active Brownian particle (ABP) 
model.37,38 The traditional ABP model consists of spheres that 
experience self-propulsive forces, Brownian motion, and short-
range interparticle repulsive forces, but neglects other 

interactions such as phoretic and hydrodynamic forces.39 
Despite these simplifications, the ABP model offers insight into 
the interplay between activity, random motion, and excluded 
volume interactions. The traditional ABP model has been used 
to characterize motility-induced phase separation 
(MIPS),11,31,39-41 in which a sufficiently dense system of ABPs 
undergoes a transition from a homogeneous isotopic fluid at 
low Péclet number to a large dense cluster in coexistence with 
a dilute gas-like phase at high Péclet number. Motility-induced 
phase separation is analogous to the equilibrium liquid-gas 
phase separation exhibited by passive particles with attractive 
interactions; however, MIPS occurs even in the absence of 
attractive interactions in the ABP model which contains only 
repulsive interactions. The observation of MIPS in the absence 
of attractive interactions, which normally drive phase 
separation, is instead explained through either a kinetic theory 
or continuum mean-field theory. The kinetic theory of MIPS 
posits that clusters arise via a self-trapping mechanism.42,43 In 
this explanation, a pair of colliding particles remain in contact 
until rotational diffusion leads them to orient away from one 
another, allowing them to move apart. If additional particles 
collide with the pair during the reorientation time, the cluster 
will grow. Continuum mean-field theory for MIPS explains 
phase separation as resulting from a reduction in the particle 
effective speed due to an increase in local density.12,44,45 An 
attractive feature of the ABP model is that it readily lends itself 
to the investigation of more complex systems such as rod-
shaped particles,46,47 hydrodynamically-interacting particles,48-

50 particles with short-range attractive interactions,51 
anisotropic interactions,52,53 and eccentric (or circle) 
swimmers.54
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Mixtures of active and passive particles is of particular 
interest given that real world systems often contain one or 
more active components. Some examples of such systems are 
swimming bacteria moving around nutrient granules,55 
dynamic processes within cells,56 and predator-prey 
behavior.57,58 Many of the colloidal mixtures with active 
components that have been reported thus far involve a small 
number of active components, such as the so called “tracer 
particle” experiments in which a single passive particle is 
placed in an active medium,59-63 or active dopant experiments 
in which a small number particles drive crystallization of 
passive particles.64 There have also been investigations into 
the effects of an active bath on a small number of passive 
particles.65 Recently there has been a shift to investigating 
systems where the number of constituent particles is more 
equitable. These include simulations of active and passive 
repulsive spheres,33,66-70 mixtures of active particles with 
different motilities,32,71 and mixtures of chiral (clockwise and 
counter clockwise circle swimmers) active particles.34 We add 
to this body of work by characterizing the phase behavior of a 
mixture consisting of passive dipolar spheres and ABPs.

Colloidal particles with induced or permanent dipoles 
exhibit complex behavior due to the anisotropic and long-
ranged nature of dipole-dipole interactions. A polarizable 
colloidal particle placed in an AC field will experience an 
internal charge separation in the direction of the field, 
effectively creating an induced dipole in the particle. 
Application of a homogenous field in one direction will cause 
particles with induced dipoles to assemble into chains. This has 
been used to assemble flexible nano- and micro- wires and 
chains,72,73 crystals,74 and other responsive materials.75,76 
Colloidal particles with permanent dipoles have also been 
extensively studied by simulations77-79 Such particles form 
rings, small chains, gels, and branched networks at low and 
intermediate density, and crystalline phases at high density. 
While we focus on the behavior of passive dipolar particles, we 
note that there has recently been interest in active dipolar 
particles,53,80-83 including studies that characterize the behavior 
of magnetotatic bacteria that move with or against the earth’s 
magnetic field.84-87

In this paper, we present results from Brownian dynamics 
simulations of two-dimensional mixtures of passive dipolar 
spheres and active repulsive particles. We explore how the 
interplay between particle area fraction, the fraction of total 
particles that are active colloids, and the active particle Péclet 
number affects the phases formed by the mixture and the 
local structure of those phases. We have simulated systems 
with low and intermediate area fractions between 0.05 and 
0.55, but do not consider high area fraction systems where 
crystalline phases would be expected. The active particle 
fractions considered are 0.2, 0.4, 0.6, and 0.8. In addition, we 
simulate all-active and all-dipole systems to serve as a point of 
comparison for our mixtures. We compute the extent of 
polymerization and the percolation probability to characterize 
the behavior of the dipolar particles. In addition, we measure 
the largest cluster size for dipolar colloids, active colloids, and 
both colloids combined. Finally, we take local area fraction 

measurements to determine the conditions under which phase 
separation is present.

Highlights of our results include the following. Phase 
diagrams at constant area fraction were calculated in the 
active particle fraction-Péclet number plane. The mixtures 
form percolated networks of dipolar colloids, dipolar string-
fluids, and isotropic fluids; they can also phase separate into a 
dense and a dilute phase, depending on the area fraction of 
the system, the ratio between the number of active and 
dipolar particles, and the Péclet number of the active particles. 
The mixtures display an interesting interplay between the two 
types of particles in which the dipolar colloids tend to form 
chains or clusters and the active particles either assist or 
hinder the formation of these supracolloidal structures. At low 
active particle Péclet number, the phases formed are similar to 
those formed in single component dipolar systems, with the 
active particles pushing dipolar particles together. At high 
Péclet number, the phases formed are similar to those formed 
by single-component active systems, but the distribution of 
the two species of particles between the two phases is 
unequal.

2 Model and methods of investigation
2.1 Model system

We perform Brownian dynamics simulations in two 
dimensions (2D) on a binary mixture of colloidal particles. 
Particles in the mixture are either passive dipolar soft-spheres 
or active soft-spheres. The motion of particle  with position  𝑖 𝒓𝑖

and orientation  is calculated by solving the coupled 𝒖𝑖

overdamped Langevin equations:88,89

𝒓𝑖(𝑡) = 𝛽𝐷𝑡[𝑓𝑖 ∙ 𝒖𝑖(𝑡) + 𝑭𝑖] + 2𝐷𝑡𝝃𝑖(𝑡),1

𝒖𝑖(𝑡) = [𝛽𝐷𝑟𝑻𝑖 + 2𝐷𝑟𝜞𝑖(𝑡)] × 𝒖𝑖(𝑡).2

In equation 1 and 2,  and  are the time  derivatives of the 𝒓 𝒖 (𝑡)
position and orientation of particle  respectively,  and  are 𝑖 𝑭𝑖 𝑻𝑖

the forces and torques acting on particle  respectively,  is 𝑖 𝐷𝑡

the translational diffusion constant, and  is the rotational 𝐷𝑟

diffusion constant. The thermal energy is  (with  𝛽 = 1 𝑘𝐵𝑇 𝑘𝐵

as Boltzmann’s constant and  as temperature), and  is a 𝑇 𝑓𝑖

constant self-propulsive force for the active particles. For 
passive particles, such as the dipolar colloids in our mixtures, 

. Translational  and rotational  thermal 𝑓𝑖 = 0 (𝝃𝑖(t)) (𝜞𝑖(t))
noise terms represent random collisions between the colloidal 
particles and solvent. These are Gaussian white noise terms 
that fulfill the relations , 〈𝝃𝑖(t)〉 = 〈𝜞𝑖(t)〉 = 0 〈𝜉𝑖,𝑣(𝑡)𝜉𝑗,𝑤(𝑡′)〉

, and = 2𝛿𝑖𝑗𝛿𝑣𝑤𝛿(𝑡 ― 𝑡′)/(D𝑡𝛽2) 〈𝛤𝑖,𝑣(𝑡)𝛤𝑗,𝑤(𝑡′)〉 = 2𝛿𝑖𝑗𝛿𝑣𝑤𝛿
, where  is the Kronecker delta, the angle (𝑡 ― 𝑡′)/(D𝑟𝛽2) 𝛿𝑚𝑛

brackets denote ensemble average, and and  𝜉𝑖,𝑣(𝑡)  𝛤𝑖,𝑣(𝑡)
denote the  (x or y) component of  and  for the th 𝑣 𝝃𝑖(𝑡)  𝛤𝑖(𝑡) 𝑖
particle, respectively.

