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The temperature dependence of the thermal conductivity is linked to the nature of the energy
transport at a frequency ω, which is quantified by thermal diffusivity d(ω). Here we study d(ω) for
a poorly annealed glass and a highly stable glass prepared using the swap Monte Carlo algorithm.
To calculate d(ω), we excite wave packets and find that the energy moves diffusively for high
frequencies up to a maximum frequency, beyond which the energy stays localized. At intermediate
frequencies, we find a linear increase of the square of the width of the wave packet with time,
which allows for a robust calculation of d(ω), but the wave packet is no longer well described by a
Gaussian as for high frequencies. In this intermediate regime, there is a transition from a nearly
frequency independent thermal diffusivity at high frequencies to d(ω) ∼ ω−4 at low frequencies.
For low frequencies the sound waves are responsible for energy transport and the energy moves
ballistically. The low frequency behavior can be predicted using sound attenuation coefficients.

The thermal conductivity of amorphous solids is vastly different
than that of their crystalline counterparts. The existence of sev-
eral common features in the temperature dependence of the ther-
mal conductivity of amorphous solids indicates a common ori-
gin1–8. At temperatures below ∼ 1K the thermal conductivity
grows as T 2 compared to T 3 growth for crystalline solids. This
quadratic growth of the thermal conductivity with temperature
is generally attributed to two-level tunneling states3,5,7,9–11, al-
though alternative explanations exist12–14. Around T ≈ 10K a
plateau develops in the thermal conductivity and there is a nearly
linear rise in the thermal conductivity after the plateau.

The temperature dependence of the thermal conductivity κ can
be analyzed in terms of frequency dependent thermal diffusivity
d(ω), which quantifies how fast a wave packet, narrowly peaked
around a frequency ω, propagates15–18. At low temperatures,
only the low frequency modes are excited, and only the low fre-
quency thermal diffusivity significantly contributes to the thermal
conductivity. The most prevalent theories attribute the low fre-
quency thermal diffusivity to two-level states, which provide the
dominant contribution below 1K, and to thermal transport due to
sound waves19,20. By considering the sound waves as a phonon
gas, Debye argued that there is a contribution to d(ω) given by
v(ω)`(ω)/3 where v(ω) is the speed of sound and `(ω) is the mean
free path21. It is often assumed, and confirmed in recent simula-
tions, that sound attenuation obeys Rayleigh scaling, and thus the
contribution due to sound waves behaves as ds(ω) ∼ ω−4 22–24.
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Several researchers demonstrated that the thermal conductivity
can be accurately described for temperatures at and below the
low temperature plateau by combining the contributions to d(ω)

due to two level systems and due to sound waves19,20,25,26.
At room temperature, where all vibrational modes are excited,

the average mean free path is on the order of the interatomic
spacing25,27–29, which implies that the high frequency excitations
are strongly damped and can no longer be described as propagat-
ing sound waves. This strong damping is consistent with simu-
lations, which show that energy transport does not have the low
frequency ballistic character associated with sound waves28,30,31.
Instead, for high frequencies the energy transport is diffusive. Xu
et al.17 showed that for systems of jammed spheres the thermal
diffusivity is constant above a characteristic frequency ωd up to
a maximum frequency ωc where it quickly drops to zero. The
crossover frequency ωd goes to zero as the unjamming transition
is approached. This constant diffusivity can explain the linear in-
crease of the thermal conductivity above the plateau. For high
frequencies, the thermal diffusivity goes to zero and the excita-
tions are localized17,18,28,30,31.

Identification of these three regimes for d(ω) motivated Allen
et al.15,32 to characterize the vibrational modes in terms of
propagons, diffusons, and locans. They determined that for amor-
phous silica 97% of modes are diffusons, which implies that dif-
fusive transport is the dominant contribution to the thermal con-
ductivity for temperatures above the plateau.

Few simulations have studied the full range of diffusivity from
the low-frequency sound wave dominated regime to the high-
frequency plateau28,30. The method of Allen and Feldman15,16

is currently restricted to high frequencies since one needs to diag-
onalize the Hessian, which restricts one to small systems. Here,
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we use an alternative method28,30,31 to study the full range of fre-
quencies, the crossover between high and low frequency, and the
connection between the diffusivity and phonon attenuation. Ad-
ditionally, to our knowledge, the energy diffusivity has not been
studied as a function of the glass stability. Since the vibrational
properties and the attenuation of sound waves change dramat-
ically with stability23,33,34, the energy diffusivity would also be
expected to change with stability. Here, we compare the energy
diffusivity over a broad range of frequencies for a poorly annealed
glass and a glass whose stability is similar to that of stable labo-
ratory glasses.

To calculate the thermal diffusivity we excite a narrow, in fre-
quency and space, wave packet at the center of a simulation cell
and examine energy transport in the harmonic approximation.
For diffusive energy transport, the center of the wave packet re-
mains stationary and the square of its width increases as 2d(ω)t
in each direction. We find that this method results in the same
diffusivity as the method of Allen and Feldman15,16 that uses the
eigenvectors and eigenvalues of the Hessian. Since we excite a
wave packet that can only propagate in one direction, we simu-
late elongated systems. These elongated systems allow us to ex-
tend the time scale for the energy transport calculation, and thus
examine energy diffusivity at low frequencies where the trans-
port is ballistic. Therefore, we can investigate the crossover from
diffusive to ballistic energy transport.

