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Conformational dynamics and phase behavior of lipid
vesicles in a precisely controlled extensional flow†

Dinesh Kumar,a,b Channing M. Richter,a and Charles M. Schroedera,b,c

Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we
lack a complete understanding of the non-equilibrium dynamics of vesicles due to challenges as-
sociated with long-time observation of shape fluctuations in strong flows. In this work, we present
a flow-phase diagram for vesicle shape and conformational transitions in planar extensional flow
using a Stokes trap, which enables control over the center-of-mass position of single or multiple
vesicles in precisely defined flows [Shenoy, Rao, Schroeder, PNAS, 113(15):3976-3981, 2016].
In this way, we directly observe the non-equilibrium conformations of lipid vesicles as a function
of reduced volume ν , capillary number Ca, and viscosity contrast λ . Our results show that vesicle
dynamics in extensional flow are characterized by the emergence of three distinct shape transi-
tions, including a tubular to symmetric dumbbell transition, a spheroid to asymmetric dumbbell
transition, and quasi-spherical to ellipsoid transition. The experimental phase diagram is in good
agreement with recent predictions from simulations [Narsimhan, Spann, Shaqfeh, J. Fluid Mech.,
2014, 750, 144]. We further show that the phase boundary of vesicle shape transitions is inde-
pendent of the viscosity contrast. Taken together, our results demonstrate the utility of the Stokes
trap for the precise quantification of vesicle stretching dynamics in precisely defined flows.

1 Introduction
Vesicles are fluid-filled soft containers enclosed by a molecu-
larly thin (3-4 nm) lipid bilayer membrane suspended in a liq-
uid medium. In recent years, the mechanics of giant unilamellar
vesicles (GUVs) has been extensively studied to provide insight
into the mechanical properties of biological systems such as red
blood cells1,2. To this end, vesicles have been used to understand
the equilibrium and non-equilibrium dynamics of simplified cells
that do not contain a cytoskeleton or a polymerized, protein-laden
membrane commonly found in living cells3,4. Artificial vesicles
have also been used for the triggered release of cargo in biomed-
ical applications such as drug delivery and micro/nanoscale reac-
tors5–7.

Achieving a full understanding of the non-equilibrium dynam-
ics of single-component lipid vesicles in precisely defined flows
is crucial for understanding cell mechanics. From this view,
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such studies can inform how the fluid dynamics and membrane
properties inside and outside the fluid-filled compartment con-
tribute to cell shape changes. From this view, a significant
amount of prior work has been focused on investigating the shape
dynamics of vesicles under different flow conditions, such as
Poiseuille flow8–10, shear flow11–25, and extensional flow26–32.
Experiments and simulations on vesicles in shear flow have un-
covered intriguing dynamic behavior including: (i) tumbling,
where a vesicle undergoes a periodic flipping motion, (ii) trem-
bling, where vesicle shape fluctuates and the orientation oscil-
lates in time, and (iii) tank-treading, where an ellipsoid vesi-
cle’s major axis maintains a fixed orientation with respect to the
flow direction while the membrane rotates about the vorticity
axis11,18,21,23. The transitions between these dynamical motions
depend on shear rate γ̇, viscosity ratio λ between the inner µin

and outer µout fluid viscosities, and reduced volume ν , which is
a measure of vesicle’s asphericity33. Prior work has also focused
on the induced hydrodynamic lift of a single vesicle near a wall in
shear flow34, pair interactions between vesicles in flow35,36, and
measurement of the effective viscosity of a dilute vesicle suspen-
sion14.

Despite recent progress in understanding vesicle dynamics in
shear flow, the behavior of vesicles in extensional flow is less
well understood. Extensional flow is considered to be a strong
flow that can induce high levels of membrane deformation. Un-
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like simple shear, extensional flows consist of purely extensional-
compressional character without elements of fluid rotation37. In
natural blood flows, red blood cells repeatedly undergo reversible
deformations by a combination of shear and extension when pass-
ing through capillaries in the body38,39. From this perspective,
there is a clear need to understand the shape dynamics of cells
when transiting through narrow capillaries. Interestingly, prior
work has shown that the extensional components of the veloc-
ity gradient tensor are crucial for predicting rupture of red blood
cells undergoing tank-treading motion in shear flow39,40. From
kinematic analysis, any general linear flow can be decomposed
into elements of rotation and extension/compression, thereby
identifying the flow field components associated with rupture.
From this view, understanding the dynamics of vesicles in exten-
sional flow is of fundamental interest to elucidate dynamics in
more complex mixed flows containing arbitrary amounts of rota-
tion and extension/compression17,41.

The physical properties of vesicles govern their dynamic behav-
ior in flow. Reduced volume ν is defined as the ratio of a vesicle’s
volume V to the volume of a sphere with an equivalent surface
area A, such that ν = 3V/4πR3 where R =

√
A/4π is the vesicle’s

equivalent radius based on the total surface area. For a vesicle
with a perfectly spherical shape, the reduced volume ν = 1, which
means that there is no excess area to deform when subjected to
hydrodynamic stress. In the weak-flow limit, a vesicle is described
by a constant total surface area42 and substantially deforms only
if the reduced volume ν < 1.