The forces  and torques  acting on particle  are (𝑭𝑖) (𝑻𝑖) 𝑖
computed as

𝑭𝑖 = ― ∇𝒓𝑖𝑈,3
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𝑻𝑖 = ― 𝒖𝑖 × ∇𝒖𝑖𝑈.4

In equations 3 and 4,  is the total potential energy of the 𝑈
system, which is the sum of all inter-particle pairwise 
interactions. Particles interact via a combination of the Weeks-
Chandler-Anderson (WCA) potential88 and the dipole-dipole 
potential. The WCA potential  accounts for steric (𝑈𝑊𝐶𝐴)
repulsion between all colloids, and the dipole-dipole potential 

 accounts for dipolar interactions between pairs of dipolar (𝑈𝐷)
colloids. The equations for  and  are 𝑈𝑊𝐶𝐴 𝑈𝐷

𝑈𝑊𝐶𝐴(𝑟𝑖𝑗) = { 4𝜀[( 𝜎
𝑟𝑖𝑗

)12

― ( 𝜎
𝑟𝑖𝑗

)6

+
1
4],  𝑟𝑖𝑗 < 21 6𝜎

0                                              ,  𝑟𝑖𝑗 ≥ 21 6𝜎

,5

𝑈𝐷(𝒓𝑖𝑗,𝝁𝑖,𝝁𝑗) =
𝝁𝑖 ∙ 𝝁𝑗

𝑟3
𝑖𝑗

― 3
(𝝁𝑖 ∙ 𝒓𝑖𝑗)(𝝁𝑗 ∙ 𝒓𝑖𝑗)

𝑟5
𝑖𝑗

,6

where  is the unit of length,  is the distance between 𝜎 𝑟𝑖𝑗

particle  and particle ,  is the vector connecting 𝑖 𝑗 𝒓𝑖𝑗 = 𝒓𝑗 ― 𝒓𝑖

the center of the two particles, and  is the dipole moment of 𝝁𝑖

particle . We set the repulsive strength  to 𝑖 𝜀 ∗ = 𝛽𝜀 = 100
minimize particle overlap. We fix the dipole moment to the 
particle orientation, so  where  is the magnitude of 𝝁𝑖 = 𝜇𝒖𝑖 𝜇
the dipole moment. Ewald summation is used to account for 
the long-range nature of the dipole-dipole potential.91-94 We 
use Ewald summation over other techniques such as a shifted 
force potential because some of our mixtures contain a small 
number of dipolar particles, which would result in finite size 
effects had we used a truncation method.95 For a description 
of the Ewald summation equations used, please refer to the 
Appendix of Ref. 53. The values for the Ewald summation 
parameters we use (convergence parameter , 𝛼 = 7/𝐿
truncation wave number , and cut-off radius for the 𝑚 = 15
real part of the dipolar interactions 𝑟𝑐 = 𝐿 2, with 𝐿

) match those used in a similar system of  as the box length
active dipolar particles.53 All simulations were performed with 
a coupling strength  between dipoles to 𝜆 = 𝛽𝜇2 𝜎3 = 10
ensure strongly coupled dipolar colloids.

The rotational diffusion coefficient  and translation 𝐷𝑟

diffusion coefficient  are related via the Stokes-Einstein 𝐷𝑡

relationship which says that  for a hard sphere 𝐷𝑟 = 3𝐷𝑡 𝜎2
ℎ

with particle diameter . Since the particles in our model are 𝜎ℎ

soft-spheres, we define an effective hard-sphere diameter in 
terms of the unit of length  from equation 5 as described by 𝜎
Liao and Klapp,54 following the work of Barker and 
Henderson96 via . With our 𝜎ℎ = ∫∞

0 (1 ― exp [ ―𝛽𝑈𝑊𝐶𝐴(𝑟)])𝑑𝑟
choice of , the resulting effective hard-sphere 𝜀 ∗ = 100
diameter is . Substituting this result into the Stokes-𝜎ℎ ≈ 21/6𝜎
Einstein relationship, we obtain .𝐷𝑟 = 3 × 2 ―1/3𝐷𝑡 𝜎2

2.2 Simulation Parameters

Simulations are performed on  total colloids in an 𝑁 = 2000
 square box with periodic boundary conditions. There are 𝐿 × 𝐿

 dipolar colloids and  active colloids for a total number of 𝑁𝐷 𝑁𝐴

colloids . The fraction of particles that are active 𝑁 = 𝑁𝐷 + 𝑁𝐴

is . The area fraction of the box occupied by colloids 𝑥𝐴 = 𝑁𝐴 𝑁

is . Simulations consist of at least  time 𝛷 = 𝑁𝜋σ2 4𝐿2 1.5 × 106

steps with the maximum time between each step of ∆𝑡 = 5 ×
, where  is the unit of time. This resulted in 10 ―5𝜏 𝜏 = 𝜎2 𝐷𝑡

simulations that are at least of time . Simulation 75𝜏
“snapshots” containing particle position and orientation data 
are collected every , and data over the last  of each 0.01𝜏 25𝜏
simulation is analyzed to obtain steady-state results. Results 
are presented in non-dimensionalized units, where an active 
particle with self-propulsive force  has a Péclet number of 𝑓𝑖

.𝑃𝑒 = 𝛽𝜎𝑓𝑖

To ensure that our simulations achieved a non-equilibrium-
steady state, we calculated the average cluster sizes of dipolar 
particles, of active particles, and of all particles. The system 
was said to be in a steady-state when these values plateaued 
over time, which for most systems required between  and 25𝜏

. Simulations at low density with a low fraction of active 50𝜏
particles and low Peclet number required at least  to 75𝜏
achieve steady-state, therefore these simulations were run for 

 or longer. The simulations discussed in this work were 100𝜏
started from randomized particle positions and orientations, 
which allowed the system to achieve a steady-state rapidly. 
Additional simulations were performed starting from fully 
segregated initial configurations to determine the effects of 
the initial configuration. Most of these segregated systems 
achieved a steady-state that was largely identical with that 
achieved from the random initial configuration, though these 
required longer simulation times. The exception to this was 
systems where the Péclet number of the active particles was 
zero (a fully passive system), or very low. In this case the 
dipolar particles formed denser clusters then the 
corresponding system starting from a random configuration. A 
full analysis of this behavior was beyond the scope of this 
work.