1 Simulations

We create glasses by quenching a three-dimensional polydisperse
model glass former equilibrated at a parent temperature Tp to its
inherent structure using the fast inertia relaxation engine mini-
mization algorithm35. The interaction between two particles n
and m is given by

V (rnm) = ε

(
σnm

rnm

)12
+ v(rnm) (1)

when rnm = |rn− rm|< 1.25σnm and zero otherwise. The continu-
ity of V (rnm) is ensured up to the second derivative at the cutoff
by setting v(rnm) = co + c2(rnm/σnm)

2 + c4(rnm/σnm)
4. The proba-

bility that a particle has a diameter σ is given by P(σ) = A/σ3

where σ ∈ [0.73,1.63], and we use a non-additive mixing rule
σnm = 0.5(σn +σm)(1− 0.2|σn−σm|). To equilibrate the systems
at Tp = 0.2 and Tp = 0.062 we use the Monte Carlo swap al-
gorithm36,37. The higher parent temperature is approximately
equal to the onset temperature for the slow dynamics and the
resulting inherent structure constitutes a poorly annealed glass.
The lower parent temperature is lower than the estimated experi-
mentally equivalent glass transition temperature of Tg ≈ 0.07237.
The inherent structure resulting from quenching the sample equi-
librated at Tp = 0.062 constitutes a very stable glass. We present
the results in reduced units where ε is the unit of energy and√

Mσ2/ε is the unit of time. Each particle has the same mass M,
which is our mass unit. We set Boltzmann constant kB = 1.

We equilibrated systems of N = 3000 and N = 48000 particles
at a number density ρ = N/V = 1.0. Since at low frequencies
the energy moves ballistically at the speed of sound, we needed

large systems. To this end we replicated the N = 3000 particle
system 80 times in the x-direction to make a very elongated sim-
ulation box with 243000 particles. We replicated the 48000 parti-
cle system two times to make a 144000 particle system. We have
checked that there were no finite size effects.

To study the energy transport we excited a wave-packet cen-
tered at x = 0. To this end we solved the harmonic equations of
motion

ün(t) =−
N

∑
n=1

Dnm ·um(t)+ fn(φ ,ω,x, t), (2)

where un = rn− r0
n, r0

n is the inherent structure position, Dnm is
the dynamical matrix (Hessian). The external force exciting the
wave packet, fn(φ ,ω,x, t), is given by

fn(φ ,ω,x, t) = aλ cos(ωt +φ)

×exp
[
−1

2

( x
∆x

)2
− 1

2

( t
∆t

)2
]
. (3)

We started the simulation at t =−5∆t so that fn(φ ,ω,x, t)≈ 0 and
run until the excitation reaches the end of the simulation box.
Unless otherwise noted, we use ∆x = 0.5 and ∆t = 10. Since a
wave-packet of finite duration is a mixture of different frequen-
cies, our frequency uncertainty is ∆ω ≈ 1/(∆t) = 0.1.

2 Energy Transport Calculation

We use an approach proposed by Beltukov et al.28 and run two
simultaneous simulations using the same system. The simula-
tions differ by the phase φ in the external force exciting the wave
packet. For the first simulation φ = 0 and for the second simula-
tion φ = π/2. Alternatively, one can run one simulation and divide
the kinetic and potential energy into regions, but it is ambiguous
how to divide the potential energy between the two interacting
particles. Beltukov et al.’s approach removes that ambiguity.

The energy is converted from potential to kinetic at a rate given
by ω and the energy density can be defined as

E(ω,x, t) =
1

2lylz
∑
n

[
(u̇0

n)
2 +(u̇π/2

n )2
]

δ (x− xn), (4)

where u̇φ
n is the velocity of particle n in simulation with phase

φ at a time t, ly is the box length in the y direction, and lz is
the box length in the z direction. We study longitudinal excita-
tions by setting aL = (a,0,0) and transverse excitations by set-
ting aT = (0,0,a). We also study random excitations that are
described by aT = (arx,ary,arz) where rx, ry, and rz are Gaus-
sian distributed random numbers of unit variance. Since we
are using the harmonic approximation, the results are indepen-
dent of the value of a. If energy transport is diffusive, the ther-
mal diffusivity d(ω) can be calculated by calculating δ r2(ω, t) =∫

dxx2E(ω,x, t)/
∫

dxE(ω,x, t) and fitting δ r2(ω, t) = 2d(ω)t + r2
0

for the range of times when δ r2(ω, t) is linear. If the energy trans-
port is ballistic, then δ r2(t)∼ t2.

An alternative approach to determine the thermal diffusivity is
due to Allen and Feldman15,16. This approach was used in sev-
eral simulations utilizing the harmonic approximation17,18,28,30.
Within Allen and Feldman’s approach, the thermal diffusivity is
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determined from the eigenvalues and eigenvectors of the Hessian
matrix. This approach is time consuming and suffers from finite
size effects33,38. We used the method of Allen and Feldman and
compared the resulting thermal diffusivity with the thermal dif-
fusivity obtained from Beltukov et al.’s approach.