In 2008, Steinberg and coworkers studied the dynamics of
highly deflated vesicles ν < 0.56 in extensional flow26. At low re-
duced volumes, vesicles essentially adopt tubular shapes at equi-
librium and are highly deformable due to the large surface area
to volume ratio. Under these conditions, the dynamics of highly
deflated vesicles in extensional flow was observed to be similar
to the coil-stretch transition for flexible polymers in extensional
flow43–45. Above a critical strain rate ε̇c, deflated vesicles were
found to undergo a shape transition from a tubular to a symmet-
ric dumbbell conformation. Steinberg and coworkers reported a
flow phase-stability diagram for such shape transitions26, how-
ever, they did not directly characterize the bending modulus κb

for the deflated vesicles, and rather used an order-of-magnitude
estimate of κb from literature. Nevertheless, these experimen-
tal observations are in good agreement with numerical simula-
tions by Shaqfeh and coworkers30,31, which further confirm the
tubular-to-symmetric dumbbell shape transition for deflated vesi-
cles. Moreover, these simulations examined vesicle dynamics un-
der a wide range of reduced volumes, predicting that moderately
deflated vesicles (0.56 < ν < 0.75) would undergo a spheroid to
asymmetric dumbbell shape transition due to destabilizing curva-
ture changes in the membrane as a result of modified Rayleigh-
Plateau mechanism30,31.

Recently, Muller and coworkers32 studied the dynamics of lipid
vesicles in planar extensional flow using a cross-slot microflu-
idic device46. The results from this study generally confirmed
the spheroid to asymmetric dumbbell shape transition for moder-
ately deflated (0.56 < ν < 0.75) vesicles in extensional flow. In-
terestingly, Muller and coworkers reported a stability boundary

for shape transitions in reduced volume-capillary number (ν ,Ca)
phase-space, where the capillary number Ca = µout ε̇R3/κb is the
ratio of the bending time scale to the flow time scale, ε̇ is the fluid
strain rate, and µout is the viscosity of suspending medium. These
experiments generally involved manual trapping of single vesicles
near the stagnation point of planar extensional flow, which makes
it challenging to observe dynamics over long times while main-
taining a stable center-of-mass position of vesicles in flow. From
this perspective, studying the non-equilibrium shape dynamics of
lipid vesicles in precisely defined extensional flows is critically
needed to understand vesicle shape transitions and stability in
strong flows.

In this paper, we present a detailed flow-phase diagram of non-
equilibrium vesicle shape transitions in extensional flow using a
Stokes trap47–49, which enables precise control over the center-
of-mass position of single or multiple particles in flow. In this
way, we directly observe vesicle shape transitions over long ob-
servation times across a wide range of parameters including re-
duced volume ν and capillary number Ca. We first discuss the
implementation of the Stokes trap technique in a PDMS-based
microfluidic device. We then present a method to estimate the
bending modulus of a vesicle at equilibrium using thermal fluctu-
ation analysis. Using this approach, we systematically determine
the flow-phase diagram for vesicles in (ν ,Ca) space, and we in-
vestigate the effect of viscosity contrast λ on the phase boundary.
Finally, we discuss how the Stokes trap technique can be used
to investigate the transient stretching and relaxation dynamics of
vesicles under highly non-equilibrium flow conditions.

2 Experimental Methods

2.1 GUV preparation

Giant unilamellar vesicles (GUVs) are prepared from a mix-
ture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti
Polar Lipids) and 0.12 mol % of 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)
(DOPE-Rh, Avanti Polar Lipids) using the classical electrofor-
mation method described in Angelova et al.50. The fluores-
cently labeled lipid DOPE-Rh contains a rhodamine dye (absorp-
tion/emission maxima 560 nm/583 nm) on the lipid head group,
rather than the tail group, because it is known that lipids with
labeled hydrocarbon tails can result in altered membrane prop-
erties if the charged dye molecule flips into the hydrophilic head
group space, which may affect the bending modulus of the mem-
brane51.

For electroformation of GUVs, a stock lipid solution is prepared
with 25 mg/mL DOPC and 0.04 mg/mL DOPE-Rh. Next, 10 µL of
the lipid solution in chloroform is spread on a conductive indium
tin oxide (ITO) coated glass slide (resistance Ω, 25×50 ×1.1 mm,
Delta Technologies) and dried under vacuum overnight. The pair
of ITO slides are sandwiched together using a 1.5 mm Teflon
spacer, forming a chamber with a volume of≈2.4 mL and coupled
to a function generator (Agilent 33220 A). The electroformation
chamber is filled with 100 mM sucrose solution (Sigma-Aldrich)
and an alternating current (AC) electric field of 2 V/mm at 10
Hz is applied for 120 min at room temperature (22◦C). Under
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these conditions, DOPC lipid remains in the fluid phase26. Most
of the vesicles prepared by this method are unilamellar with few
defects in the size range of 5-25 µm in radius. The viscosity of
the 100 mM sucrose solution (µ = 1.1 mPa-s) is measured us-
ing a benchtop viscometer (Brookfield) at 22◦C. Following elec-
troformation, most vesicles are only weakly deflated and quasi-
spherical in nature. To generate moderately deflated (low re-
duced volume) vesicles, 100 µL of a 200 mM sucrose solution
is added to 2.0 mL of the electroformed vesicle suspension, which
increases the total sucrose concentration to 105 mM. In this way,
osmotic pressure differences tend to drive water out of the vesi-
cle interior until the sucrose concentrations are nearly equal on
both sides of the membrane32,52. The osmotic deflation method
generated reduced volume vesicles in the range 0.30 < ν < 0.90,
though the occurrence of extremely low reduced volume vesicles
(0.30 < ν < 0.50) in the suspension was relatively rare. For exper-
iments involving high solvent viscosities (viscosity ratio λ = 0.1),
the viscosity of the suspending medium was increased to µout =
10.4 mPa-s by adding glycerol to the 100 mM sucrose solution.