2.3 Data Analysis Parameters

In this section we describe the analysis techniques that we use 
to characterize the mixtures. We use subscript “D” to denote 
quantities that are associated only with dipolar colloids, and 
subscript “A” to denote quantities that are associated only 
with active colloids. No subscript is used for quantities 
associated with all of the colloids in the system regardless of 
type. At the end of this section we introduce the parameters 
used to describe the phases present in the mixtures based on 
these analyses.

2.3.1 Clustering behavior
The clustering behavior of both passive dipolar systems and 
active repulsive sphere systems is well established. Equation 6 
tells us that two particles will have a minimum energy of 𝑈𝐷

 when they are separated by a distance of  and = ―2𝜇2𝜎 ―3 𝜎
aligned in a head-to-tail configuration. This energetically 
favorable configuration drives the dipolar particles to form 
chains. We refer our readers to the introduction for 
explanations of the mechanisms that lead to phase separation 
in ABPs and here we add that the critical density below which 
phase separation will not occur, , has been reported to be 𝛷𝑐𝑟𝑖𝑡
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a range of values depending on the system size and 
persistence length .97-99 The persistence length is the 𝓁𝑝

distance over which an active particle retains information 
about its initial orientation, and is related to the particle 
velocity  and rotational diffusion constant via . 𝑣𝑜 𝓁𝑝 = 𝑣𝑜/𝐷𝑅

For two dimensions and in the ballistic regime 
, the lower limit for the critical density has (𝐷𝑅→0,  𝓁𝑝 ≫ 𝜎)

been reported as .100 When the rotational 𝛷𝑐𝑟𝑖𝑡 ≈ 0.28
diffusion constant increases, the persistence length decreases 
and clusters break apart more rapidly, causing the value of 

 to rise. When the translational diffusion coefficient is 𝛷𝑐𝑟𝑖𝑡

zero and rotational diffusion is the only source of noise, 𝛷𝑐𝑟𝑖𝑡

.101 Based on this, we predict that the critical density for ≈ 0.4
phase separation in our simulations will be 0.28 ≲ 𝛷𝑐𝑟𝑖𝑡 ≲ 0.40
.

To quantify clustering in our systems, we use two criteria 
to determine if a pair of colloids are clustered with each other. 
First, if colloids  and  are both active soft spheres or if one is 𝑖 𝑗
an active soft sphere and the other is a dipolar soft sphere, 
then they will be in a cluster if . This criterion 𝑟𝑖𝑗 < 21 6𝜎
corresponds to colloids that are within the repulsive part of 
the WCA potential. Second, if both colloids  and  are dipolar 𝑖 𝑗
soft spheres, then the colloids will be in a cluster if  𝑟𝑖𝑗 < 1.5𝜎
and .102 The distance  is the average position 𝑼𝐷 < 0 𝑟𝑖𝑗 = 1.5𝜎
of the first minimum in the radial distribution function, , 𝑔(𝑟)
which was found by performing simulations containing only 
dipolar colloids over many area fractions. The position of the 
first minimum of  has been found to be relatively 𝑔(𝑟)
insensitive to changes in temperature or density.102 The 
internal energy criterion ensures that only attractive 
configurations are considered for clustering. A cluster is 
defined to be the set of colloids in which each individual 
particle satisfies the above criteria with at least one other 
colloid in that cluster;  will refer to the total number of 𝑛
colloids in the cluster. If a colloid does not meet these criteria 
with any of the other colloids in the system, then that colloid 
forms its own cluster of size one. 

We calculate the ensemble average largest cluster size 
 to gain an overall picture of the clustering behavior of the 〈𝑛𝑙𝑐〉

mixtures. We defined the fraction of colloids in the largest 
cluster as . Small values of this fraction indicate that a 〈𝑛𝑙𝑐〉/𝑁
state without any large clusters is present. Large values of 〈𝑛𝑙𝑐〉

 indicate a state where many particles in the system have /𝑁
come together in a large cluster. When this value equals one, 
all particles have been incorporated in a single cluster.

The extent of polymerization  is useful for 𝐸𝑝𝑜𝑙𝑦
𝐷

characterizing the behavior of the dipolar colloids at low area 
fractions. The extent of polymerization is the fraction of 
dipolar particles that are in clusters, and is defined as 

, where  is the total number of dipolar 〈𝑁𝑝𝑜𝑙𝑦
𝐷 (𝑡)〉/𝑁𝐷 𝑁𝑝𝑜𝑙𝑦

𝐷 (𝑡)
colloids that are in a cluster of at least three particles at time . 𝑡
An extent of polymerization at or near 1 means that all, or 
nearly all, of the dipolar particles exist in clusters, while an 
extent of polymerization near zero means that few dipolar 
clusters are present. The extent of polymerization cannot 
distinguish between a state that contains many intermediate 
size clusters and one that contains one large cluster.

We use percolation probability to measure the formation 
of networks by the dipolar colloids in the mixtures. A 
percolated network is a cluster that spans the simulation box 
and connects back to itself.103 This definition of percolation 
can be broadly satisfied by clusters that either contain 
primarily dipolar colloids aligned in a head-to-tail orientation 
or contain both dipolar and active colloids in a large, dense 
domain. This second type of cluster is more likely to occur in a 
phase separated system and will be treated in a different 
manner as described in section 2.3.2. Here we will focus our 
analysis of percolated clusters on those dominated by dipolar 
colloids. Percolation probability is defined as , 𝛱𝐷 = 〈𝑠(𝑡)〉
where  characterizes the state of the configuration of 𝑠
particles at each time  and is assigned a value of 1 if a 𝑡
percolated cluster exists in the system and a value of zero if no 
such cluster is found. 

2.3.2 Phase separation
As mentioned previously, active colloids can undergo motility-
induced phase separation (MIPS) resulting in a large, densely-
packed cluster in equilibrium with freely moving particles. The 
fraction of particles in the largest cluster gives a rough 
estimate for determining if phase separation exists, however, 
more precise determination of the conditions necessary for 
phase separation require additional analysis methods. One 
well documented method is through the analysis of the local 
area fraction.42 This method not only provides information on 
phase separation; it allows us to gain insight into the 
distribution of dipolar and active colloids in the dense and gas-
like phases. To calculate the local area fraction, we begin by 
performing Voronoi tessellation on the system configuration at 
any time . The simulation cell is divided into Voronoi cells 𝑡
such that each cell contains one colloid plus all the space in the 
simulation box that is closer to that colloid than to any other 
colloid. The area of the th Voronoi cell is , and the local area 𝑖 𝐴𝑖

fraction of the particle in each Voronoi cell is 𝜙𝑙𝑜𝑐
𝑖 = 𝜋𝜎2/(4𝐴𝑖)

. After the Voronoi tessellation is completed, we need to 
determine if the particles have phase separated into a dense 
region and a dilute region. 