According to Allen and Feldman’s approach, the thermal diffu-
sivity can be calculated as follows

dAF (ω) =
π

12M2ω2

∫
∞

0
dω
′D(ω ′)

× (ω +ω ′)2

4ωω ′
∣∣S(ω,ω ′)

∣∣2 δ (ω−ω
′). (5)

The heat-flux matrix elements are given by

∣∣S(ω,ω ′)
∣∣2 = ∑mn |Snm|2 δ (ω−ωm)δ (ω

′−ωn)

D(ω)D(ω ′)
, (6)

where the sum is over the vibrational modes. The matrix elements
Smn are

Smn = ∑
i, j
(ri− r j)em,i ·Di, j · en, j, (7)

where en,i is the normalized eigenvector of the Hessian matrix.
For a finite system the delta function in equation 5 is replaced by
g(ωm−ωn,η) = η/{π[(ωm−ωn)

2 +η2]} where we have set η =

0.01.

3 Thermal Conductivity
The thermal conductivity κ can be expressed in terms of d(ω),
the density of states D(ω) = ∑m δ (ω −ωm) and the heat capacity
C(ω,T ) using the following formula16,31,39

κ =
1
V

∫
∞

0
dωD(ω)d(ω)C(ω,T ). (8)

The heat capacity C(ω,T ) = kB(β h̄ω)2eβ h̄ω/(eβ h̄ω − 1)2, where
β = 1/kBT , T is the temperature, and h̄ is the reduced Planck
constant.

Although according to the standard nomenclature d(ω) is re-
ferred to as the energy diffusivity, the energy transport does not
have to be diffusive, and it can arise from other mechanisms.
Here we calculate d(ω) within the classical harmonic approxima-
tion, and thus we ignore anharmonic effects that are important
to understanding the full temperature dependence of d(ω). The
most important neglected effect is proposed to be scattering due
to two-level systems that is both quantum mechanical and anhar-
monic3,5,7. Our approach marks a starting point and quantum
mechanical and anharmonic effects are left for future work.

When there is more than one energy transport mechanism, it
is usually assumed that d−1(ω) = ∑n d−1

n (ω) where dn(ω) cor-
respond to different energy transport mechanisms19,20,25,26. At
low frequencies, the dominant energy transport mechanism is
sound waves (in the harmonic approximation) and d−1(ω) ≈
d−1

L (ω)+d−1
T (ω) where dL(ω) is the contribution due to longitu-

dinal sound waves and d−1
T (ω) is due to the transverse waves. It is

expected that the energy transport is dominated by the transverse
waves, and d(ω)≈ dT (ω). By exciting longitudinal and transverse
wave packets we examine individually the energy transport due
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Fig. 1 Normalized density of states for a stable glass Tp = 0.062 (red line)
and for a poorly annealed glass Tp = 0.2 (black line). The dashed red line
is the Debye prediction for the density of states for Tp = 0.062. The green
line marks the mobility edge, where the energy remains localized and
does not propagate.

to longitudinal sound waves and transverse sound waves. Addi-
tionally, the random wave packet allows us to examine how the
energy transport separates into contributions from longitudinal
and transverse waves, and we can determine the dominant en-
ergy transport mechanism.

4 Density of States
Before we discuss the temperature and stability dependence of
the thermal conductivity, we first examine the density of states.
Shown in Fig. 1 is the density of states D(ω)/(3N−3) normalized
so that its integral over all frequencies is equal to one, and thus
does not depend on the system size. We show the density of states
for a stable glass with parent temperature Tp = 0.062 (red line)
and a poorly annealed glass with Tp = 0.2 (black line). The dashed
red line is the Debye density of states 3ω2/ω3

D for Tp = 0.062,
where Debye frequency ωD = [(18π2ρ)/(v−3

L +2v−3
T )]1/3, vL is the

longitudinal speed of sound, and vT is the transverse speed of
sound. The speed of sound was obtained from our previous
work on sound attenuation23. The excess modes above the De-
bye prediction for the low-frequency modes are clearly visible.
In previous works, it was shown that the low frequency density
of states can be divided into contributions due to extended and
quasi-localized modes22,23,40. The density of states of the ex-
tended modes agrees with the Debye prediction, while the den-
sity of states of the low-frequency localized modes scales as ω4.
This scaling of the localized modes has been observed in several
simulational studies22,23,40–43 and predicted using different the-
oretical arguments19,44–50.

The more stable glass has fewer low frequency modes, which
can be attributed to an increase in ωD (ωD = 9.43 for Tp = 0.062
and ωD = 8.39 for Tp = 0.2), which is mainly driven by an increase
in the shear modulus (the transverse sound speed). However,
there is also a decrease in the number of quasi-localized modes23.
The poorly annealed glass has more modes in the high frequency
regime, above ω ≈ 13. The contribution of these modes to the
thermal conductivity will depend on whether the modes are dif-
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Fig. 2 Mean squared width of the wave-packet δ r2(ω, t) for ω = 0.3, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, 5.0, and 10.0 listed from top to bottom. The red
dashed line is a fit to ω = 0.6 for t ≥ 50. The blue dashed line is [vL(ω)t]2

for ω = 0.3.

fusive or localized, since the localized modes do not contribute
to the thermal conductivity in the harmonic approximation. For
frequencies between ω ≈ 1.7 and ω ≈ 12.3 the density of states is
greater for the stable glass.

5 Energy Transport
Here we will examine the energy transport that follows exciting
a longitudinal wave packet, a transverse wave packet, and a ran-
dom wave packet. At low frequencies, after exciting the longitu-
dinal wave packet the energy moves via longitudinal sound waves
and after exciting the transverse wave packet the energy moves
via transverse sound waves. At high frequencies, when the en-
ergy transport is diffusive, the two excitations produce the same
results. However, the situation is different for the random wave
packet. Here we will find that at low frequencies the energy trans-
port divides itself into a longitudinal and transverse contribution
that travel ballistically at the speed of longitudinal and transverse
sound, respectively.