2.2 Stokes trap

We use a Stokes trap47 to generate controlled strain rate sched-
ules while simultaneously achieving long-term confinement of
single vesicles near the stagnation point of a planar extensional
flow. A four-channel cross-slot microfluidic device is used for
studying vesicle dynamics (Fig. 1a). In brief, single-layer poly-
dimethylsiloxane (PDMS)-based microfluidic device (width =
400 µm, and depth = 100 µm) is fabricated using standard
techniques in soft lithography53. Prior work47 used full three-
dimensional computational fluid dynamics (CFD) simulations to
demonstrate that proper choice of the dimensions of the microflu-
idic device (width and height) can reduce the relative error be-
tween the velocity predicted by a two-dimensional theoretical for-
mula from Hele-Shaw model47 and CFD velocity to as low as 2 % .
The channel dimensions are much larger compared to the typical
vesicle equilibrium size R = 5-15 µm, such that the effect of con-
finement is negligible. During device operation, fluid is injected
into two opposing inlet channels and withdrawn through the two
remaining outlet channels, thereby forming mutually perpendic-
ular inlets and outlets. In this way, the symmetry of the flow-field
under low Reynolds number conditions results in the formation
of a fluid stagnation point (zero-velocity point) near the center
of the cross-slot device, thereby generating a planar extensional
flow in the vicinity of stagnation point as shown in Fig. 1b.

The Stokes trap was used to enable the direct observation
of vesicle dynamics in extensional flow with a precisely defined
strain rate ε̇ for long observation times47,54. Briefly, the center-
of-mass position of a target vesicle is trapped in real-time using
fluorescence microscopy and model predictive control (MPC) al-
gorithm. The MPC feedback controller determines the necessary
flow rates required to achieve trapping at a specific point while
maintaining a nearly constant strain rate in extensional flow and
is achieved using computer-controlled pressure regulators. In this
way, the Stokes trap can be used to confine vesicles under zero-
flow conditions (with no external or net flow) or under non-zero

a

Trapped vesicle 

PDMS

Pressure regulator

Fluid reservoir

Objective lens

Cover 

slip

b

a

Fig. 1 Stokes trap for studying vesicle dynamics in flow. (a) Schematic
of the experimental setup used to generate planar extensional flow. In-
let/outlet channels in the microfluidic device are connected to fluidic
reservoirs containing the vesicle suspension and pressurized by reg-
ulators controlled by a custom LabVIEW program, thereby generating
pressure-driven flow in the cross-slot. (b) Schematic of the cross-slot mi-
crofluidic device showing a deformed vesicle trapped in extensional flow
near the stagnation point for illustrative purposes (not drawn to scale).
The width of channels is 400 µm and the radii of the two spherical ends
of the deformed vesicle are 12 µm and 4 µm, respectively.

net flow conditions47,48, and the latter method was used to study
non-equilibrium flow dynamics in the work.

2.3 Flow-field characterization
Particle tracking velocimetry (PTV) is used to determine the fluid
strain rates ε̇ as a function of the input pressure from the pres-
sure regulators (Elveflow OB1-MkIII). Experimental characteriza-
tion of the fluid strain rate is performed to ensure that the flow
field is uniform in the vicinity of the stagnation point and enables
determination of the capillary number Ca = µout ε̇R3/κb. A trace
amount of fluorescent microbeads (2.2 µm diameter, Spherotech,
0.01% v/v) was added to 105 mM sucrose buffer solutions (µ

= 1.1 mPa-s, matched to the solution used for vesicle dynam-
ics experiments) to enable particle tracking. Microfluidic de-
vices are mounted on the stage of an inverted fluorescence mi-
croscope (Olympus IX71), which allows for real-time imaging
of fluorescent beads using a high numerical aperture (1.45 NA,
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Fig. 2 Flow-field characterization of cross-slot microfluidic devices. (a)
Strain-rate determination at the center-plane of a cross-slot microfluidic
device as a function of inlet pressure. Bead tracking experiments are
performed in 100 mM sucrose buffer. (b) Strain-rate determination as a
function of distance from the horizontal mid-plane in the device.

63x) oil-immersion objective lens and a 100-W mercury arc lamp
(USH102D, UShio). The sucrose buffer is introduced into mi-
crofluidic devices using the fluidic reservoirs, and images of bead
positions are acquired using a CCD camera (GS3-U3-120S6M-C)
as a function of the applied inlet pressure. For data shown in Fig.
2a, the strain rate was determined at the center plane of the chan-
nel in the z-direction (direction orthogonal to the 2D flow plane).
As shown in Fig. 2a, the strain rate at the central plane of cross-
slot device increases linearly with pressure over the characteristic
range of strain rates used in this work. For data shown in Fig. 2b,
fluid strain rate was determined as a function of z-position by fo-
cusing through the depth of the device as a function of inlet pres-
sure driving flow. A particle tracking and analysis program55 is
used to determine bead velocities for all trajectories, thereby en-
abling determination of the fluid strain rate ε̇ using a non-linear

least square algorithm:[
vx

vy

]
=

[
ε̇ 0
0 −ε̇

][
x− x0

y− y0

]
(1)

where vx, vy, x, y are velocities and positions in the x and y di-
rections, respectively, and (x0,y0) is the location of the stagnation
point in the 2D flow plane.

