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Biofilms at interfaces: microbial distribution in float-
ing films

Nikhil Desai and Arezoo M. Ardekania

Cellular motility is a key function guiding microbial adhesion to interfaces, which is the first step
in the formation of biofilms. The close association of biofilms and bioremediation has prompted
extensive research aimed at comprehending the physics of microbial locomotion near interfaces.
We study the dynamics and statistics of microorganisms in a ‘floating biofilm’, i.e., a confinement
with an air-liquid interface on one side and a liquid-liquid interface on the other. We use a very
general mathematical model, based on a multipole representation and probabilistic simulations,
to ascertain the spatial distribution of microorganisms in films of different viscosities. Our results
reveal that microorganisms can be distributed symmetrically or asymmetrically across the height
of the film, depending on their morphology and the ratio of the film’s viscosity to that of the fluid
substrate. Long-flagellated bacteria exhibit stable swimming parallel to the liquid-liquid interface
when the bacterial film is less viscous than the underlying fluid. Bacteria with shorter flagella
on the other hand, always swim away from the liquid-liquid interface and accumulate at the free
surface. We also analyze microorganism dynamics in a flowing film and show how a microor-
ganism’s ability to resist ‘flow-induced-erosion’ from interfaces is affected by its elongation and
mode of propulsion. Our study generalizes past efforts on understanding microorganism dynam-
ics under confinement by interfaces and provides key insights on biofilm initiation at liquid-liquid
interfaces.

1 Introduction
Hydrodynamics of swimming microorganisms−a branch of phys-
ical sciences with ever-expanding frontiers−has seen intense re-
search from a host of perspectives, an important one being the
study of motility near rigid/fluid surfaces1–3. The fluid flow
around a microorganism swimming near a surface is fundamen-
tally different than that in an unbounded domain. This difference
stems from the fluid dynamic constraints (boundary conditions)
imposed by ambient surfaces which result in a ‘hydrodynamic in-
teraction’ of the microorganism with the surface. It can cause:
(i) a change in the organism’s swimming speed, or, (ii) a change
in its swimming trajectory due to an induced rotation, or, (iii)
a drift toward the surface causing surface-accumulation. These
physical effects have important consequences on the near-surface
functions of microorganisms, e.g., navigation through confine-
ments, foraging, host invasion, stress evasion, and nutrient-
source-colonization4–6. Knowledge of microbial locomotion near
surfaces can thus drive discovery and inform developments in ap-
plications like mammalian fertilisation, control of infectious dis-
eases, membrane anti-fouling and bacterial bioremediation.
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In light of these motivations, a large number of analytical, nu-
merical and experimental studies have been conducted on the
motion of microorganisms near surfaces. These studies focus on
the motion of micro-swimmers: (i) near a single rigid surface7–28;
(ii) near a single planar liquid-liquid interface27,29–33; (iii) near a
single deforming liquid-liquid interface34–36; (iv) under confine-
ment by two rigid surfaces37–41; or, (v) under confinement by a
rigid surface and a free surface (also called in a film)42,43. To-
gether, these investigations have revealed a fascinating array of
swimming behavior displayed by micro-swimmers in the vicinity
of surfaces. Motion near a single rigid/fluid surface has been
categorized as: (i) attraction to rigid walls10,11,14,15,25,39, (ii)
attraction to non-deforming15,27,30,31 and deforming34,36 inter-
faces; (iii) swimming in circles with the directionality (clock-
wise vs. counter-clockwise when seen from the ‘microorganism
side’) being determined by the rigidity/fluidity of the nearby sur-
face8,21,27,32,33; (iv) scattering away from a rigid wall14,28 or
a free surface15; and, (v) swimming at a fixed distance from a
nearby rigid surface11,16–19,27, a plane, surfactant-laden free sur-
face27,32,33 or deforming free surface35. The swimming behav-
ior within a fluid film is generally a combination of the above
effects, depending on the swimmer’s proximity to either confin-
ing surface, and is useful in predicting microorganism distribu-

Journal Name, [year], [vol.],1–21 | 1

Page 1 of 22 Soft Matter



tion in biofilms42,43. In addition, an imposed external flow can
yield rich swimming dynamics of confined microorganisms, de-
pending on the strength of the external flow and the swimmer-
surface hydrodynamic interactions44, e.g., (i) ‘trapping’ in high-
shear regions45,46, (ii) oscillating across the width of a parallel-
plate channel47,48, and, (iii) detachment of ‘hydrodynamically at-
tached’ swimmers from a wall due to high external shear49,50.

While hydrodynamics-mediated microbial distribution in
biofilms resting on rigid substrates has received some atten-
tion42,43,50, there are relatively fewer works which focus on float-
ing biofilms. A floating biofilm is a unique configuration wherein
microorganisms populate a fluid surface instead of a rigid one. It
can be idealized as a suspension of microorganisms in a confine-
ment with an air-liquid interface on one side and a liquid-liquid
interface on the other. These systems, called “films of bacteria at
interfaces"51, are becoming exceedingly relevant in applications
like bioremediation of oil spills52, emulsion stabilization53,54,
pathogen control55 and more fundamental processes like transfer
of organic matter between the surface, the bulk and the substra-
tum in lakes and oceans6,56. Motivated by these applications,
we wish to understand how hydrodynamics influences the dis-
tribution of microorganisms in floating films. Specifically, under
what scenarios does hydrodynamics cause the microorganisms to
preferentially reside at/near one of the two (air-liquid or liquid-
liquid) confining interfaces? How is this preference affected if
the film is flowing? The answer to these questions will depend
on the microorganism’s geometry (shape and propulsion mech-
anism) and the physical properties of its surroundings (viscosi-
ties of its suspending and underlying fluids, external fluid-flow
rates). Our aim is to develop a mathematical model that allows
quantification of microorganism distribution across the height of
the floating film, with consistent treatment of the flow-physics
affecting microorganism dynamics. Towards this, we formulate
a problem based on far-field hydrodynamics, stochastic simula-
tion of microorganism trajectories and computation of their time-
averaged spatial distributions. Section 2 introduces the mathe-
matical model, followed by a description of the solution method-
ology employed. In Section 3.1 we describe the procedure used
to obtain the main results in this manuscript, with Sections 3.2
and 3.3 discussing microbial dynamics in floating biofilms that
are stagnant and flowing, respectively. Finally, Section 4 sum-
marizes the main results, suggests many useful extensions of the
present work and concludes this study.

2 Mathematical Model
The Reynolds number corresponding to microorganism swim-
ming is small enough to neglect the effects of inertia on fluid flow
and on the motion of the microorganism. The fluid flow is thus
governed by the continuity and the Stokes flow equations. This
also allows us to use a multipole expansion representation for the
swimmer, i.e., we model the swimmer as a collection of Stokes
flow singularities located at its centroid, and use them to evalu-
ate any ensuing hydrodynamic interactions. The geometry of our
problem is explained in Fig. 1. A microorganism of characteris-
tic size a is contained in a fluid of viscosity µ1 (henceforth called
fluid-1), which floats on another fluid of viscosity µ2 (fluid-2).

Any point of interest in the domain is identified by the coordinate
x ≡ (x1,x2,x3). The height of the fluid-1 film is H. The air-liquid
(resp. liquid-liquid) interface at x3 =H (resp. x3 = 0) is referred to
as A-L (resp. L-L). The microbe’s configuration is uniquely identi-
fied by its height above the L−L, z, and its in-plane orientation, θ .
We must note that the system described above is an idealization
of a biofilm in that the fluid-1 is treated as a Newtonian fluid, and
biofilms are generally complex structures characterized by a non-
Newtonian environment. However, in this first exploration, we
focus on films of bacteria in a Newtonian fluid, which is indeed
an appropriate assumption in some instances6,57. We emphasize
that complex interfacial and bulk fluid behavior can be system-
atically incorporated into our mathematical model and comment
further on this aspect in Section 4.
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Fig. 1 A schematic of the problem being solved. Shown here is the
microorganism located at x = y, along with its ‘images’ at y∗ (w.r.t. the
liquid-liquid interface) and at y∗∗ (w.r.t. the air-liquid interface). A− L
(resp. L−L) refers to the air-liquid (liquid-liquid) interface. Note that the e2
component of the swimmer’s orientation has been set to zero without loss
of generality. The vertical distribution of a suspension of non-interacting
microorganisms depends on the morphology of the microorganisms and
the viscosity ratio, λ ≡ µ2/µ1, of the fluids involved.