To determine if a dense and dilute region exist in the 
system, we overlay a finely-spaced square grid with mesh size 

 on the simulation cell. Each box on this grid is ∆𝐿𝑝𝑚~1.0𝜎
identified by a set of coordinates, . The position-resolved (𝑥,𝑦)
local area fraction in each grid box, , is the weighted 𝜙𝑙𝑜𝑐(𝑥,𝑦)
average of  for those Voronoi cells that lie within each box. 𝜙𝑙𝑜𝑐

𝑖

If a system is not phase separated, the values of  will 𝜙𝑙𝑜𝑐(𝑥,𝑦)
be uniformly distributed through the simulation cell and the 
probability distribution  will have a single peak. If 𝑃(𝜙𝑙𝑜𝑐(𝑥,𝑦))
a system has phase separated, there will be a contiguous 
region where  is high, corresponding to the dense 𝜙𝑙𝑜𝑐(𝑥,𝑦)
phase, and a second contiguous region where  is low, 𝜙𝑙𝑜𝑐(𝑥,𝑦)
corresponding to the dilute phase. In a phase separated 
system, the probability distribution  will have two 𝑃(𝜙𝑙𝑜𝑐(𝑥,𝑦))
distinct peaks. As has been reported elsewhere, this method 
can produce broad tails in the peaks of the probability 
distribution due to clusters formed in the dilute phase.48 
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Therefore, the local area fraction for each grid box is averaged 
over a short time interval, , to obtain the time-∆𝜏 = 0.5𝜏
averaged, position-resolved local area fraction, . Once 𝜙𝑙𝑜𝑐(𝑥,𝑦)
we find , we can calculate the probability distribution 𝜙𝑙𝑜𝑐(𝑥,𝑦)
for the local area fraction , and recover the two 𝑃( 𝜙𝑙𝑜𝑐(𝑥,𝑦))
distinct peaks for the phase separated states.

In addition to allowing us to determine if a system exhibits 
phase separation, the local area fraction gives us information 
about how the active and dipolar colloids are distributed 
between the two phases. To extract this information, we 
locate the interface separating the coexisting states. To find 
the interface, we define the parameter , which 𝛼(𝑥,𝑦)
quantifies the number of colloids in the neighborhood of the 
grid box at ,(𝑥,𝑦)

𝛼(𝑥,𝑦) ≡ (∆𝐿𝑝𝑚)2
1

∑
𝑗,𝑘 = ―1

𝜙𝑙𝑜𝑐(𝑥 + 𝑗∆𝐿𝑝𝑚,𝑦 + 𝑘∆𝐿𝑝𝑚).

In the above equation,  refers to the coordinates that (𝑥,𝑦)
identify a grid box on the coarse, particle-resolved grid and the 
sum is over the  of the eight grid boxes surrounding 𝜙𝑙𝑜𝑐(𝑥,𝑦)
that central grid box (omitting the term where ). We j = k = 0
calculate  for each of the particle-resolved grid boxes. 𝛼(𝑥,𝑦)
The interface is the set of boxes that satisfy the selection 
criteria  where  and |𝛼(𝑥,𝑦) ― 𝛼𝑡ℎ𝑟𝑒𝑠| ≤ 𝛿𝛼𝑡ℎ𝑟𝑒𝑠 𝛼𝑡ℎ𝑟𝑒𝑠 = 4.0

. This choice means that the interfacial grid points 𝛿𝛼𝑡ℎ𝑟𝑒𝑠 = 0.4
have a time-averaged number of neighbors equal to 4; it 
creates an interface that matches well with the interface seen 
in simulation snapshots. Once the set of interfacial boxes is 
found, we can measure the local area fraction as a function of 
the distance from the interface  and fit the data with the 𝜙(𝑑)
Cahn-Hillard ansatz:104

𝜙(𝑑) =
𝜙𝑑𝑒𝑛𝑠𝑒 + 𝜙𝑔𝑎𝑠

2 +
𝜙𝑑𝑒𝑛𝑠𝑒 ― 𝜙𝑔𝑎𝑠

2 tanh (𝑑 ― 𝑑𝑜

𝑤 ),#7

where  is the location of the midpoint between dense and 𝑑𝑜

dilute phases and  is related to the width of the interface 𝑤
between these regions. From this we can extract the local area 
fraction in the dense phase  and in the gas-like phase 𝜙𝑑𝑒𝑛𝑠𝑒

. 𝜙𝑔𝑎𝑠

To estimate the degree of hexagonal ordering present in 
the simulations we calculate the hexagonal bond-orientational 
order parameter.105 The hexagonal bond-orientational order 
parameter for the th particle is𝑗

𝛹𝑗,6 =
1

𝑁𝑛𝑏𝑟
𝑗

| ∑
𝑘 ∈ 𝑁𝑛𝑏𝑟

𝑗

𝑒𝑖6𝜃𝑗𝑘|,
where the sum is over  neighbors of the th particle and  𝑁𝑛𝑏𝑟

𝑗 𝑗 𝑘
identifies the neighboring particle. The angle  is formed 𝜃𝑗𝑘

between the vector  (that is, the vector connecting the 𝒓𝑗𝑘

center of particles  and ) and a fixed but arbitrary vector. The 𝑗 𝑘
neighbors of a particle are defined to be the colloids that 
reside in the Voronoi cells adjacent to the cell that contains 
that particle. When  for all particles, the system is in a 𝛹𝑗,6 = 1
perfect hexagonal configuration. A disordered system will have 
small values of  for all particles. 𝛹𝑗,6

2.3.3 Phase definitions and criteria
Using the above analysis techniques, we can identify four 

different types of phase behavior that our mixtures exhibit: 
motility-induced phase separation (MIPS), dipolar percolation, 
dipolar string-fluid, and isotropic fluid. The MIPS phase has 
both a large dense cluster and a sparsely populated region of 
freely moving colloids. This phase is characterized by two 
distinct peaks in  as well as a clear boundary 𝑃( 𝜙𝑙𝑜𝑐(𝑥,𝑦)),
between the dense and dilute regions. The remaining three 
types of behavior do not exhibit phase separation. The dipolar 
percolation phase has a cluster of dipolar particles that spans 
across the periodic boundary of the simulation box and 
connects back to itself in at least one dimension. This phase is 
defined to occur when the dipolar percolation probability 𝛱𝐷

. The dipolar string-fluid phase is one in which there is ≥ 0.75
large amount of polymerization between dipolar particles, but 
the system neither percolates nor exhibits MIPS. This phase is 
defined to occur when the dipolar percolation probability 𝛱𝐷

 and the extent of polymerization . The < 0.75 𝜙𝑝𝑜𝑙𝑦
𝐷 > 0.75

isotropic fluid phase is one in which there is little 
polymerization between dipolar particles and no MIPS. This 
phase is defined to occur when both the percolation 
probability  and the extent of polymerization 𝛱𝐷 < 0.75 𝜙𝑝𝑜𝑙𝑦

𝐷

.< 0.75

3. Results and Discussion
In the following sections, we present the results of our 
simulations of mixtures of dipolar soft spheres and active soft 
spheres. We first analyze clustering of the colloids, focusing 
our discussion on the results from simulations at , 𝛷 = 0.15
which is representative of a low-density system where MIPS 
does not occur, and , which is representative of a 𝛷 = 0.45
high-density system that does exhibit MIPS. Next, we will 
analyze the phase separation that occurs at . 𝛷 = 0.45
Following this, we present the phase diagram in the active 
fraction versus Péclet number  plane for constant (𝑥𝐴 𝑣𝑠.𝑃𝑒)
values of the area fraction between  and . 𝛷 = 0.05 𝛷 = 0.55
Finally, we discuss in more detail the underlying structure of 
the phases summarized in the phase diagrams.