In Fig. 2 we show examples of the time dependence of the
mean square width of the wave packet, δ r2(ω, t), for Tp = 0.2 for
ω = 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 5.0, and 10.0 listed from top to
bottom. The external force starts at t =−50, reaches its maximum
at t = 0 and is effectively zero by t = 50. If the energy transport is
diffusive, we can fit δ r2(ω, t) = 2d(ω)t+a to obtain the diffusivity
d(ω). We show such a fit to ω = 0.6 as a red dashed line. Once the
sound waves are the main carriers of the energy, then the energy
transport is ballistic and δ r2(ω, t) = (vL(ω)t)2, which is shown as
the blue dashed line. The longitudinal speed of sound vL(ω) was
obtained from previous work on sound attenuation33. We ob-
serve that the calculated δ r2(ω, t) nearly matches this prediction
for ω = 0.3, but we cannot rule out an eventual linear increase for
times inaccessible in our simulations.

In Fig. 3 we present the thermal diffusivity d(ω) calculated for
longitudinal (red squares), transverse (blue circles), and random
(black triangles) excitations for a poorly annealed glass, Tp = 2.0
(a), and a stable glass, Tp = 0.062 (b). At high frequencies, ω > 15,
the energy stays localized. This limit is denoted as the mobility

edge in Fig. 3 and Fig. 1. The mobility edge is not sensitive to
the glass’s stability. However, as seen in Fig. 1 there are many
more vibrational modes above the mobility edge for the poorly
annealed glass than for the stable glass.

With decreasing frequency, the diffusivity increases between
ω ≈ 15 and ω ≈ 10. Between ω ≈ 10 and ω ≈ 2 the diffusivity
is nearly constant and independent of the nature of the excita-
tion. As can be seen from Fig. 1, there are more modes within the
plateau of the diffusivity for the stable glass than for the poorly
annealed glass. We also show the diffusivity calculated using the
method of Allen and Feldman15,16 dAF (ω) (dashed green line)
for Tp = 0.062 and find excellent agreement within the plateau re-
gion, which verifies the physical picture of dAF . Due to the small
size of the simulation box, it is not possible to obtain diffusivity at
small ω using the method of Allen and Feldman. Additionally, it
has been recently observed that there are finite size effects in cal-
culations of vibrational modes from the Hessian matrix33,34,38,
which may result in calculated thermal diffusivity dAF (ω) that
does not correspond to the thermodynamic limit.

Below ω ≈ 2 the diffusivity rapidly increases with decreasing
ω for each type of excitation. The departure from the plateau is
independent of the glass’s stability. Therefore, the contribution to
the thermal conductivity due to the plateau region is due to the
difference in the density of states and not due to the thermal dif-
fusivity, since the thermal diffusivity is stability independent over
this region. The longitudinal diffusivity increases faster with de-
creasing ω than both the transverse and the random excitation.
For low frequencies and our most stable glass, both the longitudi-
nal and the transverse diffusivities appear to increase as ω−4 as
shown by the red and blue lines in Fig. 3.

For our poorly annealed glass, we fit d(ω) for the longitudinal
excitation for ω < 1.5 to d(ω) = Bω−4, which is shown as the red
dashed line in Fig. 3. We note that for ω > 0.6 we clearly observe
a linear increase of δ r2(ω, t) with time t, as shown in Fig. 2. This
linear time dependence is expected for diffusive energy transport,
but in Section 6 we will see that for a range of frequencies the
energy density is not well described by a Gaussian distribution
indicative of diffusive energy transport. We note that the data for
transverse diffusivity do not follow ω−4 scaling in the frequency
range that we could examine but we expect that d(ω) ∼ ω−4 at
lower frequencies, in agreement with the stable glass.

We now show that the frequency dependence of d(ω) is con-
sistent with d(ω) = vL`(ω)/3 where the mean free path `(ω) =

vL/ΓL(ω) and ΓL(ω) is the sound attenuation coefficient. In
earlier work we found that transverse sound attenuation ΓT (ω)

could be rescaled by a constant factor so that it overlaps with lon-
gitudinal sound attenuation ΓL(ω)33. In the inset to Fig. 3(a)
we show this rescaling and the dashed line shows ΓL(ω) =

[v2
L/(3B)]ω4 where B is obtained from the fit to d(ω) shown in

the main plot in Fig. 3(a). The scaling of d(ω) smoothly contin-
ues into the propagating regime where it is no longer appropriate
to consider the energy transport as diffusive.

In the previous paragraph we showed the the low frequency
behavior of thermal diffusivity calculated for the longitudinal ex-
citation can be used to reproduce the low frequency behavior of
the sound attenuation. Now, we will show that the opposite can
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Fig. 3 Energy diffusivity for Tp = 0.2 (a) and Tp = 0.062 (b). The red
squares are results for the longitudinal excitation, the blue circles are
results for the transverse excitation, and the black triangles are results for
the random excitation. The dashed red line in (a) is a fit to d(ω) = Bω−4.
We use the phonon gas model and calculations of sound attenuation to
predict d(ω) at low frequencies, and these predictions are given by the
solid blue (transverse) and red (longitudinal) lines.

also be done. To this end we used the low frequency behavior of
Γλ (ω) for longitudinal sound waves (λ = L) and for transverse
sound waves (λ = T ) obtained from previous work33 to predict
the low frequency behavior of d(ω). The results are shown as
solid lines in Fig. 3(a) and (b). From the low frequency behav-
ior Γλ (ω) = Aλ ω4 we predict that the thermal diffusivity should
be given by v2

L/(3ALω4) and 2v2
T /(3AT ω4), for the longitudinal

and transverse excitation, respectively. The factor of 2 for the
transverse excitation is due to the two polarizations. The red line
illustrates the predicted behavior of the thermal diffusivity for the
longitudinal excitation and the blue lines show the predicted be-
havior of the thermal diffusivity for the transverse excitation. We
observe this smooth continuation of the diffusivity from diffusive
energy transport to ballistic energy transport with decreasing fre-
quency for each type of excitation.