2.1 Stokeslet in a floating film
We begin by describing the flow produced by a ‘point force sin-
gularity’ f, also called a Stokeslet, acting at a position x = y in
fluid-1 in the floating film depicted in Fig. 1. Once the flow due
to a Stokeslet is known, we can take its appropriate derivatives
to construct the flow stemming from more complex force distri-
butions characteristic of a swimming microorganism14,58. The
equations governing fluid flow in fluid-1 are:

∇ ·u(1) = 0, (1a)

−∇P(1)+µ1∇
2u(1)+ fδ (x−y) = 0, (1b)

while those in fluid-2 are:

∇ ·u(2) = 0, (2a)

−∇P(2)+µ2∇
2u(2) = 0, (2b)

where, P(i), u(i) and µi are the pressure, velocity and viscosity,
respectively, in the i-th fluid. The fluid velocity fields u(1) and
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u(2) must satisfy the continuity of velocity and shear stress at the
liquid-liquid interface (L-L):

u(1) = u(2), at x3 = 0, (3a)

e3 · {∆T} ·e1 = e3 · {∆T} ·e2 = 0, at x3 = 0, (3b)

where, T(i) =−P(i)I+µi

(
∇u(i)+∇u(i),T

)
is the Newtonian stress

tensor (I is the identity tensor); and ∆T = T(1)−T(2). In addition,
the fluid velocity field u(1) must satisfy the conditions of vanishing
normal velocity and shear stress at the air-liquid interface (A-L):

e3 ·u(1) = 0, at x3 = H, (4a)

e3 ·T(1) ·e1 = e3 ·T(1) ·e2 = 0, at x3 = H. (4b)

The solution to eqns. 1 to 4 can be obtained by a methodology
called the ‘method of images’, the details of which are given in the
Appendix. If we treat the A-L and the L-L as plane mirrors, then
we can identify ‘image points’ for the Stokeslet located at x = y.
For example, the points y∗ and y∗∗ in Fig. 1 denote the images
of the point y with respect to the L-L and the A-L, respectively.
Furthermore, y∗ (resp. y∗∗) will also have an image with respect
to the A-L (resp. the L-L) and in this way one can identify an
infinite number of image positions42,59. The fluid flow due to
the confined Stokeslet is then represented by a superposition of
the Stokeslet flow in an unbounded fluid, u(1)

∞ (x), and the ‘film
correction’, uH (x), due to systems of ‘image singularities’ located
at the aforementioned image positions. Thus, we have:

u(1) (x) = u(1)
∞ (x)+uH (x) , (5)

with,
u(1)

∞ (x) = G Os (x−y) · f, (6)

where G Os (x−y) is called the Oseen tensor, and its tensorial
expression is given in eqn. 27 in the Appendix. The film cor-
rection uH (x) is composed of flows due to image singularities,
i.e., higher order flow singularities derived from the Stokeslet
flow60–62. In this work, we only obtain an approximate expres-
sion for uH (x), as we do not aim to ascertain the exact flow
induced by the microorganism; rather, we are interested in study-
ing the hydrodynamic interaction of the microorganism with the
two interfaces. This interaction depends only on uH (x = y), i.e.,
on the film correction evaluated at the position of the microor-
ganism. The major contribution to this flow comes from the first
two images: (i) the image at y∗, taken with respect to the liquid-
liquid interface (eqns. 28 and 29), and, (ii) the image at y∗∗,
taken with respect to the air-liquid interface (eqns. 31 and 32).
Any higher order ‘image of image’ will always be further from the
microorganism than the images at either y∗ or y∗∗, so the dom-
inant contribution to the hydrodynamic interactions will always
stem from the two images shown in Fig. 1. This is especially true
when considering thick fluid films, i.e., when a/H << 1. There-
fore, we approximate the film correction, uH (x), as that due to
the first two images of the Stokeslet:

uH (x)≈
[
G LL

1 (x,y,y∗;λ )+G AL
1 (x,y,y∗∗)

]
· f, (7)

where the tensorial expressions for G LL
1 and G AL

1 are given by
eqns. 30 and 32 in the Appendix.

2.2 Higher order multipoles from the Stokeslet

Once the image system for a Stokeslet in a floating film is
known (eqns. 7, 30 and 32), we can take its appropriate
derivatives to construct the image systems for more complex
force distributions. This is important because we are modeling
the microorganism−and its hydrodynamic interactions with the
interfaces−as a distribution of forces that its appendages exert on
the fluid. These can be recovered by writing the multipole expan-
sion form of the flow induced by the microorganism’s motion58.
For this, we assume the microorganism to be an axisymmetric
prolate spheroid of major axis length 2a and minor axis length
2b. At a given instant, it is located at x = y, and oriented along
the direction p. The multipole expansion of the flow due to the
microorganism can be represented in terms of its contributions in
an unbounded fluid, which involve gradients of the Oseen ten-
sor G Os (x−y), plus correction terms−encoded in a tensor, say
H −stemming from the planar interfaces:

u(1) (x) = uD (x)+uSD (x)+uQ (x)+uR (x)+ . . . . (8)

The different terms in the right-hand side of eqn. 8 are given by:

uD

8πµ1
= κ (p ·∇0)

{(
G Os +H

)
·p
}
, (9a)

uSD

8πµ1
=−σ

2
∇

2
0

{(
G Os +H

)
·p
}
, (9b)

uQ

8πµ1
= ν (pp : ∇0∇0)

{(
G Os +H

)
·p
}
, (9c)

uR

8πµ1
= τ (p ·∇0)∇0×

{(
G Os +H

)
·p
}
, (9d)

where, H is approximated as:

H (x,y,y∗,y∗∗;λ )≈ G LL
1 (x,y,y∗;λ )+G AL

1 (x,y,y∗∗) . (10)

Note that all directional gradients in eqn. 9 have been taken
with respect to p, which is a manifestation of the microorgan-
ism’s axisymmetry58. The absence of any terms proportional to
‘
(
G Os +H

)
·p’ signify that the microorganism does not exert any

net force or torque on the fluid. The terms in eqns. 9a to 9d are
collectively called the multipoles associated with the fluid flow
generated by the microorganism. Specifically, they are termed
the force dipole, the source dipole, the force quadrupole and
the rotlet dipole respectively. The coefficients κ,σ ,ν ,τ are called
the strengths of each of these singularities. Dimensional consis-
tency requires their dimensions to be: [κ] =[velocity×length2]
and [σ ,ν ,τ] =[velocity×length3]. Table 1 lists the signs of these
coefficients for different microorganisms. These are estimated
based on the physical meaning of each multipole and its rela-
tionship with the microorganism’s morphology, which we discuss
next.
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Each of the multipoles from eqn. 9 has a specific physical
meaning. The force dipolar hydrodynamic interactions are the
leading order effect of microbial swimming. Being force-free, a
microorganism exerts equal and opposite forces on its surround-
ing fluid, which are represented by the force dipole. The sign of
the dipole strength, κ, signifies two fundamentally distinct loco-
motion strategies. Microorganisms with κ > 0 are called ‘push-
ers’ because they push fluid outward along their bodies as they
swim, e.g., E. coli and most flagellated bacteria. Exactly oppo-
site to this, microorganisms with κ < 0 are called ‘pullers’ as they
pull fluid inward along their bodies as they swim, e.g., the bi-
flagellated alga C. reinhardtii, the uni-flagellated protozoan par-
asite L. mexicana. The pushing (resp. pulling) is achieved by lo-
comotory appendages at the rear (resp. front) of the cell body1.
The dipole strength for pushers has been the most well studied
multipole for swimming microorganisms22,39. Its value can be es-
timated from the thrust force exerted by bacterial flagella, and it
can range from 8 to 75 µm3/s based on various thrust force mea-
surements22,39,63,64. This range of values can also be obtained by
noting that the force dipole coefficient scales as κ ∼ a2Vs, where a
is the characteristic size of the microorganism (≈ 1−10 µm), and
Vs is its swimming speed (≈ 10−100 µm/s).

The source dipole represents the finite size of a microorgan-
ism. Source dipolar hydrodynamic interactions provide a finite
size to the swimmer model by generating a separation of flow
into regions inside and outside an impermeable boundary called
the ‘hydrodynamic radius’ of the swimmer65. The sign of the
source dipole strength represents ciliated swimmers if σ > 0, and
non-ciliated/flagellated swimmers if σ < 014,42. While the pos-
itive value of the source dipole strength for ciliated swimmers
has indeed been measured for colonial Volvox 66, the same cannot
be said for flagellated microorganisms. However, one can draw
a comparison between a cell body ‘pushed’ by a flagellum and
a sphere moving under an external force to estimate the sign of
the source dipole for flagellated microorganisms14,42. Therefore,
since a sphere moving under an external force is represented by
a Stokeslet and a negative source dipole, a force-free flagellated
swimmer can be assumed to correspond to a negative source dipo-
lar coefficient. The value of this coefficient can be estimated from
the scaling σ ∼−a3Vs.