3.1 Cluster Formation

We first turn our attention to the clustering behavior of the 
mixtures. Figure 1 shows the fraction of colloids of type  𝑘
(where  is “D” for dipolar particles, “A” for active particles, or 𝑘
“All” for all particles) in the largest cluster of type , , 𝑘 〈𝑛𝑙𝑐

𝑘 〉 𝑁𝑘

versus Péclet number. Figure 1(a) shows these results for the 
system at area fraction  and active particle fraction 𝛷 = 0.15

. In this figure we see that at Péclet number , 𝑥𝐴 = 0.4 𝑃𝑒 = 0
the fraction of dipolar particles in the largest dipolar cluster, 

. When , this value increases slightly to 〈𝑛𝑙𝑐
𝐷〉 𝑁𝐷 ≈ 0.57 𝑃𝑒 = 5

. When Péclet number is increased above 〈𝑛𝑙𝑐
𝐷〉 𝑁𝐷 ≈ 0.6

, the value of  decreases rapidly, approaching 𝑃𝑒 = 5 〈𝑛𝑙𝑐
𝐷〉 𝑁𝐷

zero. The behavior of the fraction of particles in the largest 
cluster of all particles, , mirrors that seen in . 〈𝑛𝑙𝑐

𝐴𝑙𝑙〉 𝑁 〈𝑛𝑙𝑐
𝐷〉 𝑁𝐷
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Finally, we see that the fraction of active particles in the 
largest active particle cluster, , increases slightly as  〈𝑛𝑙𝑐

𝐴 〉 𝑁𝐴 𝑃𝑒
increases but is near zero for all Péclet numbers simulated. 
Figure 1(b) shows these results for the system at area fraction 

 and active particle fraction . In this figure 𝛷 = 0.15 𝑥𝐴 = 0.8
we see the values of  at  are much smaller 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 𝑥𝐴 = 0.8
than they were at , which indicates that much less 𝑥𝐴 = 0.4
clustering occurs in these systems. We can see that as Péclet 
number increases from  to  the value  𝑃𝑒 = 0 𝑃𝑒 = 10 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷

increases, but decreases when the Péclet number increases 
above . This follows the same general trend seen for 𝑃𝑒 = 10
dipolar particles at  in Figure 1(a). The behavior 𝑥𝐴 = 0.4

 mirrors the behavior of  up until . 〈𝑛𝑙𝑐
𝐴𝑙𝑙〉 𝑁 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 𝑃𝑒 = 60

Unlike the largest dipolar cluster, the largest cluster of all 
particles begins to increase slowly when the Péclet number 
increases above . Finally, Figure 1(b) shows that 𝑃𝑒 = 60

 increases as  increases but, as in Figure 1(a), 〈𝑛𝑙𝑐
𝐴 〉 𝑁𝐴 𝑃𝑒

remains small. The small increase in  in both Figure 〈𝑛𝑙𝑐
𝐴 〉 𝑁𝐴

1(a) and (b) corresponds to the dynamical finite-sized 
clustering of ABPs at low densities reported elsewhere.11,39,54 
The results for low area fraction mixtures shown in Figure 1(a) 
and (b) suggest that  at low Péclet number, clustering is (1)
primarily done by dipolar colloids,  slow moving active (2)
particles aid in the formation of dipolar colloidal clusters as 
seen in the initial increase of  at low , and  fast 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 𝑃𝑒 (3)

Figure 2: Percolation probability, , (top) and extent of polymerization, , 𝛱𝐷 𝐸𝑝𝑜𝑙𝑦
𝐷

(bottom) versus Péclet number for (a)  and (b)  and active 𝛷 = 0.15 𝛷 = 0.45

fractions  (blue triangles),  (red squares),  (black ‘x’), and 𝑥𝐴 = 0.2 𝑥𝐴 = 0.4 𝑥𝐴 = 0.6

 (purple circles). The dashed black line in each figure marks where 𝑥𝐴 = 0.8 𝛱𝐷

 or . Results that lies above this line indicate that the system is = 0.75 𝐸𝑝𝑜𝑙𝑦
𝐷 = 0.75

percolated or polymerized respectively.

Figure 1: Fraction of particles in the largest cluster versus Péclet number for 
dipolar colloids (blue triangles), active colloids (red squares), and all colloids 

(black ‘x’) for (a) ,  (b) ,  (c) , 𝛷 = 0.15 𝑥𝐴 = 0.4 𝛷 = 0.15 𝑥𝐴 = 0.8 𝛷 = 0.45 𝑥𝐴

 and (d) , . Note that (a) and (b) are plotted on a log = 0.4 𝛷 = 0.45 𝑥𝐴 = 0.8
scale for clarity.

Page 6 of 14Soft Matter



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7

Please do not adjust margins

Please do not adjust margins

moving active particles disrupt the formation of dipolar 
colloidal clusters.

Figures 1(c) and (d) show the fraction of particles in the 
largest cluster for mixtures at area fraction  and 𝛷 = 0.45
active particle fraction  and , respectively. For 𝑥𝐴 = 0.4 𝑥𝐴 = 0.8
Figure 1(c),  is a monotonically decreasing function 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷

with increasing Péclet number. This contrasts with the low 
area fraction systems, where the largest dipolar cluster 
increases for small Péclet number values above . For 𝑃𝑒 = 0
the active particles in this system, Figure 1(c) shows that 

 is small for all values up to , above which 〈𝑛𝑙𝑐
𝐴 〉 𝑁𝐴 𝑃𝑒 ≈ 120

 begins to rise. The behavior of the fraction of particles 〈𝑛𝑙𝑐
𝐴 〉 𝑁𝐴

in the largest cluster of all particles, , is more complex. 〈𝑛𝑙𝑐
𝐴𝑙𝑙〉 𝑁

At low Péclet number,  increases as  increases until 〈𝑛𝑙𝑐
𝐴𝑙𝑙〉 𝑁 𝑃𝑒

. Since at low  all the dipolar colloids are already 𝑃𝑒 = 15 𝑃𝑒
incorporated into a single cluster , this increase (〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 = 1)
in  can be attributed to active particles colliding with 〈𝑛𝑙𝑐

𝐴𝑙𝑙〉 𝑁
the large dipolar cluster. Above ,  decreases as 𝑃𝑒 = 15 〈𝑛𝑙𝑐

𝐴𝑙𝑙〉 𝑁
the active particles begin to break apart the dipolar cluster. 
This continues until , after which  begins to 𝑃𝑒 = 40 〈𝑛𝑙𝑐

𝐴𝑙𝑙〉 𝑁
rise again. This increase is noteworthy because there isn’t a 
significant increase in  or ; the likely 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 〈𝑛𝑙𝑐
𝐴 〉 𝑁𝐴

explanation is that the active and dipolar particles are forming 
a mixed cluster without any large domain containing one type 
of particle. In Figure 1(d), once again  is a 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷

monotonically decreasing function with increasing Péclet 
number. For active particles in this system, we see a sharp 
increase in  at  that is characteristic of 〈𝑛𝑙𝑐