2.4 Bending modulus determination

2.4.1 Vesicle imaging in observation chamber

For determination of bending modulus, vesicles are imaged in
a secure-seal imaging spacer (Grace Bio-Labs, 7 mm diameter,
0.12 mm depth) using an inverted optical microscope (Olympus
IX71) in epifluorescence mode equipped with a 63x oil immer-
sion objective lens (NA 1.4, Zeiss Plan-Apochromat) and an elec-
tron multiplying charge coupled device (EMCCD) camera (Andor
iXon-ultra, DU-897U-CSO, 512x512 pixel output). A 100-W mer-
cury arc lamp (USH102D, UShio) was used as the excitation light
source in conjunction with a neutral density filter (Olympus), a
530 ± 11 nm band-pass excitation filter (FF01-530/11-25, Sem-
rock), and a 562-nm single-edge dichroic mirror (Di03-FF562-25
× 36, Semrock) in the illumination path.

The vesicle suspension is first introduced into the spacer, and
the top of spacer is then sealed with a coverslip to minimize evap-
oration and convection within the observation chamber. The tem-
perature inside the chamber is measured using a thermocouple
and found to be 22◦C for all experiments. The effect of gravity
influencing the vesicle shape is negligible because of the nearly
equivalent concentration of sucrose in the interior and exterior
of the vesicle, yielding symmetry across the bilayer membrane.
Imaging is performed at the central plane of the spacer, and the
center-of-mass of vesicles remains nearly constant during an ob-
servation time of 30-60 s. Images are acquired over at least 30 s
(acquisition frame rate of 30 Hz), which is much larger than the
relaxation time of the slowest decaying mode of the membrane56.
The approximate order-of-magnitude relaxation time for a typical
lipid membrane vesicle of size R = 10 µm is ≈200 ms56, yielding
a bending modulus of 10−19J in a suspending medium with vis-
cosity of 1 mPa-s. In this way, long observation times ensure that
the available configurational modes of vesicles are given sufficient
time to relax. For these experiments, unilamellar and defect-free
vesicles are selected, and the fluctuating vesicles in the spacer are
spatially isolated from their neighbors.

2.4.2 Contour detection and determination of κb

We use the method proposed by Pécréaux et al.57 to determine
vesicle bending modulus. In this way, we follow a rigorous selec-
tion criteria outlined in prior work32,58 that provides an unbiased
procedure for rejecting unsuitable vesicles that do not fluctuate
according to an analytical fluctuation spectrum given by the Hel-
frich model59. Vesicle contours are first detected in each image
with high precision using a custom MATLAB program that relies
on intensity gradient maxima values to locate the edges ( ESI†,
Fig. S1). The detected coordinate positions of the vesicle mem-
brane (xi,yi) in each movie frame are transformed to polar coor-
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dinates (ri,θi) and projected into Fourier modes as follows:

r (θ) = R

(
1+

∞

∑
n=1

an cos(nθ)+bn sin(nθ)

)
(2)

where R is the radius of contour in each frame defined as:

R =
1

2π

N

∑
i=1

(
ri + ri+1

2

)
(θi+1−θi) (3)

The magnitude of Fourier amplitudes is calculated as cn =√
a2

n +b2
n, and the mean square amplitude of fluctuation modes

around a base spherical shape is given by:〈
|u(qx)|2

〉
=

π 〈R〉3

2

(
〈c2

n〉−〈cn〉2
)

(4)

where qx = n/〈R〉 is the wavenumber and 〈R〉 is the mean radius of
contours determined over all images in a fluctuation experiment
on a single vesicle. For determining the bending modulus κb of
vesicles, the following steps are performed:

(1) For each vesicle contour, the mean square amplitude of fluc-
tuations is calculated using Eq. 4. For this analysis, the behavior
over modes n = 6−25 is examined (see ESI†for details).

(2) A one-sample Kolmogorov-Smirnoff test is used to check
the exponential distribution of modes. In brief, vesicles maintain
a constant volume and surface area over the the timescale of these
experiments, so the Fourier modes in Eq. 4 are expected to be
exponentially distributed. For the modes that pass this test, the
experimental mean square amplitude

〈
|u(qx)|2

〉
is calculated. In

this way, the objective function F is optimized:

F ≡
n=25

∑
n=6

〈
|u(qx)|2

〉
−
〈
|uH (qx)|2

〉
σ2
〈|u(qx)|2〉

(5)

where σ2
〈|u(qx)|2〉 is the measured standard deviation of the experi-

mental amplitudes
〈
|u(qx)|2

〉
according to a procedure discussed

in ESI†, and
〈
|uH (qx)|2

〉
is the modified form of Helfrich’s spec-

trum after incorporating the effect of the finite camera integration
time59.