The force quadrupole represents the first effects of asymmetric
forcing by the microorganism, stemming from an asymmetry in
its shape. One of the primary sources of fore-aft asymmetry in
a microorganism is the presence of a cell body and a flagellum.
Thus, the force quadrupolar singularity is often associated with
the flows produced by flagellated swimmers, e.g., sperm9 and
bacteria14,42,50. To the best of our knowledge, there have not
been any direct experimental measurements of force quadrupo-
lar strengths of flagellated microorganisms. However, numeri-
cal simulations are a useful tool for calculating the quadrupolar
strengths for varying morphologies. Simulations of model flag-
ellated swimmers show that a longer flagellum and relatively
smaller cell body correspond to a positive quadrupole strength,
ν > 0, while a large cell body attached to a shorter flagellum cor-
responds to a negative quadrupole strength, ν < 014. We will see
in Section 3.2.3 that the results of our multipole analysis−which

Table 1 The signs of the multipole moments for different microorganisms,
estimated based on their propulsion mechanism and morphology. The
table entries ‘N.A.’ correspond to multipole moments whose signs can
not be ascertained based on our knowledge of their geometries.

Microorganism κ σ ν τ

E. coli >0 <0 >0 >0

C. reinhardtii <0 <0 N.A. ≈ 0

Volvox ≈ 0 >0 ≈ 0 ≈ 0

V. cholera >0 <0 <0 N.A.

P. aeruginosa >0 <0 >0 N.A.

considers ν > 0 (resp. ν < 0) for long-flagellated (resp. short-
flagellated) swimmers−are consistent with the recent simulations
by Pimponi et al.31,43, thus providing further evidence of this re-
lationship between quadrupole strengths and swimmer morphol-
ogy. In this way, the sign of the force quadrupole indicates the
region of the cell (body plus flagellum) where a greater part of
the propulsive thrust or swimming drag is concentrated. Based
on some of the observed geometries of bacterial cells, an example
of a microorganism with ν > 0 could be P. aeruginosa (cell body
length ≈ 1 µm; flagellar length ≈ 3.4 µm), while one with ν < 0
could be V. cholera (cell body length ≈ 3 µm; flagellar length
≈ 2 µm)11,67. Just like the source dipole for flagellated swim-
mers, the value of the force quadrupole can be estimated from
the scaling ν ∼ a3Vs. This is because both the source dipole and
the force quadrupole emerge from different variations of the sec-
ond moment of the stresses exerted by the microorganism on the
surrounding fluid65, thus they are expected to scale similarly. Fi-
nally, the rotlet dipole represents the equal and opposite torques
that a helically flagellated microorganism exerts on the fluid14,42.
We note here that because we are eventually interested in swim-
mer distributions transverse to the floating film, we do not discuss
the hydrodynamic effects of the rotlet dipole (eqn. 9d) as it does
not yield any motion in the e3 direction14,15,42.

2.3 Calculation of the hydrodynamic interactions
The ‘H terms’ in eqn. 9, by definition, denote the hydrodynamic
influence of the confinement (L-L and A-L) on the swimmer-
generated flow. This influence results in the swimmer’s trans-
lation and rotation. It is quantified by the Faxén laws for a force-
free and torque-free spheroidal particle:

uHI (y,p) = uH (x = y)+O
(

a2/H2
)
,

ΩΩΩHI (y,p) =
[

1
2

∇×uH (x)+
γ2−1
γ2 +1

p×
(

EH (x) ·p
)]∣∣∣∣

x=y

+O
(

a2/H2
)
,

(11)

where a/H is the characteristic microorganism size normalized
by the height of the film, γ = a/b is the aspect ratio of the mi-
croorganism and EH is the rate-of-strain tensor derived from the
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uH flow. It is very important to note that in principle, the mul-
tipole expansion is a valid description of the flow in the far-field
of a swimmer, but remarkably, experiments (see ref.39) and nu-
merical simulations (see ref.14) have shown that it is accurate up
to swimmer-boundary separations as small as one body-length.
Also, one could extend the multipole expansion of eqn. 8 even
further, but we restrict ourselves to 4 terms for simplicity, and
also because these terms capture the essential swimmer dynam-
ics and have easily realizable physical significance. Finally, we
note that the only hydrodynamic interactions being considered in
our work are that between the swimming microorganisms and the
two interfaces. We are neglecting all swimmer-swimmer interac-
tions in our analysis, i.e., we are studying microbial dynamics in
the dilute regime.

Along with the hydrodynamics-induced drift and reorientation,
a microorganism has its own active motility, can interact steri-
cally with either interface and has a tendency to reorient itself
randomly due to structural imperfections. Therefore, the motion
of the microorganism is described by the following coupled, non-
linear ordinary differential equations:

dy
dt

=Vsp+uHI (y,p)+Vst ,

dp = {ΩΩΩHI (y,p)×p+ΩΩΩRD×p}dt,

(12)

where the ‘ΩΩΩRD’ term corresponds to diffusion induced reorienta-
tion of the swimmer with a rotational diffusivity Dr. The expres-
sions for the e3 component of uHI (y,p), and the e2 component of
ΩΩΩHI (y,p) have been provided, singularity-wise, in the Appendix
(see eqns. 33 to 38). These are the only hydrodynamic compo-
nents responsible for altering the vertical distribution of the swim-
mers. Vst is the steric-interaction-induced velocity of the microor-
ganism which prevents it from penetrating into the interface; it
is implemented as a hard-core repulsion. Finally, note that swim-
mer elongation will result in steric torques upon contact with the
interface, but we neglect them in this study as their influence on
the swimmers’ spatial distribution is not very significant.

We conclude this section with a physical discussion of
the microorganism’s behavior within the floating film. The
hydrodynamic-interaction-effects will be strongest at swimmer-
interface separations corresponding to ∼1 swimmer body-
length22,39; beyond these the swimmer motion will be dictated
by self-propulsion and rotary diffusion3,40,48. Thus, in the present
configuration, a swimmer near the center of the film is expected
to swim toward one of the two interfaces, reach close enough
to be affected by hydrodynamic interactions and then translate
and/or rotate in a fashion acutely dictated by the type of inter-
face: A-L or L-L, and the morphology of the swimmer: the param-
eters γ and κ,σ ,ν . The near-interface hydrodynamic interactions
can lead to various behaviors which we identify, one singularity
at a time, in the subsequent sections.

3 Results
3.1 Dimensionless parameters and simulation methodology

We render the equations dimensionless by scaling lengths with
the film height H and velocities with the swimming speed Vs. The

key dimensionless parameters in our study are the viscosity ra-
tio, λ = µ2/µ1; the swimmer elongation γ; and the dimension-
less force dipole, κ ′ = κ/(H2Vs); source dipole, σ ′ = σ/(H3Vs);
and force quadrupole, ν ′ = ν/(H3Vs) strengths. An inspection
of the scaling for the dimensional multipole strengths {κ,σ ,ν}
(see Section 2.2) and the non-dimesionalizing scheme employed
by us suggests that the dimensionless source dipole and force
quadupole should be an order of magnitude less than the dimen-
sionless force dipole; and this is how we select the parameter
values κ ′, σ ′ and ν ′ in our simulations. We note that by defi-
nition, higher values of λ correspond to a less viscous fluid-film
floating on a more viscous underlying fluid. The symmetry about
the azimuthal angle (φ) and along the e1 and e2 directions allows
us to study the swimmer motion in terms of only two degrees of
freedom: its separation from the L-L, z′ = z/H, and its orientation
p = (cosθ ,0,sinθ). Therefore, the swimmers in our simulations
are effectively confined to the 2D e1−e3 plane. We perform prob-
abilistic simulations by integrating eqns. 12 using the explicit Eu-
ler method, for Nb = 1000 swimmers whose initial positions (resp.
orientations) are assigned from a uniformly random distribution
between [a/H, 1-a/H] (resp. [0, 2π]). The simulations run until
tend = 100H/Vs, after which we extract the probability distribution
of the time-averaged swimmer position and orientation, Ψ

(
z̄, θ̄
)
,

where the over-bars denote time-averages:

z̄ =
1

tend

tend∫
0

z(t ′)
H

dt ′, θ̄ =
1

tend

tend∫
0

θ
(
t ′
)

dt ′. (13)