It is natural to assume that d(ω) = v`(ω)/3 up until the sound
waves are no longer well defined, which is generally associated
with the Ioffe-Regel limit. We determined the Ioffe-Regel limit
for this system for both the longitudinal and transverse sound
waves. The Ioffe-Regel limit ωIR for transverse sound, which is

lower than for longitudinal sound, for Tp = 0.062 is ωIR = 1.74 and
for Tp = 0.200 it is ωIR = 0.9. The ω−4 scaling does not extend to
these frequencies for the transverse sound waves for either parent
temperature, and thus the Ioffe-Regel criteria does not determine
the cutoff for the ω−4 energy transport. However, it does give an
upper bound.

For most frequencies the random excitation follows the trans-
verse excitation, but we observe statistically significant deviations
from this behavior for Tp = 0.200 at the smaller frequencies. To
get some insight into these deviations, in the next section we will
examine in detail the time dependence of the energy density.

6 Energy Density
The physical interpretation of the energy diffusivity d(ω) pro-
posed by by Allen and Feldman15,16 is based on the thought ex-
periment that considers the time evolution of a wave packet nar-
rowly peaked at ω and initially spatially localized. The square of
the width of the wave packet at a time t divided by 2t is d(ω)16.
This is the operational definition we used in Section 5. However,
the wave packet does not always propagate diffusively and for
low frequencies the square of the width increases as t2. In this
section we examine time dependent energy density E(ω,x, t) for
a random excitation. We compare this energy density with those
resulting from the transverse and longitudinal excitations. In this
way we clarify the role of sound waves in the energy transport.
We find that diffusive energy transport describes the excitation in
the plateau region, and very clear wave packets propagating at a
constant velocity emerge for low frequency excitations. However,
at intermediate frequencies the wave packets are no longer well
described as diffusive or propagating. Similar sort of behavior has
been observed in simulations of amorphous silicon28,30.

We begin by examining E(ω,x, t) for the random excitation at
ω = 4, which is shown in Fig. 4 for t = 50 (black circles), 150 (blue
triangles), and 250 (green squares). We also show Gaussian fits
to the energy density, E(ω,x, t) ∼ exp[−x2/(4dfitt)] (solid lines),
which describe E(ω,x, t) well. We find that dfit ≈ 1.1 agrees well
with the value of 1.08 we found by fitting δ r2(ω, t). There is some
ambiguity as to when to define t = 0 for the wave packet, which
effects the value of dfit. Here it is defined as the time when the
force is the largest.

At low frequencies, the time dependence of the wave packet for
a random excitation is very different from that at high frequen-
cies. Shown in Fig. 5 are results for ω = 0.5 for Tp = 0.062 for
t = 50 (black), 70 (red), 90 (blue), and 110 (green). The wave
packet breaks up into two parts, where one corresponds to energy
transport due to longitudinal sound waves and the other corre-
sponds to energy transport due to transverse sound waves. The
longitudinal sound waves travel faster, and thus the longitudinal
part separates from the transverse part and two clear wave pack-
ets emerge. For t = 110 we can see where the longitudinal wave
packet crosses the boundary of the simulation box and interacts
with itself. To confirm this interpretation of the two wave pack-
ets, we verified that the center of the transverse and longitudinal
wave packet moves at a velocity vT (ω) and vL(ω), respectively.

The mean free path of the transverse excitation `(ω) is given
by `(ω) = 3d(ω)/vT (ω), and the relationship between d(ω) and
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Fig. 4 The energy density for a random excitation for the most stable
glass, Tp = 0.062, at ω = 4.0. The solid lines are fits to diffusive energy
transport.
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Fig. 5 The energy density for a random excitation for the most stable
glass, Tp = 0.062, at ω = 0.5. The energy breaks up into a propagating
transverse wave packet and a propagating longitudinal wave packet.

sound attenuation Γ(ω) was discussed in Section 5. In previous
work we demonstrated that Γ(k) = BT k4 for small k, and thus
`(ω) = 2v6

T /(BT ω4) assuming a linear dispersion relation ω = vT k.
For ω = 0.5 we use our fit to Γ(k) from the previous work33

and obtain `(0.5) ≈ 2011. Shown as a dashed line in Fig. 5 is
aexp[−x/`(0.5)], and we find that from the low frequency (small
wavevector) sound attenuation one can predict the decay of the
envelope of the transverse wave packet. To determine `(ω) from
the decay of the envelope of the wave packet is difficult due to
small decay over the available time range, but is conceptually
possible.