(3) The quantity
〈
|u(qx)|2

〉
versus qx is plotted and analyzed

for each vesicle to generate the experimental fluctuation spec-
trum. In this way, a two-parameter fit is performed using the
modified form of Helfrich’s spectrum that accounts for the effect
of finite integration time of camera:〈
|uH (qx)|2

〉
=

1
π

∫
∞

−∞

kT
4µoutq⊥

τm
τ2

m
τ2

[
τ

τm
+ exp

(
−τ

τm

)
−1
]

dqy (6)

where τ−1
m = 1

4µout q⊥

(
σq2
⊥+κbq4

⊥
)

and q⊥ =
√

q2
x +q2

y . In this way,

we determine the bending modulus κb and membrane tension σ

for each vesicle57. In this fitting procedure, the smallest value
of the quantity

〈
|u(qx)|2

〉
is taken to be 10−22 m3, limited by the

spatial resolution of camera (1 pixel ≈ 200 nm), determined in
a separate experiment by measuring the fluctuation amplitudes
of a stationary rigid fluorescently labeled polystyrene bead in the
focal plane of the microscope.
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Fig. 3 Flow deformation protocol and time-dependent strain rate sched-
ule for the phase diagram experiments. Fluid strain rate is increased in a
systematic step-wise fashion, and after each step change, vesicle shape
is directly observed for ≈15-30 s. The critical strain rate ε̇critical is defined
as the strain rate at which a vesicle undergoes a global shape transition.

We further estimate the correlation coefficient of the two pa-
rameters of fit (κb and σ) (see ESI†for details). If the correlation
coefficient corr(σ ,κb) < −0.85, the vesicle is rejected for analy-
sis because the membrane is generally taken to be too tense to
provide an accurate estimate of the bending modulus58. In de-
termining bending modulus κb, we only consider the images in
which the average contour length does not change by more than
5% to ensure the constant surface area and volume. Finally, we
only consider quasi-spherical vesicles in the fluctuation analysis
for estimation of bending modulus. The vesicles used in non-
equilibrium flow experiments are highly deflated (non-spherical),
though we follow prior work in assuming that the ensemble-
averaged bending modulus measured for quasi-spherical vesicles
is representative of all vesicles in the sample32,58.

2.5 Flow experiments in extensional flow
Following flow field characterization and determination of equi-
librium bending modulus κb, we studied the non-equilibrium de-
formation of vesicles in extensional flow. Non-equilibrium flow
experiments were conducted using fluorescence microscopy at
10x magnification using an inverted optical microscope (Olympus
IX71) with mercury lamp as the illumination source (100-W mer-
cury arc lamp USH102D, UShio). Images were captured using a
CCD camera (Pointgrey GS3 23S6M USB3 CMOS) at a frame rate
of 30 Hz with an exposure time of 10 ms. A dilute vesicle suspen-
sion in sucrose buffer was introduced into the PDMS microfluidic
device via sample tubing (PEEK tubing 1/16” OD x 0.02” ID) con-
nected to fluidic reservoirs (Fig. 1). The four fluidic reservoirs
are pressurized using pressure transducers to drive the fluid into
the microfluidic chip. The fluid inside and outside the vesicle
(105 mM sucrose buffer) are density matched, so there is no sig-
nificant drift of vesicles in the orthogonal direction (z-direction)
during the timescale of the experiment. Vesicles were introduced
into the cross-slot device by flowing through inlet channels at ex-
tremely low velocities such that vesicles are negligibly deformed
prior to flow experiments.
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In this work, we only consider vesicles that are unilamellar (via
visual inspection of contour brightness and smoothness), defect-
free, and completely isolated from neighboring vesicles. Multi-
lamellar vesicles are observed in the sample, typically showing
defects such as a daughter vesicle inside a parent vesicle, or lipid
tubes protruding from the membrane, but these vesicles are not
included in our analysis. Prior to performing a non-equilibrium
flow experiment, individual vesicles are first trapped under zero-
flow conditions for≈ 15-30 s, thereby allowing the vesicle to relax
for several seconds to ensure near-equilibrium behavior. During
this step, the equivalent radius R and reduced volume ν for each
vesicle are measured under zero-flow conditions. Reduced vol-
ume ν is defined as the ratio of a vesicle’s volume V to the volume
of an equivalent sphere with surface area A = 4πR2, such that:

ν =
3V
√

4π

A3/2
(7)

A reduced volume of ν = 1 corresponds to a perfectly spherical
vesicle, whereas ν < 1 represents an osmotically deflated vesicle.

For these experiments, the membrane contour is located with a
high precision using the edge detection method discussed in Sec-
tion 2.4. To determine reduced volume, we follow the approach
by Dahl et al.32. In brief, the surface area and volume of a vesicle
are estimated by revolution of the observed 2D membrane con-
tour along the vesicle’s short axis (ESI†, Fig. S2 and Fig. S3). The
equilibrium shape of a vesicle is not always symmetric, so the
volume and surface area are calculated from the top and bottom
halves of the vesicle separately by numerical integration60, and
the total surface area and volume are taken as the average value
with uncertainty corresponding to one-half of the difference be-
tween the top and bottom halves. In this way, the equivalent
vesicle radius R and the reduced volume ν are determined from
the mean of 100 images at equilibrium (ESI†, Fig. S4).