The distribution function is normalized such that,

1
2π

1∫
0

2π∫
0

Ψ
(
z̄, θ̄
)

dθdz̄ = 1, (14)

i.e., Ψ
(
z̄i, θ̄ j

)
dz̄dθ × Nb/(2π) yields the number of swimmers

within the bin
[
z̄i±dz̄, θ̄ j±dθ̄

]
. Our main objective is to ascer-

tain the time-averaged swimmer distribution as a function of film
height, F (z̄), toward which we integrate Ψ

(
z̄, θ̄
)

over θ̄ , to ob-
tain,

F (z̄) =
1

2π

2π∫
0

Ψ
(
z̄, θ̄
)

dθ̄ . (15)

We also define the ‘fraction’ of swimmers at the L-L (resp. A-L) as
F 0 (resp. F 1), given by,

F 0 =

1.1ā∫
0

F (z̄)dz̄, (16a)

F 1 =

1∫
1−1.1ā

F (z̄)dz̄, (16b)

where ā = a/H 50. The quantities mentioned above act as useful
indicators of the spatial distribution of swimmers as mediated by
hydrodynamic interactions, self-propulsion and rotary diffusion.
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3.2 Microorganisms in a stagnant, floating film

The major results to be reported in this section are: (i) swimmer
distribution in the film, and, (ii) difference in swimmer accumu-
lation at the two interfaces; quantified by: (i) F (z̄), and, (ii)
∆F =F 0−F 1, respectively. In our simulations we take the films
to be relatively thick as compared to the swimmer size, i.e., we
have a/H = 1/50 << 1. As a result, the viscosity ratio is expected
to significantly alter the swimming behavior near the L-L, but not
near the A-L. Thus for a fixed swimmer geometry, variation in
F (z̄) and ∆F with respect to the film viscosity (λ) can be ex-
plained on the basis of hydrodynamic interactions near the liquid-
liquid interface itself. The variation F (z̄) and ∆F as a function
of the swimmer elongation (γ) however, will require careful con-
sideration of hydrodynamic interactions near both interfaces.

3.2.1 Force dipolar interactions

It is common knowledge that a force dipole is always attracted
to nearby interfaces. Hydrodynamic interactions cause pushers
(resp. pullers) to orient parallel to (resp. perpendicular to, and
‘facing’ toward) a nearby interface and be attracted to it30. This
explains Fig. 2 wherein we have almost exclusive accumulation
of swimmers at both the interfaces. There is slightly more ac-
cumulation near z̄ ≈ 0 due to nominally stronger hydrodynamic
interactions at the liquid-liquid interface. This behavior depends
very weakly on both λ and γ, with F 0 =F 1 +ε, ε ∼O(0.01) (see
Fig. 16 in Appendix). However, one does see that pullers (κ ′ < 0)
accumulate closer to both the interfaces than the pushers (κ ′> 0),
for all viscosity ratios, λ , and elongations, γ (see additional dis-
tributions in Fig. 15 in the Appendix). This is because hydro-
dynamics causes pullers to orient themselves toward the nearest
interface, perpendicular to it; contrary to pushers who orient par-
allel to the interfaces. In this way the pullers’ motility acts in
conjunction with their hydrodynamic attraction to enhance their
interface accumulation as compared to pushers. We emphasize
here that the stronger attraction of pullers toward a glass surface
was recently observed in experiments of V. alginolyticus, albeit for
swimming speeds larger than 20 µm/s26. In this study, we con-
firm this effect using just the leading order multipole representa-
tion of microorganisms. Thus, dipolar hydrodynamic interactions
prove very useful in explaining a salient feature of near surface
swimming.

Unlike the distributions in Fig. 2, recent numerical simulations
have suggested the existence of significant asymmetry in bacte-
rial propulsion in both thick and thin fluid films resting on a rigid
substrates43. This provides us a motivation to study the hydro-
dynamic interactions resulting from higher order multipoles like
the effects of the source dipole and the force quadrupole. We
consider these one by one in the subsequent sections to identify
key behaviors elicited by each, and comment on their combined
effects at the end.

3.2.2 Source dipolar interactions

The flow due to a source dipole is representative of a ‘neutral’
swimmer, i.e., one that is neither a pusher or a puller (as its force
dipolar contributions are negligible). The first important point to
note about source dipolar interactions is the existence of ‘central
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Fig. 2 Swimmer distribution in the film, F (z̄), for λ = 10 and γ = 8, for
κ ′ 6= 0,σ ′ = ν ′ = 0. The plots are slightly stretched near z̄ = 0 and z̄ = 1,
to clearly show the stronger accumulation of pullers near both interfaces.
There is not an appreciable difference between accumulation at the two
interfaces, with ∆F (z̄) ∼ O(0.01). These small values of ∆F occur for a
wide range of swimmer elongation, γ, and the normalized film viscosity
λ (see Figs. 15 and 16 in the Appendix). Diamonds (resp. circles) de-
note maximum values of F for κ ′ > 0 (resp. κ ′ < 0). The value of the
dimensionless rotational diffusivity of the swimmers is Dr/(Vs/H) = 0.2.

oscillations’ for elongated ciliated swimmers (σ ′ > 0), as shown
in Fig. 3(a-b). It is attributed to the finite-size-effects of the
source dipole, which provides a ‘hydrodynamic repulsion’ by turn-
ing the swimmer away from any surfaces it is about to encounter.
This has been extensively detailed in past studies by Mathijssen et
al.42,65,68. They demonstrated how this ‘hydrodynamic regular-
ization’ effect causes an elongated source-dipole swimmer to turn
away from both a rigid wall and a free surface42. They also pos-
tulated the use of the source dipole to avoid near-singular flows
due to model swimmers near walls68. This behavior is also con-
sistent with numerical simulations of model squirmers by Ishi-
moto and Gaffney15, wherein they demonstrated the tendency
of source-dipole swimmers/neutral squirmers to rotate and swim
away from rigid walls as well as free-slip surfaces after reach-
ing a distance of closest approach. The ‘fluidity’ of the interface
at z′ = 0 does not significantly alter this oscillatory behavior. An
increase in the viscosity ratio λ increases−ever so slightly−the
mean height around which the swimmers oscillate [or, alterna-
tively, the z̄ position corresponding to the peak in F (z̄)]. This
can be seen qualitatively in the sample trajectories of the source
dipole swimmers in Fig. 3(c).

A second important concept is the distinctly different spatial
distribution for spherical swimmers, depending on the sign of σ ′,
as seen in Figs. 4(a-b). Ciliated swimmers (σ ′ > 0) accumulate
near the A-L while non-ciliated swimmers (σ ′ < 0) accumulate
near the L-L, irrespective of the viscosity ratio. We can get useful
insights into this behavior by referring to the deterministic z′(t)−
θ(t) phase portraits of the swimmer dynamics, shown in Fig. 4(c-
d). Let us consider the fate of non-diffusing swimmers located
initially at the film center, i.e., z′(0) = 0.5, and oriented toward
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Fig. 3 (a-b) Swimmer distribution in the film, F (z̄), as a function of λ for γ = 8, for σ ′ 6= 0,κ ′ = ν ′ = 0. (c) Trajectories for a source dipole swimmer with
σ ′ = 0.002 and γ = 3. The value of the dimensionless rotational diffusivity of the swimmers is Dr/(Vs/H)= 0.2. The trajectories are shown for two different
viscosity ratio values, λ = 0.1,10. The swimmer orientation p is shown via the arrows. The initial position of the swimmer is (x′(0),z′(0)) = (0,0.5), and
the initial orientation is, θ(0) = π/4.

the L-L, i.e., θ (0) > π. Swimmers with a positive source dipolar
coefficient (i.e., ciliated swimmers) heading toward the liquid-
liquid surface at an angle θ(0) = θi > π, are turned away from a
minimum-approach height,

z′min ≈
{

σ ′

4
(4λ +1)
(λ +1)

}1/3
. (17)

Eqn. 34 in the Appendix shows that z′min is the height at which
the swimmer velocity dz′/dt vanishes, preventing it from descend-
ing any further toward the L-L. The swimmer spends some time
at this minimum approach height as it reorients and eventually
swims toward the free surface. Once near the free surface (A-L),
the hydrodynamics-induced angular velocity of a spherical cili-
ated swimmer vanishes (see second line of eqn. 37) and it can
no longer turn away from the A-L. In addition, the vertical com-
ponent of the swimmer velocity also vanishes at a separation of
(σ ′/4)1/3 from the free surface (λ → 0 in eqn. 17; see Fig. 5).
Thus, a spherical ciliated swimmer approaching the L-L at an ori-
entation θi > π is rotated away from it, swims toward the A-L,
gets vertically trapped there and only swims along the length of
the film at a fixed orientation θ f (see trajectories in Fig. 5). This

final orientation of the swimmer is related to the initial orienta-
tion, θi, as θ f ≈ 2π−θi. Note that for γ > 1 (equivalently, G > 0)
the A-L can also cause hydrodynamics-induced turning of a cili-
ated swimmer, leading to the oscillating trajectories discussed in
Fig. 342. The time spent by spherical swimmers at a separation of
z′min from the L-L reduces with an increase in the viscosity ratio, λ ,
as seen qualitatively in Fig. 5. This generalizes past predictions of
“an extended residence of the swimmer in the vicinity of the free
surface during scattering, compared to a no-slip boundary"15.