𝐴 〉 𝑁𝐴 𝑃𝑒 = 70
motility-induced phase separation. The behavior of  〈𝑛𝑙𝑐

𝐴𝑙𝑙〉 𝑁
mirrors that of the dipolar particle largest cluster fraction at 
low values of , and that of the active particle largest cluster 𝑃𝑒
fraction at high values of . The results for intermediate area 𝑃𝑒
fraction mixtures shown in Figure 1(c) and (d) suggest that  (1)

at low Péclet number, clustering is primarily done by dipolar 
colloids as was the case for low area fraction mixtures,  at (2)
low  and high Péclet number, large mixed clusters form that 𝑥𝐴

contain both types of particles, and  at high  and high (3) 𝑥𝐴

Péclet number, a large active particle cluster forms. 
At low Péclet number for both the low and intermediate 

density systems, the clusters that form consist primarily of 
dipolar particles. To further quantify this behavior, we plot the 
percolation probability, , and extent of polymerization, 𝛱𝐷

, versus Péclet number, , for area fractions  𝐸𝑝𝑜𝑙𝑦
𝐷 𝑃𝑒 𝛷 = 0.15

and  in Figure 2(a) and (b), respectively. The 𝛷 = 0.45
percolation probability in the top panel of Figure 2(a) shows 
that  for  and . This indicates that 𝛱𝐷 = 1 𝑥𝐴 = 0.2 𝑃𝑒 = 0, 5, 10
these are the only systems that meet our criteria for the 
dipolar percolation phase at . In addition, Figure 2(a) 𝛷 = 0.15
shows small but non-zero values of  for the systems at 𝛱𝐷 𝑥𝐴

 and . These two points represent the same = 0.4 𝑃𝑒 = 0, 5
systems for which  in Figure 1(a). Taken 〈𝑛𝑙𝑐

𝐷〉 𝑁𝐷 ≈ 0.6
together, this indicates that the large dipolar clusters that form 
at low area fractions consist of long chains of head-to-tail 
aligned dipolar colloids as opposed to a compact cluster of 
these particles. An example of this dipolar network can be 
seen in the snapshot in Figure 3(a). The extent of 
polymerization for area fractions  in the bottom panel 𝛷 = 0.15
of Figure 2(a) shows that increasing the Péclet number of the 
active colloids decreases the number of dipolar colloids in 
clusters, which is in agreement with the trends seen in 

. This can be seen by comparing the snapshots in 〈𝑛𝑙𝑐
𝐷〉 𝑁𝐷

Figure 3(a) and (b). These two snapshots represent similar 
systems, but in Figure 3(a)  a large dipolar network (𝑃𝑒 = 10)
forms, while in Figure 3(b)  a dipolar string-fluid (𝑃𝑒 = 20)
forms where the dipolar colloids have assembled into small 
clusters, short chains, and rings. Additionally, the extent of 
polymerization, , shows a rapid decrease for  𝐸𝑝𝑜𝑙𝑦

𝐷 𝑥𝐴 = 0.8
with increasing Péclet number, but this decay is less 
pronounced as the fraction of active particles, , in the 𝑥𝐴

system is reduced. This behavior suggests that the active 
particles in the mixtures have a similar effect on dipolar 

Figure 3: Representative simulation snapshots. (a) Dipolar percolated network at 

, , and . (b) Dipolar string-fluid at at , , 𝛷 = 0.15 𝑥𝐴 = 20 𝑃𝑒 = 10 𝛷 = 0.15 𝑥𝐴 = 20

and . (c) Dipolar percolated network at at , , and 𝑃𝑒 = 20 𝛷 = 0.45 𝑥𝐴 = 20 𝑃𝑒 = 10

. (d) Dipolar string-fluid at at , , and . Dipolar particles are 𝛷 = 0.45 𝑥𝐴 = 60 𝑃𝑒 = 50
blue and active particles are red.

Figure 4: Probability distribtuion of the time-average local area fraction  𝑃

 versus time-average local area fraction  for , (𝜙𝑙𝑜𝑐(𝑥,𝑦)) 𝜙𝑙𝑜𝑐(𝑥,𝑦) 𝛷 = 0.45 𝑥𝐴

, and  (blue circles),  (black ‘x’),  (red squares), = 0.8 𝑃𝑒 = 5 𝑃𝑒 = 25 𝑃𝑒 = 50 𝑃𝑒

 (purple triangles) and  (orange diamonds). Lines are drawn = 100 𝑃𝑒 = 150

between points to help guide the eye.
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clustering as temperature does on pure systems of passive 
dipolar particles. Both increasing  and increasing the Péclet 𝑥𝐴

number can be viewed as analogous to increasing the 
temperature in a passive dipolar system.79,106 A similar effect 
can be seen in simulations of active dipolar particles, where 
increasing particle velocity results in reduced chaining of the 
active dipolar colloids.53 For the system at  shown in 𝛷 = 0.45
Figure 2(b), the values of both  and  are larger than 𝛱𝐷 𝐸𝑝𝑜𝑙𝑦

𝐷

those for . Indeed,  for all values of  𝛷 = 0.15 𝛱𝐷 > 0.75 𝑃𝑒
simulated for the systems at , and even when  𝑥𝐴 = 0.2 𝑥𝐴 = 0.6
some systems exhibit dipolar percolation. The snapshot in 
Figure 3(c) shows an example of a percolated system at 

, while Figure 3(d) shows an example of a dipolar-𝛷 = 0.45
string fluid.

3.2 Phase separation

As we noted earlier, systems at high area fraction exhibit a 
sharp increase in the largest cluster size of active particles 

when the Péclet number is high. This behavior is characteristic 
of motility-induced phase separation, but  alone does 〈𝑛𝑙𝑐

𝐴 〉 𝑁𝐴

not fully describe MIPS. To determine the onset of phase 
separation, we plot the probability distribution of the time 
average local area fraction  at  and 𝑃(𝜙𝑙𝑜𝑐(𝑥,𝑦)) 𝛷 = 0.45 𝑥𝐴

 for various values of , an example of which is shown = 0.8 𝑃𝑒
in Figure 4. (We consider both species of colloids regardless of 
whether they are active or passive in these initial local area 
fraction calculations; later we will look at what insights can be 
gained by measuring the local area fractions of dipolar and 
active colloids independently.) At low Péclet number , (𝑃𝑒 = 5)
the probability distribution exhibits only one peak, which is 
centered on the simulation area fraction , as would  𝛷 = 0.45
be expected in a homogeneous system. This single peak 
broadens as the Péclet number increases . When (𝑃𝑒 = 25, 50)
the Péclet number is , two peaks in  𝑃𝑒 = 100 𝑃(𝜙𝑙𝑜𝑐(𝑥,𝑦))
appear, indicating that the mixture phase separates into a 
dense phase and a dilute phase. The area fractions of particles 
in these two coexisting phases (  for the dense phase and 𝜙𝑑𝑒𝑛𝑠𝑒

 for the dilute phase) correspond to the locations of the 𝜙𝑔𝑎𝑠

two local maxima of . When , the dilute 𝑃(𝜙𝑙𝑜𝑐(𝑥,𝑦)) 𝑃𝑒 = 150
phase peak shifts to a lower value of , but the 𝜙𝑙𝑜𝑐(𝑥,𝑦)
location of the dense phase peak remains unchanged.