Following determination of R and ν for a single vesicle, the
non-equilibrium flow experiment is performed by directly observ-
ing shape dynamics for the same individual vesicle in planar ex-
tensional flow. Vesicle dynamics in flow are governed by three
dimensionless parameters: reduced volume ν , capillary number
Ca, and viscosity contrast λ . The capillary number Ca is the ratio
of the viscous forces to bending forces on the interface, such that:

Ca =
µout ε̇R3

κb
(8)

where µout is exterior fluid viscosity, and the viscosity contrast λ

is the ratio of the fluid viscosities between the interior (µin) and
exterior (µout) regions of a vesicle:

λ =
µin

µout
(9)

Using the Stokes trap, the fluid strain rate is increased in a
systematic step-wise fashion (Fig. 3) by changing the pressure
difference δP between the inlet and outlet channels in the mi-
crofluidic device (Fig. 1b). After each step increase in the flow
rate, a trapped vesicle is observed for≈ 15-30 s and shape fluctua-
tions are directly observed. The observation time at each constant
strain rate is longer than the time required for the shape changes

0.5 1 1.5 2 2.5 3

q
x
 (m-1) #106
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<
|u

qx2
|>

 (
m

3 )

 Fluctuation spectrum
Fitted model

Fig. 4 Analysis of membrane fluctuations for determining bending mod-
ulus κb. The amplitude of fluctuations

〈
|u(qx)|2

〉
is plotted as a function

of wave vector qx for a representative DOPC vesicle. The solid red line
corresponds to the analytical model using Eq. 6, yielding κb = 8.9× 10−20

J and membrane tension 3.9 × 10−7 N/m (Inset): Detected contour of a
fluctuating GUV at equilibrium using image processing methods.

to occur, estimated from linear stability analysis29,30. For our
microfluidic system, the characteristic response time δ t for actu-
ating fluid flow in response to a large change in pressure from
0 psi to 4 psi in the cross-slot device is ≈300 ms. However, for
the experiments reported in this manuscript, the pressure is var-
ied with small incremental changes (≈0.01-0.05 psi), for which
we generally expect much smaller characteristic response time.
Nevertheless, we wait for 15-30 seconds in between successive
incremental changes of the pressure difference, which is much
larger than the characteristic settling time. In this way, we sys-
tematically study vesicle shape transitions across a wide range of
parameters in (ν ,Ca) space with high resolution between experi-
mental data points along the Ca-axis in the flow-phase diagram.

3 Results and discussion
3.1 Bending modulus estimation
We began by determining the average bending modulus for an
ensemble of DOPC lipid vesicles using the procedure described
in the Experimental Methods (Section 2.4). In brief, this method
relies on analyzing membrane fluctuations for weakly deflated
vesicles at equilibrium (no flow conditions), followed determi-
nation of bending modulus κb and membrane tension σ using a
two-parameter fit to the Helfrich model given by Eq. 6. The am-
plitude of membrane thermal fluctuations

〈
|u(qx)|2

〉
as a func-

tion of wave vector qx is shown for a characteristic lipid vesicle
in Fig.4. Using this approach, we determined an average bending
modulus of κb = (9.17±0.20)× 10−20 J (N = 22, ESI†Fig. S5).
The average value of membrane tension was found to be σ =
(1.9±0.20)×10−7 N/m (N = 22), which is consistent with prior
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Fig. 5 Flow-phase diagram for vesicle dynamics in extensional flow. Time series of images showing vesicle shape changes in extensional flow for:
(a) a vesicle in the highly deflated regime ν = 0.53, having a tubular shape at equilibrium and undergoing a symmetric dumbbell shape transition at
Ca = 2.3, (b) a vesicle in the weakly deflated regime ν = 0.95, having a quasi-spherical shape at equilibrium and maintaining a stable ellipsoid shape
upon extension up to Ca of ≈1000, and (c) a vesicle in the moderately deflated regime ν = 0.73, having a spheroid shape at equilibrium and undergoing
an asymmetric dumbbell shape transition at Ca = 98.7. (d) Flow-phase diagram of vesicles in planar extensional flow as a function of reduced volume
ν and capillary number Ca at a viscosity ratio λ = 1. Open green squares represent vesicles in the highly deflated regime ν < 0.60 (tubular shape
at equilibrium) for Ca < CaC at which a vesicle does not undergo shape instability. Filled green squares represent the Cac phase boundary at which
a tubular to symmetric dumbbell transition occurs. Open red squares represent vesicles in the moderately deflated regime 0.60 < ν < 0.75 (spheroid
shape at equilibrium) for Ca < CaC at which a vesicle does not undergo a shape instability. Filled red squares represent the Cac phase boundary at
which a spheroid to asymmetric dumbbell transition occurs. Open magenta squares represent vesicles in the weakly deflated regime ν > 0.75 where
vesicles have quasi-spherical shape at equilibrium and transition to a stable ellipsoid shape. The grey curve represents the phase boundary from
boundary integral simulations 31.

work reported in literature32.