How does inclusion of rotary diffusion affect the above-
mentioned deterministic dynamics of ciliated swimmers? It can
be seen that introduction of rotary diffusion maintains the ten-
dency to predominantly accumulate near the A-L, except for one
important change: some swimmers get permanently ‘trapped’ at
the minimum-approach height. This is marked by the local max-
ima at z̄ = z′min in Figs. 4(a,b). The value of the distribution func-
tion at this separation, F

(
z̄ = z′min

)
, decreases with an increase

in the viscosity ratio: from a modest value in Fig. 4(a) to being
barely visible in Fig. 4(b) (see also Fig. 17 in the Appendix). This
local maximum exists solely because of rotary diffusion. In the de-
terministic case, the swimmmers ‘turn away’ only when θ follows
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Fig. 4 (a-b) Swimmer distribution in the film, F (z̄), as a function of λ for γ = 1, for σ ′ 6= 0,κ ′ = ν ′ = 0. Panel (a) marks a slight peak near z̄ ≈ z′min, for
swimmers with σ ′ > 0 (see eqn. 17), by the text ‘entrapment near L-L’. This corresponds to the small fraction of swimmers that get perpetually trapped at
that height. This peak reduces as λ increases to an extent that it is barely visible for λ = 10 (see Fig. 17 in Appendix). One can also see how inclusion
of rotary diffusion in the dynamics of swimmers with σ ′ < 0 (red, dash-dotted lines) causes accumulation only at the L-L; while excluding rotary diffusion
for these swimmers (black, dotted lines) causes accumulation at both at the L-L and the A-L. (c-d) z′− θ phase planes for spherical swimmers with
non-zero source dipoles, demonstrating how/why hydrodynamics in conjunction with rotary diffusion causes, (c) ‘top accumulation’ for σ ′ > 0, and, (d)

‘bottom accumulation’ for σ ′ < 0. The contour represents the normalized angular velocity, θ̇/

√
θ̇ 2 + ż′2, of the swimmer, where dots represent time

derivatives. Note that for the ciliated swimmer (σ ′ > 0), θ̇ =−ΩHIH/Vs ≈ 0 at the distance of closest approach to the A-L (z′ = 1− (σ ′/4)1/3 ≈ 0.92) and
the L-L (z′ = z′min; eqn. 17). In all cases with rotary diffusion, the swimmers’ rotational diffusivity is taken to be Dr = 0.2Vs/H.
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Fig. 5 Deterministic trajectories of spherical source dipole swimmers
(σ ′ > 0,κ ′ = ν ′ = 0) in a floating film with different viscosity ratios λ . It is
clear that the time spent by the swimmer close to the L-L decreases as
the viscosity ratio increases. After turning away from the L-L the swim-
mers accumulate at a final height z′f inal ≈ 1− (σ ′/4)1/3. The swimmers’
initial position and orientation are z′(0) = 0.5 and θ(0) = 7π/4, respec-
tively.

a monotonic reduction from θi to θ f . Rotary diffusion causes θ to
change randomly when the swimmer is far from the L-L. This can
lead to the swimmers’ vertical velocity (dz′/dt) becoming zero be-
fore they are able to fully turn upward. The swimmers then stay
trapped at z′min; although it must be noted that this trapping is
quite different than a fixed point in the z′− θ phase space, be-
cause the swimmers are still free to rotate.

The behavior of non-ciliated swimmers (σ ′ < 0) is acutely af-
fected by a combination of hydrodynamic interactions and rota-
tional diffusion. Hydrodynamic interactions alone would cause
significant accumulation at both interfaces [thick, dotted line plot
in Figs. 4(a,b)], depending on the initial swimmer orientations.
Swimmers with θ(0) < π accumulate at the A-L (z′ ≈ 1) without
changing their angle of approach, while those with θ(0)> π accu-
mulate at the L-L (z′ ≈ 0) at an angle 3π/2, i.e., pointing toward
the L-L. However, as seen in eqn. 37 in the Appendix, the an-
gular velocity

(
ΩΩΩ

SD
HI ·e2

)
vanishes at the A-L for spherical swim-

mers. So the only source of reorientations at z′ ≈ 1 is rotational
diffusion, i.e., the ‘ΩΩΩRD’ term in eqn. 12. This can cause the non-
ciliated swimmers at the free surface to eventually point down-
ward, after which they get ‘pulled into’ the stable attractor in the
z′ − θ phase plane [see Fig. 4(d)], leading to accumulation at
(z′ ≈ 0,θ = 3π/2). We thus conclude that to accurately estimate
the motility of spherical neutral swimmers near a free surface, it
is crucial to consider the effects of rotary diffusion in conjunc-
tion with hydrodynamic interactions, as the latter alone predict
drastically different spatial distributions. In addition to the afore-
mentioned trends of oscillations and asymmetric distributions, we
note the small accumulation observed at z̄≈ 0 in Figs. 4(a-b), for
swimmers with σ ′ > 0. This accumulation occurs only for those
swimmers whose initial positions lie within z′(0) < z′min ≈ 4a/H,
as is clear from the phase plane in Fig. 4(c). Thus, swimmers
within this region cannot escape into the bulk fluid and end up

‘colliding’ with the liquid-liquid interface. The same effect also
explains the minor peaks around z̄≈ 0,1 in Figs. 3(a-b).

3.2.3 Force quadrupolar interactions

The force quadrupolar interactions reveal two fascinating effects
which highlight the utility of employing singularity models for
microorganisms. The first effect is the preferential accumula-
tion at the free surface for swimmers having larger cell bodies
and shorter flagella (i.e., ν ′ < 0). This is most noticeable for
elongated, short-flagellated swimmers in less viscous films (see
Fig. 6(d); recall that λ = µ2/µ1, and µ1 is the viscosity of the
fluid in which the microorganism swims; so less viscous float-
ing films imply λ > 1). The asymmetry between accumulation
at the free surface versus accumulation at the liquid-liquid inter-
face increases with an increase in both the swimmer elongation
and the viscosity ratio. The second important effect revealed by
considering force quadrupolar hydrodynamic interactions is the
existence of a stable swimming regime near the liquid-liquid in-
terface, for swimmers having long flagella (i.e., for ν ′ > 0). By
stable swimming, we mean a regime wherein the microorganism
swims parallel to the liquid-liquid interface at a fixed separation,
solely due to hydrodynamic effects. It can be most easily seen
in the phase-portraits in Fig. 7(b). The identification of a stable
swimming regime from the plots for F (z̄) requires some com-
ment. The spatial distribution plots in Figs. 6(a-c) show a maxi-
mum in F (z̄) at either z̄≈ 0.02 or at z̄≈ 0.98. These maxima cor-
respond to the microorganism being ≈ 1 body length away from
either interface, owing to a balance between the hydrodynamics-
and motility-based attraction and steric repulsion. It is only for
the plot corresponding to ν ′ > 0 in Fig. 6(d) (blue solid line)
that we see a clear maxima at z̄ ≈ 0.08, a separation where the
microorganism is not in contact with the liquid-liquid interface
and so steric repulsion is absent. Thus, the peak in concentration
at z̄ ≈ 0.08 (for ν ′ > 0,γ = 8,λ = 10) corresponds to a regime of
parallel swimming by long-flagellated microorganisms. Interest-
ingly, this peak corresponding to stable swimming occurs only for
slender swimmers in films that are relatively less viscous (λ > 1).