To calculate  and  more exactly, we find the 𝜙𝑑𝑒𝑛𝑠𝑒 𝜙𝑔𝑎𝑠

boundary between the dense and dilute phase in the 
simulation cell, plot the local area fraction versus distance 
from the boundary, and then fit this data to the Cahn-Hillard 
ansatz described earlier. Examples of this process are shown in 
Figure 5 for , , and  and 𝛷 = 0.45 𝑃𝑒 = 150 (𝑎) 𝑥𝐴 = 0.4 (𝑏) 𝑥𝐴

. In this figure, the top row shows a representative = 0.8
snapshot of the simulation and the middle row shows the 
corresponding interface between the dense and gas-like 
phase. The bottom row of Figure 5 shows the plot of local area 
fraction, , versus distance from the boundary, . In this 𝜙(𝑑) 𝑑 𝜎
figure,  denotes the dilute region while  𝑑 𝜎 < 0 𝑑 𝜎 > 0
denotes the dense region. From the fitted line, we can then 
extract the coexistence area fractions of the dense and dilute 
phases. 

Figure 5: Examples of phase separated systems and interface boundary analysis 
for , , and for (a)  and (b) . The top image 𝛷 = 0.45 𝑃𝑒 = 150 𝑥𝐴 = 0.4 𝑥𝐴 = 0.8

shows a simulation snapshot for these systems. Dipolar colloids are blue and 
active particles are red. The middle image shows the interfacial boundary (black 
squares) between the dense and gas phase for these snapshots. The bottom 
image shows the plot of local area fraction  versus distance from the 𝜙(𝑑)

boundary  for dipolar colloids (blue triangles), active colloids (red squares), and 𝑑 𝜎

all colloids (black ‘x’). The red line is the curve fitted by equation 7 with (a) 𝜙𝑑𝑒𝑛𝑠𝑒

, , , and  and (b) = 0.7329 𝜙𝑔𝑎𝑠 = 0.2958 𝑑𝑜 = ―0.4825 𝑤 = 3.5459 𝜙𝑑𝑒𝑛𝑠𝑒

, , , and . = 0.7390 𝜙𝑔𝑎𝑠 = 0.1797 𝑑𝑜 = ―1.2204 𝑤 = 3.1011
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We plot the coexistence area fractions,  and , in 𝜙𝑑𝑒𝑛𝑠𝑒 𝜙𝑔𝑎𝑠

the Péclet number versus the local area fraction  plane (𝑃𝑒,𝜙)
at various values of  and constant system area fraction 𝑥𝐴

 in Figure 6 to show how the presence of dipolar 𝛷 = 0.45
particles influences these coexistence area fractions. In the 
limiting case of , our data agrees well with previously 𝑥𝐴 = 1
published results for the low-area fraction branch  over 𝜙𝑔𝑎𝑠

the range of Péclet numbers considered.13 The values for 
 in the high-area fraction branch is close to that for 𝜙𝑑𝑒𝑛𝑠𝑒

hexagonally close-packing (cp) spheres with a diameter equal 
to the effective hard sphere diameter  of the spheres in our 𝜎ℎ

system, that is .107 The coexistence 𝜙𝑐𝑝 = 𝜋𝜎2 3 (6𝜎2
ℎ) ≈ 0.72

area fraction of the dilute phase, , shifts towards higher 𝜙𝑔𝑎𝑠

area fractions for each successive decrease in . This may be 𝑥𝐴

attributed to the dipolar particles forming clusters in the gas-
like phase as can be seen for the low  system in the top 𝑥𝐴

image in Figure 5(a). In the middle image of Figure 5(a), a few 
of the small clusters in the gas-like phase have been denoted 
as part of the interface between the two phases, despite these 
clusters not lying on the contiguous boundary. Since the 
interface was obtained by averaging over , the ∆𝜏 = 0.5𝜏
presence of these “boundary” areas in the dilute phase 
indicates that some of the clusters formed in the gas-like 
phase are long lasting, which would contribute to higher 
values of . These clusters are largely absent in the high  𝜙𝑔𝑎𝑠 𝑥𝐴

system in Figure 5(b), resulting in lower values of . 𝜙𝑔𝑎𝑠

We can gain more insight into the distribution of active and 
dipolar particles in the dense and dilute phases by further 
examining the local area fraction of the two species 
independently. To do this, we preform separate Voronoi 
tessellations on each component of the mixture independently 
to obtain a local area fraction for dipolar particles,  and a 𝜙𝐷

local area fraction for active particles . We plot the local 𝜙𝐴

area fractions  and  versus  in the bottom 𝜙𝐷(𝑑) 𝜙𝐴(𝑑) 𝑑 𝜎
images of Figure 5(a) and (b), where we are measuring  in 𝑑
relation to the same interface boundary found by considering 
both species. Here we see that the local area fraction of both 
species is low in the dilute phase (where ). As we 𝑑 𝜎 < 0
approach the interface at  from the dilute regime, we 𝑑 𝜎 = 0
see that  begins to rise rapidly and reaches a plateau 𝜙𝐴(𝑑)
near . On the other hand,  increases more 𝑑 𝜎 ≈ 2.5 𝜙𝐷(𝑑)
gradually than  in the dilute regime. Taken together, this 𝜙𝐴(𝑑)
leads us to conclude that the interfacial layer is rich in active 
particles. When  is high, both  and  begin to 𝑑 𝜎 𝜙𝐷(𝑑) 𝜙𝐴(𝑑)
fluctuate, indicating small single component domains within 
the dense phase.

3.3 Phase diagrams

Combining all this information, we plot the phase diagrams for 
 and  in the  versus  𝛷 = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55 𝑥𝐴 𝑃𝑒

plane shown in Figure 7(a)-(e), respectively. Starting with 

Figure 6: Area fractions corresponding to coexistence densities  (high 𝜙𝑑𝑒𝑛𝑠𝑒

area fraction branch) and  (low area fraction branch) plotted on the 𝜙𝑔𝑎𝑠

Péclet number versus area fraction plane for  and  (red 𝛷 = 0.45 𝑥𝐴 = 0.4

squares),  (black ‘x’),  (purple circles), and  (orange 𝑥𝐴 = 0.6 𝑥𝐴 = 0.8 𝑥𝐴 = 1
diamonds).

Figure 7: Phase diagrams for constant  in the  versus  plane. The phases exhibited are the percolated dipolar network phase (blue triangles), dipolar 𝛷 = 0.05 ― 0.55 𝑥𝐴 𝑃𝑒
string-fluid phase (red squares), isotropic fluid phase (black ‘x’), and phase separated state (orange diamonds). Dashed lines are drawn between phases to help guide the 
eyes.
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, the system is not dense enough to form a 𝛷 = 0.05
percolated network, and the only phases present are the 
string-fluid and isotropic fluid phases. This agrees with results 
from simulations of two-dimensional dipole-like colloids which 
show that low density systems will not percolate.79 At 

 the percolated dipolar network phase forms at low 𝛷 = 0.15
Péclet number, and and 0.2, while the rest of the phase 𝑥𝐴 = 0 
diagram closely matches that at . The results at 𝛷 = 0.05 𝑥𝐴

 agree with previous simulations which show that at low = 0
temperatures a pure system of dipolar particles will percolate 
above .79 At , the percolated network now 𝛷 ≈ 0.10 𝛷 = 0.25
forms at , and the string-fluid phase persists at higher 𝑥𝐴 = 0.4
values of . At , this trend continues, with the 𝑃𝑒 𝛷 = 0.35
percolated network and string-fluid persisting at higher . In 𝑃𝑒
addition, we begin to see the two-phase state at high  when 𝑃𝑒

 is high. At , the two-phase region begins to form at 𝑥𝐴 𝛷 = 0.45
lower  and . Finally, at , the percolated network 𝑃𝑒 𝑥𝐴 𝛷 = 0.55
phase persists when  for all values of  considered in 𝑥𝐴 = 0.2 𝑃𝑒
this study, although at high Péclet number this percolated 
network consists of large domains of hexagonal close packed 
dipolar discs instead of the head-to-tail aligned chains found at 
lower values of . This can be seen in Figure 8, which shows 𝑃𝑒
the probability distribution of the hexagonal bond-
orientational order parameter . From this figure we can 𝑃(𝛹6)
see the development of a peak near  as the Péclet 𝛹6 = 1
number increases, but this peak is absent at low values of . 𝑃𝑒