For ω between the pure diffusive regime and the pure ballistic
regime the energy density has a very different time dependence.
Shown in Fig. 6 is E(ω,x, t) for ω = 0.6, Tp = 0.2 at the time t = 50
(black), 100 (red), 150 (blue) and 200 (green). Here we do not
observe a Gaussian distribution of the energy density at any time,
and there exists a long tail in the energy density. However, the
width characterized by δ r2(ω, t) grows linearly, which is shown
in the inset. This linear growth allows us to calculate d(ω) for
δ r2(ω, t).

Energy transport does not begin to become ballistic for both the

Mixed   ω = 0.6  Tp = 0.2
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δr
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Fig. 6 The energy density for a random excitation for a poorly annealed
glass, Tp = 0.2, at ω = 0.6. The inset shows that δ r2(ω; t) is linear, but the
main figure demonstrates that the energy density is not Gaussian.

longitudinal and transverse waves for the same frequency for our
poorly annealed glass. This difference in the energy transport of a
longitudinal and transverse excitation for ω = 0.3 and Tp = 0.2 is
shown in Fig. 7. Here we observe two different types of behavior.
By comparing with the longitudinal excitation, we find that there
is a propagating wave packet that is proportional to the longitudi-
nal excitation. The propagating part moves at a constant velocity
that is equal to the velocity of the longitudinal sound wave. The
other contribution to the energy density behaves much like the
transverse excitation for this frequency and parent temperature.

The energy transport at ω = 0.3 and Tp = 0.2 is carried by a
longitudinal sound wave but not by a transverse sound wave.
Therefore, at least for our poorly annealed glass, there is a nar-
row frequency window where longitudinal sound waves signifi-
cantly contributes to the energy transport, but transverse sound
waves do not. For low frequencies, the energy transport will be
dominated by the transverse sound waves. We never observed a
similar scenario for the stable glass, Tp = 0.062, but cannot rule
out that one exists over a narrow frequency range. This differ-
ence in the frequency at which energy transport is dominated by
the sound waves for longitudinal and transverse sound results in
the difference between d(ω) given by a random excitation and
the transverse excitation in Fig. 3(a).

7 Discussion and Conclusions
We found that the frequency dependence of the thermal diffusiv-
ity in glasses, as calculated within the harmonic approximation,
can be divided into four main regions. For low ω energy trans-
port is dominated by transverse sound waves whose attenuation
Γ obeys a Rayleigh scattering law24,33. Therefore, at low fre-
quencies d(ω) = Alowω−4 where Alow can be predicted from the
attenuation of transverse sound waves. There is an intermedi-
ate regime where the longitudinal sound waves dominate the en-
ergy transport, but this regime may be very narrow or not exist
for well annealed glasses. At high frequencies the diffusivity is
nearly flat up to a cutoff frequency ωm. The transition between
the flat diffusivity and the asymptotic ω−4 scaling occurs over a
range ω1 < ω < ω2 where ω1 is stability dependent but ω2 only
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Fig. 7 The energy density for a random excitation for a poorly annealed
glass, Tp = 0.2, at ω = 0.3. We find that the wave packet can be sep-
arated into components that are proportional to a transverse excitation
and a longitudinal excitation. The longitudinal component moves at the
constant speed of a longitudinal wave for ω = 0.3.

weakly depends on stability if at all. We find that the Ioffe-Regel
frequency is within that window, but does not mark the upper
end or the lower end of the frequencies. The lower end of the
transition region, ω1, is stability dependent, but the upper end ω2

is independent of the stability.
These observations lead to breaking the harmonic approxima-

tion to the thermal conductivity into three main contributions
κ ≈ κ1+κ2+κ3 where κ1 is the contribution from sound waves, κ2

is the contribution from the transition region, and κ3 is the con-
tribution from the nearly constant region of diffusivity. Shown
in Fig. 8 is the reduced density of states D(ω)/(3N − 3)/ω2 for
Tp = 0.062 with three regions highlighted. For ω < 1.0 sound
waves are predominantly responsible for energy transport, and
this is indicated by the green region. For 1.0 < ω < 2.0 there is
a change to a nearly flat d(ω) ≈ d0, and this transition region is
highlighted light blue. For ω > 2.0 the diffusivity d(ω) ≈ do is
nearly constant up until the mobility edge at ω ≈ 15. The region
of nearly constant d(ω) is highlighted gray.

At low temperatures the κ1 term would dominate due to the
weight C(ω,T ). It has been established that the low frequency
density of states can be divided into two parts. One part is due
to extended modes, which obey Debye scaling, and one part is
due to low-frequency, quasi-localized modes23,40. For these low
frequencies, D(ω)/(3N − 3) = 3ω2/ω3

D +A4ω4. The value of A4

represents the contribution to the density of states from the quasi-
localized modes, and thus is not the main contribution to the
energy transport. Neglecting the contribution due to the quasi-
localized modes we can write κ1 as

κ1 ≈
6ρ h̄v2

T
ω3

DBT

1
T

∫ x1

0
dx

ex

(ex−1)2 , (9)

where x= h̄ω/(kBT ) and BT is the coefficient that describes sound
attenuation Γ(ω), Γ(ω) = BT ω4. The integral diverges due to the
x = 0 limit. This divergence can be avoided by setting a lower
limit to the integration at ωmin = vT 2π/L where L is the length
of the amorphous solid or the divergence can be avoided by in-
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κ3
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ω
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0.006
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Fig. 8 The reduced density of states for Tp = 0.062 with different regions
of energy transport highlighted. The green region indicates the frequen-
cies where sound waves dominate the energy transport, and the gray
region is the region of nearly constant diffusivity. The blue region indi-
cates the transition region between the two.

cluding anharmonic contributions. Two level states are the most
likely candidate for the low frequency anharmonic contribution.
We note that κ1 ∼ 1/T and would result in a leveling off of the
T 2 contribution that arises from two level states with increasing
temperature.