It is worth noting that numerical simulations of flagellated bac-
teria swimming in fluid films have also indicated that: (i) bacte-
ria with shorter flagella (ν ′ < 0 in our model) almost exclusively
accumulate at the free surface in thick films, and, (ii) bacteria
with longer flagella (ν ′ > 0 in our model) either accumulate at
the free surface, or swim stably at a few body lengths from the
wall (see Figs. 4A and 2 in ref.43). These exact behaviors are
seen in Fig. 6(d) as well, which is intriguing as we manage to
replicate these trends while using a much simpler model for mi-
croorganism locomotion. Moreover, our calculations explain that
an asymmetry in the propulsive forces exerted by bacteria is at
the heart of these varied swimming behaviors. We note here that
even though Fig. 6(d) shows the spatial distribution for viscosity
ratio λ = 10, it is not very different from that for λ → ∞. The dif-
ferences in the accumulation characteristics saturate drastically
for λ > 10 and λ < 0.1, as will be seen shortly in Fig. 8. In
addition to the similarities of stable near surface swimming, we
observe the absence of any stable swimming regime near the free
surface, for any combination of γ, ν ′ (notice that all maxima in
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Fig. 6 Swimmer distribution in the film, F (z̄), as a function of λ and γ, for ν ′ 6= 0,κ ′ = σ ′ = 0. Diamonds (resp. circles) denote maximum values of F
for ν ′ > 0 (resp. ν ′ < 0). The value of the dimensionless rotational diffusivity of the swimmers is Dr/(Vs/H) = 0.2.

F (z̄) near the free surface occur at z̄ ≈ 0.98). Once again this is
in agreement with simulations by Pimponi et al. for flagellated
swimmers31, and by Ishimoto and Gaffney for spheroidal squirm-
ers15. Additionally, our model is able to accurately predict the
stable-swimming-height, say h∗, for the elongated swimmer. In
our simulations, h∗ is the location of the maximum value of F (z̄),
found at z̄ ≈ 4a/H = 0.08 in Fig. 6(d). This value of h∗ corre-
sponds to a few swimmer body lengths, and is quite close to that
obtained from many other numerical studies for flagellated bac-
teria swimming near rigid surfaces11,38,43.

While our multipole model very well predicts several phenom-
ena describing dynamics of bacteria near surfaces, there also exist
some differences between results of the multipole model and nu-
merical simulations considering bacterial geometries; which does
necessitate studies of bacterial propulsion by accounting for de-

tails of their morphology11. One major difference is the nature
of bacterial orientation at the stable swimming swimming height
h∗: our approach predicts stable swimming of bacteria while they
are oriented toward the liquid-liquid interface, but simulations re-
veal that bacteria undergo stable near-surface motion while ori-
ented away from the surface. A second important difference be-
tween the multipole model and detailed simulations is that the
latter reveal the existence of certain initial position-orientation
pairs (z′(0),θ(0)) which lead to bacteria with longer flagella ‘col-
liding’ with nearby rigid walls instead of swimming parallel to
them (see ref.43). We would also like to emphasize that simula-
tions predict ‘loss’ of stable swimming when the confinement is
increased, i.e., film height is reduced, but our analysis becomes
invalid for this particular regime because higher order effects of
‘images of images’ become pronounced for thin films and the ex-
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Fig. 7 z′(t)−θ(t) phase plane for force quadrupole swimmers with (a) ν ′ < 0 corresponding to microorganisms with relatively shorter flagella, and, (b)

ν ′ > 0 corresponding to microorganisms with longer flagella. The contour represents the normalized translational velocity, ż′/
√

θ̇ 2 + ż′2, of the swimmer,
where dots represent time derivatives. In panel (b), the hexagrams at z′ ≈ 0.08,θ ≈ 3π/2 show the fixed points near the liquid-liquid interface. These
correspond to the stable swimming regime where the microorganism swims parallel to the interface. All other multipole coefficients are set to zero and
the viscosity ratio is λ = 10. The phase plane diagrams for λ → ∞ are quite similar, thus highlighting the similarities in swimming behavior between our
reduced-order model and numerical simulations of bacteria with cell body and flagella.

pression for H used in eqn. 10 loses its applicability. Neverthe-
less, one can appreciate how multipole models−beyond the force
dipole approximation−capture the many dynamical features dis-
played by microorganisms swimming near rigid and free surfaces.
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Fig. 8 Summary of boundary accumulation and bulk fraction, as a func-
tion of swimmer elongation (γ) and viscosity ratio (λ ), for force quadrupole
swimmers, i.e., for ν ′ 6= 0,κ ′ = σ ′ = 0. The horizontal axis is logarithmi-
cally spaced (with base 2) until λ = 4, beyond which it is linear.

Fig. 8 summarizes the distribution characteristics of force
quadrupolar swimmers. In Fig. 8(a), for short-flagellated bacte-
ria (ν ′ < 0), we see that there is monotonic reduction in ∆F with

respect to both the viscosity ratio and the swimmer elongation.
In the extreme case of elongated bacteria (γ = 8) residing in films
resting on highly viscous substrates (λ = 10), the number density
at the free surface can be ≈ 80% larger than that at the liquid-
liquid interface. Fig. 8(c), for long-flagellated bacteria (ν ′ > 0),
also shows that ∆F < 0 in much of the parameter space but the
asymmetry in surface accumulation does not vary substantially;
instead there are two regimes of spatial distributions: (i) nearly
symmetric swimmer accumulation characterized by |∆F | ≈ 0.05,
and, (ii) no accumulation at the liquid-liquid interface (z̄≈ 0) due
to stable swimming near it (z̄ ≈ 4a/H), and a more or less con-
stant accumulation at the free surface (z̄≈ 1) with F 1 ≈ 0.2. The
former regime is illustrated by the F (z̄) plots for ν ′ > 0 in Figs.
6(a-c), while the latter in Fig. 6(d). Fig. 8(c) demonstrates a fine
interplay between the aspect ratio of the swimmer and the film’s
viscosity in ensuring stable swimming near the liquid-liquid inter-
face, as shown by the evident demarcation between data points
with |∆F | ≈ 0.05 and those with |∆F | ≈ 0.20.

We end this section by discussing another application of the
force quadrupolar hydrodynamic interactions: their ability to pre-
dict the experimentally observed stable swimming regimes of mi-
croorganisms near surfactant-laden free surfaces32,69. While nu-
merical simulations successfully predict the experimentally ob-
served stable swimming of bacteria and spermatozoa near solid
walls10,11,15, they fail to do so near free surfaces15,31,43. Exper-
iments on the other hand do reveal that both bacteria (ref.32)
and spermatozoa (ref.69) exhibit stable swimming even in the
presence of a free surface. The discrepancy between numer-
ics and experiments is attributed to the presence of surfactant
molecules−generated by the bacteria, or added artificially−on
the air-water interface15. It is well known that hydrodynamic
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interactions of swimmers with surfactant-laden interfaces are
markedly different than those for ‘clean’ interfaces30,32. In fact,
a free surface covered with an incompressible surfactant having
high interfacial viscosity behaves just like a no-slip wall, as far
as hydrodynamic interactions are considered30,70. Thus, even
though we haven’t modeled surfactant-laden interfaces in our
work, our solution in the limit λ → ∞ does correspond to one
special case of a surfactant-laden free surface. Consequently, one
can expect a fixed point near a surfactant-laden free surface in
the z′(t),θ(t) phase plane of swimmers with long flagella (ν ′ > 0),
quite unlike the corresponding swimmer dynamics near a clean
free surface; the latter being the focus of this work. In this way, a
relatively simple multipole expansion up to the quadrupolar term
can explain the observations of stable swimming near surfactant-
laden free surfaces based on hydrodynamics alone.

3.3 Microorganisms in a flowing, floating film

Thus far, we discussed how hydrodynamics dictates the spatial
distribution of model microorganisms within the stagnant fluid
film of Fig. 1, by separately considering the effects of the fun-
damental Stokes flow singularities. However, biofilms also exist
under flowing conditions and exposure to fluid flow has been pro-
posed as a means to either prevent biofilm formation, or erode
biofilms whenever their effects are detrimental. We therefore
move our attention to flowing (floating) films in this sub-section,
to round up a comprehensive analysis of microbial distribution
in interfacial films. The key modifications in the mathemati-
cal model from Section 2 are the addition of an external-flow-
induced translational (u(1)

ext ) and rotational (ΩΩΩext) velocity to the
governing equations for swimmer dynamics, i.e., eqns. 12 change
to:

dy
dt

=Vsp+uHI (y,p)+u(1)
ext (y)+Vst ,

dp = {ΩΩΩHI (y,p)+ΩΩΩext (y,p)+ΩΩΩRD}×p dt,

(18)

where u(1)
ext (y) is a prescribed velocity profile in fluid-1 [hence the

super-script ‘(1)’], evaluated at the position of the microorgan-
ism; and,

ΩΩΩext =
1
2

∇×u(1)
ext (y)+

γ2−1
γ2 +1

{
p×

(
E(1)

ext (y) ·p
)}

. (19)

Physically, the external flow ‘carries’ the swimmers along with it;
and the velocity gradients in the external flow cause the swim-
mers to reorient with a rate that balances their tendency to rotate
with the local vorticity component (the ‘∇×uext ’ term), and to
align with the principal axes of the local extensional flow (the
‘Eext ’ term).