The experimentally determined value of the bending modulus
for DOPC vesicles (κb = 9.17× 10−20 J, DOPC with 0.12 mol%
DOPE-Rh, 100 mM sucrose, T = 24◦C) is in reasonable agree-
ment with the bending modulus measured for pure DOPC vesi-
cles (κb = 9.1× 10−20 J, 300 mM sucrose/307 mM glucose, T =
25◦C) by Zhou et al.60, which suggests that the bending mod-
ulus for DOPC vesicles does not significantly depend on sugar
concentration over the relatively narrow the range of 100-300
mM. Indeed, low angle X-ray scattering measurements by Na-
gle et al.61,62 have recently shown that the bending modulus of
DOPC vesicles does not depend on sucrose concentration in the
range between 100-450 mM. Gracia et al. measured the bending
modulus of pure DOPC vesicles (10 mM glucose, T = 25◦C) to
be κb = 10.8 ×10−20 J, which is consistent with the value of κb

measured in this work at a higher sucrose concentration of 100
mM. Prior work63,64 has shown that increasing the sugar concen-
tration from 10 mM to 100 mM decreases the value of bending
modulus by a factor of two, though our results tend to show less
deviation in κb over this range of sucrose concentration. Indeed,
such variabilities in experimental measurements of bending mod-
uli for DOPC vesicles have been reported in prior work65.

The DOPC vesicles in this work contain an exceedingly small
amount of fluorescently labeled lipid (0.12 mol% DOPE-Rh),
which suggests that such a low concentration of labeled lipid does
not substantially alter the bending modulus of the membrane
compared to pure DOPC vesicles66. Our method for determining
bending modulus relies on a fairly strict set of statistical rejection
criteria for excluding vesicles that do not conform to an analyti-
cal model (Eq. 6), which yields a relatively narrow distribution in
bending moduli values across the ensemble. Nevertheless, vari-
ability in bending modulus between individual vesicles can be at-
tributed to light-induced peroxide formation in GUVs and/or pre-
cision of membrane edge detection in vesicle images66. Broadly
speaking, the experimentally measured values of κb in this work
are consistent with prior work reported for DOPC vesicles52,61,67.

3.2 Non-equilibrium flow-phase diagrams

Following determination of bending modulus κb, we further stud-
ied the non-equilibrium dynamics and conformation phase transi-
tions of vesicles in extensional flow over a wide range of reduced
volume ν and capillary number Ca for a uniform viscosity contrast
λ = 1 (Fig. 5). Using the Stokes trap, we confined single vesicles
near the stagnation point of planar extensional flow and observed
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the non-equilibrium shape dynamics while systematically increas-
ing the strain rate ε̇ in a scheduled fashion (Fig. 3). In this way,
vesicles were observed to adopt a wide variety of shapes in flow,
including a symmetric dumbbell shape (Fig. 5a, Movie S1 ESI†),
an asymmetric dumbbell shape (Fig. 5c, Movie S2 ESI†), and a
stable ellipsoidal shape (Fig. 5b, Movie S3 ESI†) depending on
the flow strength Ca and amount of membrane floppiness ν .

Fig. 5a shows a characteristic time series of images for a highly
deflated (ν = 0.53) vesicle initially in a tubular shape under zero
flow conditions. In the presence of extensional flow, the vesicle
stretches along the extensional axis and eventually transitions to
a symmetric dumbbell shape at Ca = 2.3. Once the shape change
occurs, the vesicle is observed to reach a steady-state conforma-
tion in flow. Similarly, Fig. 5c shows a characteristic time series
of images for a moderately deflated (ν = 0.73) vesicle initially in
a spheroidal shape, eventually transiting to an asymmetric dumb-
bell shape at Ca = 98.7. Finally, Fig. 5b shows a time series of
images for a quasi-spherical vesicle that largely retains an ellip-
soidal shape as Ca increases and does not undergo a transition
into a dumbbell shape.

The experimental flow-phase diagram for vesicle shapes in ex-
tensional flow is shown in Fig. 5d. Our results reveal three dis-
tinct dynamical regimes in the (ν , Ca) plane attained by lipid
vesicles. In general, highly deflated (ν < 0.60) and moderately
deflated (0.60 < ν < 0.75) vesicles are observed to transition into
symmetric or asymmetric dumbbell shapes, respectively, at a crit-
ical strain rate ε̇c (Movie S1,S2 ESI†). The critical capillary num-
ber Cac for the vesicle shape transition depends on the reduced
volume ν . As shown in Fig. 5d, the filled green symbols (red sym-
bols) represent the symmetric (asymmetric) dumbbell shape tran-

sition for vesicles with reduced volume ν < 0.60 (0.60< ν < 0.75).
The vertical set of open green and red squares represent data
obtained by systematically stepping strain rate using the Stokes
trap for Ca values below the critical value for a shape transition.
At higher reduced volumes (ν > 0.75), vesicles retain a stable
ellipsoidal shape regardless of Ca and do not undergo a sym-
metric/asymmetric dumbbell shape change over the entire range
of Ca. The grey curve shows the predicted stability boundary
from boundary-integral simulations29–31, which is in good agree-
ment with our experimental data. Uncertainties in determining
the strain rate and the bending modulus are generally small (see
see ESI†), and the error bars are dominated by the uncertainty
in the reduced volume calculation. Depending on the quality of
vesicle images at equilibrium, the error bars corresponding to re-
duced volume for most vesicles were found to be smaller than the
marker size (see ESI†Fig. S4).