The second contribution κ2 represents the transition between
the low frequency ω4 contribution to d(ω) and the nearly flat dif-
fusivity at higher ω. For our poorly annealed glass there is a range
of ω where there is a significant contribution to d(ω) due to longi-
tudinal sound waves, but no contribution due to transverse sound
waves. We do not see this behavior for our stable glass and d(ω)

drops below the extension of the asymptotic small ω sound wave
result. This intermediate regime extends over a limited range and
deserves more study. We determined the frequency of the boson
peak ωBP = 1.63 for Tp = 0.062 and ωBP = 0.713 for Tp = 0.2, which
is in this transition region of d(ω).

The third contribution κ3 is due to the region of approximately
flat diffusivity. If we assume that d(ω)≈ d0, then

κ3 ≈ 3ρd0

∫
ωm

ω2

dωD(ω)kB

(
h̄ω

kBT

)2 eh̄ω/(kBT )

(eh̄ω/(kBT )−1)2
. (10)

In the inset to Fig. 9 we show this integration range as the shaded
area under the density of states for Tp = 0.062. Most of the vibra-
tional modes are within this region, with 94% of the vibrational
density of states within this region for Tp = 0.2 and 97% within
this region for Tp = 0.062. Unlike upon the approach to the un-
jamming transition17, the density of states does not demonstrate
any regions where both the diffusivity and the density of states are
nearly flat. To check the temperature dependence of this contribu-
tion, we numerically integrate κ3 assuming that d(ω) = d0 = 1.15
and set h̄ and kB to one.

Shown in Fig. 9 is κ3 versus temperature for the stable glass
Tp = 0.062 (solid line) and the poorly annealed glass Tp = 0.2
(dashed line). This contribution to the thermal conductivity is
what is observed for amorphous solids above the T ≈ 10K plateau.
For low temperatures κ3 is negligible, which corresponds to tem-
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Fig. 9 The contribution to the thermal conductivity due to the region of
nearly constant diffusivity, κ3. The red line is a fit to κ3 between T = 1
and T = 2. (inset) The vibrational density of states for Tp = 0.062 with the
shaded region showing the range of ω of approximate constant diffusivity.

peratures at and below the plateau in the thermal conductivity.
For temperatures above the plateau, and the vibrational states
above ω2 become populated, there is a near linear increase of κ3.
The red line is a linear fit to κ3 for 1 ≤ T ≤ 3 for Tp = 0.062. At
high temperatures, C(ω,T ) ≈ kB and κ3 saturates. As suggested
by studies17 of systems approaching the unjamming transition,
the region of flat diffusivity can accurately describe the behavior
of the thermal conductivity above the plateau at approximately
10K.

We find that the main difference between energy transport in
the two systems is at low frequencies where sound waves are the
dominate contribution. With increasing stability, sound attenua-
tion decreases33 resulting in an increase in d(ω). The decreased
sound attenuation is also accompanied by a decrease in the num-
ber and spatial extent of low-frequency, quasi-localized modes23

and a decrease in the local variation of the elasticity51. We hy-
pothesize that these two features are the cause of the differences
in the low-frequency energy transport.

More work is needed in order to understand energy transport
beyond the harmonic approximation. Two level tunneling states
are postulated to describe many aspects of the universal low tem-
perature properties of amorphous solids3,5,7. Since these states
arise from two nearby energy minima due to small rearrange-
ments of particles, it may be possible to identify the classical
analogues of these states in classical model glassy systems. This
would allow for a more detailed investigation of the low tem-
perature thermal conductivity. Recent studies indicate that the
finite temperature sound attenuation is modified52,53, and thus
the thermal diffusivity would be expected to change. To exam-
ine these changes in the energy transport one could study wave
packets running molecular dynamics simulations with the full po-
tential instead of the harmonic approximation used here.

Conflicts of interest

There are no conflicts to declare.

8 Acknowledgements
We gratefully acknowledge the support of NSF Grants DMR-
1608086 (E.F., L.W. and G.S) and CHE-1800282 (E.F. and G.S.),
and the Start-up Fund from Anhui University through Grant
S020318001/02 (L.W.).

Notes and references
1 A. Eucken, Ann. Phys. (Leipzig), 1911, 34, 185.
2 C. Kittel, Phys. Rev., 1949, 75, 972-974.
3 R. C. Zeller and R. O. Pohl, Phys. Rev. B, 1971, 4, 2029-2041.
4 M. P. Zaitlin and A. C. Anderson, Phys. Rev. B, 1975, 12, 4475-

4486.
5 P. W. Anderson, B. I. Halperin and C. M. Varma, Philos. Mag.,

1972, 25, 1-9.
6 W. A. Phillips, J. Low Temp. Phys., 1972, 7, 351-360.
7 R. O. Pohl, X. Liu and E. Thompson, Rev. Mod. Phys., 2002,

74, 991-1013.
8 R. B. Stephens, Phys. Rev. B, 1973, 8, 2896-2905.
9 V. Lubchenko and P.G. Wolynes, Phys. Rev. Lett., 2001, 87,