We first summarize the influence of external flow on mi-
croswimmer motion in a fluid film flowing over a no-slip wall.
The external flow in this case is given by the coating-flow profile:

u(1)
ext (x3;λ → ∞) = vmax

x3

H

(
2− x3

H

)
e1, (20)

where vmax is the magnitude of fluid velocity at the free surface,
and is used henceforth as a measure of the external flow strength.

The dynamics can be viewed under two distinct categories: with-
out and with the consideration of hydrodynamic interactions be-
tween swimmers and surfaces. The main result in the first cate-
gory is that background flow alone can result in different accumu-
lation behaviors of microswimmers in thin films50. A strong ex-
ternal flow results in swimmers being carried along the flow while
‘tumbling’ continuously in (near-wall) regions of high shear [red
trajectory is Fig. 9(a)]. But for weak external flows, the swim-
mers spend much more time at the free surface while occasion-
ally ‘dipping’ toward the rigid no-slip surface50 [blue trajectory
is Fig. 9(a)]. The major results in the second category hint at a
competition between reorientation by external flow−abbreviated
herein by Ωmax−and the attractive nature of the force dipolar hy-
drodynamic interactions−abbreviated by ΩHI−resulting in two
kinds of behaviors: (i) ΩHI � Ωmax: the external flow barely
affects the swimmer distribution, which are akin to Fig. 2; (ii)
Ωmax > Ωcr.

max > ΩHI: above a critical flow strength vcr.
max ∼ Ωcr.

maxa,
dipolar swimmers can rotate to get “peeled off" the rigid substrate
with their subsequent behavior dictated by the strength of vmax.
For moderate values of vmax (e.g., vmax = 8Vs), the force dipolar
swimmers detach and eventually swim to the A-L [see green tra-
jectory in Fig. 9(b)]. Larger values of vmax (e.g., vmax = 20Vs) sig-
nificantly delay this rise to the A-L with the swimmers spending
an extended amount of time in the high-shear near-wall regions
of the flow. This can be seen in the very gradual upward drift
for the orange trajectory in the inset of Fig. 9(b). The swim-
mer trajectories corresponding to these behaviors are shown in
Fig. 9. Experimental evidence of fluid shear causing bacterial
‘escape’ from solid surfaces can be found in ref.49, while an in-
depth discussion of the interplay between motility, external flow
and hydrodynamic interactions can be found in refs.47,48,50,71.

In our analysis, we present two important generalizations
of the aforementioned results: (i) we discuss the significant
differences−both qualitative and quantitative−between flow-
induced peeling of spherical pushers and pullers as compared to
elongated ones, and, (ii) we quantify the difference in surface
accumulation, ∆F , of pushers and pullers in a flowing, floating
film as a function of external flow strength, vmax/Vs and viscosity
ratio λ . To begin with, we need to obtain an expression for the
external fluid flow, and for simplicity we consider a unidirectional
flow field. An analytical solution of the form u(x) = uext (x3)e1,
for the configuration in Fig. 1 with boundary conditions 3, 4 and
the ‘decay condition’ u→ 0 as x3 →−∞, is not straightforward.
So we ‘construct’ the following velocity profiles for fluid-1:

u(1)
ext (x3;λ )

vmax
=−

[
x2

3
2H2 − x3

H −
l
λ
(1+ l/2)

]
[

1
2 +

l
λ
(1+ l/2)

] e1, (21)

and, for fluid-2:

u(2)
ext (x3;λ )

vmax
=−

[
x2

3
2H2 − x3

H − l (1+ l/2)
]

λ

[
1
2 +

l
λ
(1+ l/2)

] e1, (22)

where the super-scripts ‘(1)’ and ‘(2)’ correspond to the external
fluid flow in fluids 1 and 2, respectively. l in eqns. 21 and 22 is
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Fig. 9 Swimmer trajectories in a film flowing over a rigid wall, with the
external flow given by eqn. 20. (a) Trajectories without inclusion of hy-
drodynamic interactions (H.I.s), and, (b) trajectories with inclusion of H.I.s
for ‘pushers’ with κ ′ = 6× 10−3. The starting positions and orientations
are: (a) (x′(0),z′(0),θ(0)) = (0,0.1,π +0.1), and, (b) (x′(0),z′(0),θ(0)) =
(0,0.1,π/4). In panel (a), it is important to note the enhanced time spent
at the free surface (resp. near bottom wall) for weaker (resp. stronger)
flows. In panel (b) however, this trend is altered due to the inclusion of
H.I.s. The inset in panel (b) denotes how the swimmers can escape the
rigid wall at z′ = 0 and be trapped at the free surface at z′ = 1, under mod-
erate external flow, vmax = 8Vs. The inset also shows how the swimmers
traverse the film centerline in ‘swinging’ trajectories, under strong flows
vmax = 20Vs.

a ‘decay parameter’ whose value is chosen as l = 5. This means
that the velocity in fluid-2 vanishes at x3 =−5H, i.e., at a distance
from the L-L that is five times the thickness of the film. We will
comment on the dependence of our results on l at the end of this
section. The expression for ΩΩΩext is then given by:

ΩΩΩext =
vmax

H

(
1− z

H
)
[1−Gcos(2θ)][

1+ 2l
λ
(1+ l/2)

] e2, (23)

where G = (γ2− 1)/(γ2 + 1). The velocity profiles given in eqns.
21 and 22 are plotted in Fig. 10 for two values of the viscosity
ratio. Eqn. 21 reduces to its corresponding coating-flow expres-
sion, eqn. 20, upon taking the limit λ → ∞, as shown in Fig. 10.
We now work with the dynamical equations 18 and have a new
dimensionless parameter, vmax/Vs quantifying the strength of the
background flow relative to the swimmer speed in an unbounded,
quiescent fluid. In what follows, we only discuss the effects of ex-
ternal flow on the force dipole swimmers, i.e., on pullers (κ ′ < 0)
and pushers (κ ′ > 0). This allows us to use simple physical ideas
to explain some of the observed behaviors.

3.3.1 Flow-induced peeling for elongated swimmers

Beyond a critical flow, say vcr.
max, spherical dipolar swimmers lo-

cated near a wall and oriented toward it are rotated away from
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Fig. 10 The velocity profiles given by eqns. 21 and 22 for two different
viscosity ratios, λ = 2,10. The thick black line is the coating flow profile,
eqn. 20, obtained for a film flowing over a rigid wall. A reduction in the
shear rate near the L-L with a reduction in λ can be seen clearly.

the wall and get detached to join the bulk flow50. In this sec-
tion, we extend this analysis to the case of spheroidal (elongated)
dipolar swimmers and identify an important role of swimmer ge-
ometry in their tendency to escape surfaces experiencing strong
shear. For the same absolute value of dipole strength, a spheri-
cal puller oriented toward the wall requires a larger external flow
to be peeled off in comparison to a spherical pusher [see Fig.
11(a)]. The equilibrium orientation for a puller trapped at the
wall is θ = 3π/2, and so the external flow must work against the
hydrodynamic reorientation for a puller, and rotate it by a crit-
ical angle θ

pull
c ≈ π/2 before its eventual escape. On the other

hand, the equilibrium orientation for a pusher trapped at the wall
is θ = 0,π. Therefore, even the slightest of external flows causes a
pusher pointing toward the wall to rapidly reorient toward θ = π.
Beyond this, a pusher must rotate by a critical angle θ

push
c before

it overcomes the hydrodynamic attraction toward the wall and
swims away. It can be shown (see ref.50) that for spherical dipo-
lar swimmers, θ

push
c < θ

pull
c , and so spherical pushers pointing to-

ward the wall require slower external flows to be detached than
pullers with the same absolute dipole strength [see Fig. 12(a)].
We have plotted this critical external flow, vcr.

max, as a function of
dipole strength in Fig. 11 along with the results of ref.50 for the
sake of completeness.