We did not find any Péclet number at which very low  𝑥𝐴

systems form a two-phase state. This contrasts with what has 
been seen in simulations of active and passive repulsive discs, 
in which systems with as little as 15% active particles can 
phase separate.66 However we did not investigate the behavior 
at very high Péclet number  where this behavior (𝑃𝑒 ≈ 500)
has been found. There are two possible results that could be 
seen at very high Péclet number. The first possibility is that 
phase separation in the dipolar and active mixture at low  𝑥𝐴

would require a lower Péclet number to achieve phase 
separation than is found in the passive/active mixture because 
the dipolar interactions would act as a stabilizing force to keep 
clustered dipolar particles together. This has been checked by 

running two brief simulations (data not shown) starting from 
the last configuration of the , , , and 𝛷 = 0.55 𝑥𝐴 = 0.2 𝑃𝑒 = 150
dipolar coupling strength  system. In the first simulation 𝜆 = 10
we set the dipolar coupling strength as  and the Péclet 𝜆 = 10
number as  and observe that the structure undergoes 𝑃𝑒 = 0
very little rearrangement, largely maintaining the shape found 
in the initial configuration. In the second simulation we set the 
dipolar coupling strength as  and the Péclet number as 𝜆 = 0

 and observe that the particles quickly disperse into a 𝑃𝑒 = 0
homogenous, isotropic fluid. The second possibility is that 
phase separation in the dipolar and active mixture at low  𝑥𝐴

would require a higher Péclet number to achieve phase 
separation, or indeed phase separation may not be possible at 
low . Investigations into strongly coupled equilibrium dipolar 𝑥𝐴

fluids79 and active dipolar fluids53 show that strongly coupled 
dipolar particles prefer forming head-to-tail aligned chains and 
resist phase separation.

Conclusions

We have calculated phase diagrams for mixtures of dipolar 
spheres and active spheres using Brownian dynamics. These 
mixtures form percolated dipolar networks, string-fluids, 
isotropic fluids, or phase separate into a dense and dilute 
phase based on the system parameters. When the motility of 
the active particles is small, as measured by the Péclet 
number, the dipolar particles form rings or short chains at low 
area fractions, and long chains or percolated networks at high 
area fractions. When the motility of the active particles is 
increased, the long chains of dipolar particles are disrupted 
and are either broken apart into short chains or pushed into 
denser clusters. These short dipolar chains arise when the 
number of active particles is large, or when the area fraction of 
the system is low. Large area fractions with low numbers of 
active particles result in dense clusters of dipolar chains. When 
the motility of the active particles reaches a certain threshold 
and the area fraction is sufficiently high, the system undergoes 
motility-induced phase separation.

This work builds upon previous simulation and theoretical 
results for mixtures of colloidal particles. Much of focus has 
been on mixtures that interact via isotropic steric repulsion 
forces only.33,66-71 However some work has been done that has 
considered particles that interact via anisotropic steric 
repulsion32 or polar velocity alignment.34 These previous 
papers have focused on phase separation and demixing 
behavior. By simulating mixtures that contain passive dipolar 
colloids, we have introduced particles with an anisotropic 
interaction that can be either attractive or repulsive in nature, 
in addition to the steric repulsion forces. This additional 
interaction leads to enhanced clustering and chain formation 
at lower Péclet numbers compared to the clustering that 
occurs in the active/passive mixtures that have previously 
been studied.

The phase diagrams calculated in this work can aid 
experimentalists in understanding the complex aggregation 
behavior seen in colloidal mixtures. In particular, the mixture 

Figure 8: Probability distribution of the hexagonal bond-orientational order 

parameter,  for , , and  (blue circles),  𝑃(𝛹6), 𝛷 = 0.55 𝑥𝐴 = 0.2 𝑃𝑒 = 5 𝑃𝑒 = 25

(black ‘x’),  (red squares),  (purple triangles) and  𝑃𝑒 = 50 𝑃𝑒 = 100 𝑃𝑒 = 150
(orange diamonds). Lines are drawn between points to help guide the eye.
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of dipolar colloids and active colloids shows an interplay 
between the two species of particles. The dipolar colloids 
prefer to form head-to-tail aligned chains, and the active 
particles either break up the chains of dipolar particles or 
phase separate, causing the dipolar particles to adopt a 
hexagonal, close-packed structure. These mixtures could be 
useful in creating novel materials that can adopt different 
configurations by adjusting the motility of the active particles.

We have investigated systems with a high dipolar coupling 
strength  so that the attractive dipolar interactions are 𝜆
sufficiently strong compared to the repulsive interactions 
induced by fast moving active particles. We predict that a 
lower dipolar coupling strength would cause dipolar clusters to 
break apart at lower active particle Péclet number. When the 
coupling strength is sufficiently low, these mixtures would 
exhibit little dipolar clustering and instead behave like the 
mixtures of active and passive particles that have been 
investigated by others.66,68The relative strength of interactions 
between the passive particles could be determined by 
monitoring the breaking of chains of passive particles as the 
active particle Péclet number increases, as stronger interacting 
particles would exhibit chaining and clustering at higher Péclet 
number than weaker interacting particles would. It would also 
be of interest to consider active/passive mixtures in which the 
passive particles exhibit other types of interactions, such as 
Lennard-Jones interactions. Since Lennard-Jones interactions 
do not depend on the orientation of the particles and do not 
prefer head-to-tail configurations, it is likely that these passive 
particles would form denser clusters that remain intact at 
higher active particle Péclet number. Knowledge of this could 
lead to the development of a tool that could predict passive 
particle interactions when these interactions are not know a 
priori.

One intriguing area for future study of these mixtures 
would be to introduce an isotropic attractive force between 
the dipolar colloids, such as the capillary force that is present 
in lipid coated magnetic nanoparticles studied by Bharti et 
al.108 The capillary force in their system was estimated to be 

 times stronger than the magnetic force, which would ≈ 25
serve to keep the dipolar particles in clusters even in the 
presence of high Péclet number active particles. Colloidal 
particles that combine the strong capillary force with 
orientation-dependent dipolar interactions could lead to 
interesting interactions between these particles and active 
colloids. A second area of future research would be to see if 
active colloids can be used to induce long range ferromagnetic 
clusters in the passive dipolar particles. This may be possible 
by introducing another source of anisotropy, such as rod-
shaped dipolar particles or circular swimming active particles, 
both of which could encourage separation between the two 
species. Finally, we could extend this work by considering how 
hydrodynamic and phoretic forces impact the active/dipole 
mixtures. The effects of these forces are difficult to predict but 
could lead to demixing of the active and dipolar particles or 
promoting long range ferromagnetic order among the dipolar 
particles.
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