195901.
10 V. Lubchenko and P. G. Wolynes, Proc. Natl. Acad. Sci. USA,

2003, 100 1515-1518.
11 V. Lubchenko, Adv. Phys.: X, 2018, 3, 1510296.
12 A. J. Leggett and D. C. Vural, J. Phys. Chem. B, 2013, 117,

12966-12971.
13 C. C. Yu, J. Non-Cryst. Solids, 1991, 131, 310-312.
14 J. C. Burton and S. R. Nagel, Phys. Rev. E, 2016, 93, 032905.
15 P. B. Allen and J. L. Feldman, Phy. Rev. Lett., 1989, 62, 645-

648.
16 P. B. Allen and J. L. Feldman, Phys. Rev. B, 1993, 48, 12581-

12588.
17 N. Xu, V. Vitelli, M. Wyart, A. J. Liu and S. R. Nagel, Phys. Rev.

Lett., 2009, 102, 038001.
18 V. Vitelli, N. Xu, M. Wyart, A. J. Liu and S. R. Nagel, Phys. Rev.

E, 2010, 81, 021301.
19 U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M.

A. Ramos and H. R. Schober, Phys. Rev. B, 1992, 46, 2798-
2808.

20 D. A. Parshin, Phys. Rev. B, 1994, 49, 9400-9418.
21 P. Debye, Ann. Phys., 1912, 34, 789.
22 E. Lerner, G. Düring and E. Bouchbinder, Phys. Rev. Lett.,

2016, 117, 035501.
23 L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel and E.

Flenner, Nat. Commun., 2019, 10, 26.
24 H. Mizuno and A. Ikeda, Phys. Rev. E, 2018, 98, 062612.
25 J. L. Feldman, M. D. Kluge, P. B. Allen, F. Wooten, Phys. Rev.

B, 1993, 48, 12589-12602.
26 W. Schirmacher, Europhys. Lett., 2006, 73, 892-898.
27 D. G. Cahill and R. O. Pohl, Solid State Commun., 1979, 70,

927-930.
28 Y. M. Beltukov, D. A. Parshin, V. M. Giordano and A. Tanguy,

Phys. Rev. E, 2018, 98, 023005.
29 C. Kittel, Introduction to Solid State Physics, John Wiley and

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 11Soft Matter



Sons, New York, 1996.
30 Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Phys.

Rev. E, 2016, 93, 023006.
31 P. Sheng and M. Zhou, Science, 1991, 253, 539-542.
32 P. B. Allen, J. L. Feldman, J. Fabian and F. Wooten, Phil. Mag

B, 1999, 97, 1715-1731.
33 L. Wang, L. Berthier, E. Flenner, P. Guan and G. Szamel, Soft

Matter, 2019, 15, 7018-7025.
34 A. Moriel, G. Kapteijns, C. Rainone, J. Zylberg, E. Lerner and

E. Bouchbinder, J. Chem. Phys., 2019, 151, 104503.
35 E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch,

Phys. Rev. Lett., 2006, 97, 170201.
36 L. Berthier, D. Coslovich, A. Ninarello and M. Ozawa, Phys.

Rev. Lett., 2016, 116, 238002.
37 A. Ninarello, L. Berthier and D. Coslovich, Phys. Rev. X , 2017,

7, 021039.
38 E. Bouchbinder and E. Lerner, New J. Phys., 2018, 20, 073022.
39 S. John, H. Sompolinsky and M. J. Stephen, Phys. Rev. B,

1983, 27, 5592-5603.
40 H. Mizuno, H. Shiba and A. Ikeda, Proc. Natl. Acad. Sci. USA,

2017, 114, E9767-E9774.
41 E. Lerner and E. Bouchbinder, Phys. Rev. E, 2017, 96,

0201104(R).
42 G. Kapteijns, E. Bouchbinder and E. Lerner, Phys. Rev. Lett.,

2018, 121, 055501.
43 L. Angelani, M. Paoluzzi, G. Parisi and G. Ruocco, Proc. Natl.

Acad. Sci. USA, 2018, 115, 8700-8704.
44 U. Buchenau, Yu. M. Galperin, V. L. Gurevich and H. R.

Schober, Phys. Rev. B, 1991, 43, 5039-5045.
45 H. R. Schober and C. Oligschleger, Phys. Rev. B, 1996, 53,

11469-11480.
46 V. L. Gurevich, D. A. Parshin and H. R. Schober, Phys. Rev. B,

2003, 67, 094203.
47 W. Schirmacher, G. Ruocco and T. Scopigno, Phys. Rev. Lett.,

2007, 98, 025501.
48 F. P. Benetti, G. Parisi, F. Pietracaprina and G. Sicuro, Phys.

Rev. E, 2018, 97, 062157.
49 E. M. Stanifer, P. K. Morse, A. A. Middleton and M. L. Man-

ning, Phys. Rev. E, 2018, 98, 042908.
50 H. Ikeda, Phys. Rev. E, 2019, 99, 050901(R).
51 A. Shakerpoor, E. Flenner and G. Szamel, arXiv:1909.12364,

2019.
52 H. Mizuno, G. Ruocco and S. Mossa, arXiv:1905.10235, 2019.
53 H. Mizuno and S. Mossa, arXiv:1906.08012, 2019.

Journal Name, [year], [vol.], 1–9 | 9

Page 9 of 11 Soft Matter



We examine the transport of energy after an excitation in 
simulated glasses of different stability over a broad range of
frequencies. 
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