In general, the flow-phase diagram reveals three distinct
regimes in vesicle shape dynamics defined by reduced volume ν:
(i) ν < 0.60, (ii) 0.60 < ν < 0.75, and (iii) ν > 0.75 corresponding
to transitions to a symmetric dumbbell, asymmetric dumbbell, or
stable ellipsoid shape, respectively. Interestingly, the critical cap-
illary number Cac required to trigger a shape transition decreases
with higher levels of deflation (decreasing ν). These observa-
tions are consistent with prior experimental work26,32 and nu-
merical simulations on vesicle dynamics in extensional flow30,31.
Moreover, the predicted phase boundary from a scaling analysis
in prior work30 is also shown in Fig.5d, which appears to be in
qualitative agreement with experiments.

Our experimental results also reveal some degree of variabil-
ity in the behavior of vesicle shape transitions near the critical
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stability boundary. For example, vesicles marked as ‘1’ and ‘2’ in
Fig. 5d have approximately the same reduced volume ν ≈ 0.74,
but they transition to an asymmetric dumbbell shape at differ-
ent values (Ca=133 and Ca=17.8, respectively). Similarly, vesi-
cles marked as ‘3’ and ‘4’ undergo an asymmetric shape transi-
tion at Ca numbers slightly above and below the curve predicted
from simulations. In general, such variability in vesicle dynam-
ics near the phase boundary can arise due to several reasons.
First, Ca is defined based on an ensemble averaged value of bend-
ing modulus κb determined from thermal fluctuation analysis of
quasi-spherical vesicles at equilibrium. In the non-equilibrium
flow experiments, vesicles are osmotically deflated and have non-
spherical shapes, which may result in differences in bending mod-
ulus on an individual vesicle basis. Moreover, our method of esti-
mating reduced volume ν by assuming a 2D contour for vesicles
as a body of revolution generally ignores thermal wrinkles in the
vertical direction (z-direction), which may introduce minor vari-
ability in determining ν 12,60. Finally, numerical simulations of
vesicle shape dynamics do not include thermal fluctuations of the
vesicle membrane, which may lead to differences between exper-
imental results and numerical predictions. Indeed, our results
show that the role of thermal fluctuations may be important in
describing the nature of vesicle shape transitions in flow (Movies
S1, S3, see ESI†for details).

To investigate the influence of viscosity ratio λ on the stability
boundary, we performed an additional set of experiments by in-
creasing the viscosity of the suspending medium by adding glyc-
erol, such that the viscosity ratio λ = 0.1. Fig. 6a shows the
flow-phase diagram for DOPC vesicles in extensional flow as a
function of Ca and ν at λ = 0.1. Overall, the dynamic behav-
ior of vesicles at λ = 0.1 was similar to that observed at λ =
1.0. To quantitatively compare the dynamic behavior of vesicles
at different viscosity ratios, we plotted the stability boundary for
λ = 1.0 and 0.1 in Fig. 6b. The difference between these curves
is not statistically significant as determined by a Mann-Whitney
test (p > 0.05). Overall, these results suggest that the onset of
the symmetric and asymmetric dumbbell instabilities is indepen-
dent of the viscosity ratio due to membrane area incompressibil-
ity. This can be understood by the fact that the flow in the base
state interior to the vesicle is generally not sensitive to the vis-
cosity ratio because the interface is immobile due to a constant
membrane area. It should be noted that the dynamic behavior of
vesicles with a molecularly thin membrane is markedly different
compared to immiscible drops with a simple liquid-liquid inter-
face. In the case of immiscible drops, the viscosity ratio plays a
key role in their dynamics, such that the critical capillary num-
ber required for drop burst instability is a strong function of the
viscosity ratio λ 68.

4 Conclusions
In this work, we experimentally determine the flow-phase di-
agrams for vesicles in extensional flow with high resolution in
(Ca,ν) space using a Stokes trap. Our results show that vesicles
undergo symmetric and asymmetric dumbbell shape transitions
depending on Ca and ν over a wide range of conditions. Quan-
titative characterization of the phase diagram reveals three dis-

tinct dynamical regimes for vesicles in extensional flow namely,
a tubular to symmetric dumbbell transition, a spheroid to asym-
metric dumbbell transition, and quasi-spherical to stable ellipsoid
depending on the value of reduced volume. We further demon-
strate that the phase boundary for shape transitions in flow is
insensitive to viscosity contrast between vesicle interior and exte-
rior. Due to the presence of the incompressible molecularly thin
lipid bilayer membrane, vesicles exhibit very different dynamics
compared to liquid drops in flow.

Importantly, the trapping method used in this work allows vesi-
cles to reach a steady-state conformation in extensional flow af-
ter experiencing a global change in shape. We emphasize that
such experimental precision was enabled by using the Stokes trap,
which allows for the long-time observation of single or multiple
particles in an externally imposed flow. An intriguing question re-
lates to vesicle dynamics at flow rates exceeding the critical cap-
illary number Cac. Upon increasing the flow rates above Cac, we
anticipate that vesicles will continue to stretch and will likely un-
dergo large deformations to extremely high large aspect ratios
(ratio of a vesicle’s stretched length along the extensional axis to
the equilibrium length). In future work, it will be interesting to
investigate if additional membrane-bound soft materials such as
polymersomes (polymer vesicles), capsules, or cells undergo sim-
ilar shape changes under flow. Overall, our work establishes the
utility of Stokes trap as a tool for investigating vesicle dynam-
ics and opens new avenues for investigating the non-equilibrium
dynamics of soft deformable particles in strong flows.
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