The dynamics becomes considerably more complex for elon-
gated pushers and pullers, due to the rate-of-strain in the exter-
nal fluid, i.e., the ‘E(1)

ext term’ in eqns. 23. The critical flow (vcr.
max)

required to detach elongated pullers is now lower than that re-
quired for elongated pushers. While the actual value of vcr.

max stems
from the numerical solution of the non-linear dynamical equa-
tions 18, the reasoning behind this can be physically explained
based on the nature of the stable orientations of elongated push-
ers and pullers, and the strength of flow-induced-rotation at these
stable orientations: Ωext will be strongest for θ = 3π/2 and weak-
est for θ = π. Therefore, even though a spheroidal pusher with
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Fig. 11 (a) The minimum/critical external flow required to detach swim-
mers off a wall, vcr.

max/Vs, as a function of the swimmer dipole strength, κ,
and swimmer elongation γ. Note that vcr.

max is higher for spherical pullers
(γ = 1,κ < 0) than for spherical pushers (γ = 1,κ > 0). vcr.

max is lower for
elongated pullers (γ > 1,κ < 0) than for elongated pushers (γ > 1,κ > 0).
The thick dash-dotted lines represent the analytical estimates for the
spherical swimmer case, borrowed from ref. 50 and the blue circles are
the results of numerical calculations from ref. 50. (b) The critical external
flow, vcr.

max/Vs, required to detach spherical swimmers off the liquid-liquid
interface as a function of the swimmer dipole strength, κ, and the viscos-
ity ratio, λ (which is proportional to the inverse of the film viscosity). In
both the panels, as mentioned before, κ > 0 (resp. κ < 0) denotes push-
ers (resp. pullers). The swimmers are initially located near the wall at
z′(0) = a/H and oriented such that θ(0) = 3π/2.

initial orientation θ(0) = 3π/2 will quickly reorient to θ = π, it
will require a much stronger flow in the latter orientation to over-
come the hydrodynamic pull, uHI · e3, and a stronger hydrody-
namic reorientation tendency owing to elongation. A spheroidal
puller on the other hand faces stronger ‘overturning’ due to ex-
ternal flow (and steric effects) when it is at θ(0) = 3π/2, thus
making its reorientation to θ = π relatively easier and requiring
lower vcr.

max than pushers (for same value of |κ|, of course). These
ideas are plotted in Fig. 11(a) and explained schematically in Fig.
12(b).

Fig. 11(b) shows the effect of the ‘fluidity’ of the interface, i.e.,
the viscosity ratio λ , on the value of vcr.

max; wherein we consider
the background flow in fluid-1 to be given by eqn. 21. We con-
sider only spherical, dipolar swimmers in the analysis, so Ωext is
a constant for swimmers near the wall and reduces with a reduc-
tion in the viscosity ratio (see eqn. 23, but with z ≈ 0,γ = 1). As
expected, larger flows are needed for low values of λ because of
the reduced flow-shear and the concomitant flow-induced rota-

Spherical pusher Spherical puller

𝐮𝑒𝑥𝑡 𝐱

Ω𝑒𝑥𝑡 Ω𝐻𝐼

Ω𝑒𝑥𝑡

Ω𝐻𝐼

𝜃𝑐
𝑝𝑢𝑠ℎ

𝜃𝑐
𝑝𝑢𝑙𝑙

(a)

Spheroidal pusher Spheroidal puller

𝐮𝑒𝑥𝑡 𝐱

lower Ω𝑒𝑥𝑡

higher Ω𝑒𝑥𝑡
Ω𝐻𝐼

Ω𝐻𝐼

(b)

Fig. 12 (a) Schematic depiction of why spherical pushers can escape
from a wall at lower values of the critical external flow, vcr.

max. The dot-
ted arrow represents the orientation at which the pusher/puller can swim
away from the wall and escape. The critical angle, θc, by which a spher-
ical dipolar swimmer must turn (before it overcomes the wall’s hydrody-
namic attraction and swims away) is lower for pushers than for pullers.
(b) Schematic depiction of why elongated pullers can escape from a wall
at lower values of the critical external flow, vcr.

max. The angular velocity due
to the external flow, Ωext , is largest when the swimmer is oriented toward
the wall, and the angular velocity due to the hydrodynamic interactions,
ΩHI , is same for any perturbations to the stable swimmer orientation, i.e.,
θ = 3π/2 (resp. θ = π) for a puller (resp. pusher). In this way, pullers face
a greater ‘overturning’ effect due to the external flow.

tion (see right panel of Fig. 10). In fact, from the nature of u(1)
ext

in eqn. 21 we can understand that the plots for vcr.
max/(Λ0Vs) vs.

κ, where Λ0 =
{

1+(l2 +2l)/λ
}

will all collapse onto the curve
corresponding to λ → ∞,γ = 1. One implication of the above dis-
cussion is that external flow might not act as an effective means
for the removal of biofilms from a liquid-liquid interface, as com-
pared to its efficacy in biofilm erosion off rigid surfaces. Finally
we comment on the effect of the parameter l, which signifies a di-
mensionless ‘decay length’ for the flow field in fluid-2. As evident
from eqn. 23, larger values of l result in lower external-flow-
induced shear and thus a reduced ability of the external flow to
peel swimmers off the L-L, to an extent that for l > 10 the external
shear becomes so weak that the swimmer detachment from the L-
L doesn’t occur even for the largest values of vmax/Vs considered
in this study.

3.3.2 Spatial distribution of swimmers in a flowing, floating
film

Now that we have ascertained the deterministic behavior of force
dipolar swimmers in floating, flowing films, we move toward
quantifying the swimmer distributions stemming from the ran-
domness in their swimming orientations. We are majorly con-
cerned with the difference in swimmer accumulation at the two
interfaces: the quantity ∆F = F 0 −F 1 defined via eqns. 16.
More specifically, we investigate how the hydrodynamic flow sig-
nature of a swimmer−which could be a pusher or a puller−can
affect its statistics in a flowing film. We employ the probabilistic
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simulation technique described in the beginning of Section 3 but
with the more general eqns. 18, including all physical effects that
can influence a microorganism’s trajectory.
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Fig. 13 Contours showing difference between swimmers ‘trapped’ at L-L
and A-L for (a) elongated pushers, and, (b) elongated pullers, with γ = 3.
The other parameters are: |κ ′|= 0.02,σ ′ = ν ′ = 0, Dr = 0.2Vs/H.

Figs. 13(a) and (b) reveal a key difference in the film distri-
bution of elongated pushers and pullers. For low shear at the
liquid-liquid interface (low values vmax/Vs and/or λ) there is a
marginally greater accumulation at z′ ≈ 0 for pushers (0 < ∆F <

0.03), while for pullers the surface accumulation becomes almost
symmetric (10−4 < |∆F | < 10−3). Thus for low shear, pushers
show a modest preference toward the L-L, but pullers do not dis-
play a strong tendency to accumulate at either interface. As the
external flow increases, both pushers and pullers get peeled off
the L-L and accumulate more at the A-L, i.e., ∆F becomes in-
creasingly negative. As the viscosity ratio λ increases, preferen-
tial free-surface accumulation occurs for progressively decreasing
values of vmax/Vs, owing to stronger shear at the liquid-liquid in-
terface for higher λ values [see eqn. 23, also Fig. 11(b)]. Another
important difference between the behavior of pushers and pullers
is the extent to which they escape to the free surface, as seen by
the ∆F values in Figs. 13(a) and (b), respectively. Once swimmer
escape from the liquid-liquid interface occurs, the value of ∆F is
less negative for pushers than for pullers. This is simply a rein-
terpretation of the higher values of vcr.

max/Vs for elongated pushers
[see Fig. 11(a)]: all other parameters being fixed, external flow
of a prescribed strength is always less likely to aid in the escape of
an elongated pusher than an elongated puller. A final interesting
observation that we make, concerning Fig. 13(a), is the change
in the sign of ∆F from negative to positive beyond a certain value

of vmax/Vs, seen most clearly for λ = 50. This is a reflection of
the ‘tumbling’ effect that strong external flow has on swimmers,
as shown in Fig. 9(b), which results in a high-shear-induced resi-
dence of swimmers near the liquid-liquid interface. Note that this
effect occurs more easily for elongated pushers than it does for
elongated pullers. For elongated pullers, ∆F becomes less neg-
ative for high values of vmax/Vs and λ , but it does not become
positive like it does for elongated pushers.

4 Discussion and Conclusion
The objective of the current work was to investigate how motil-
ity and hydrodynamic interactions influence the spatial distribu-
tion of microorganisms in floating fluid films. We approached
this problem by utilizing a general multipole-expansion-based
singularity model for the swimming microorganisms and quan-
tifying their hydrodynamic interactions with the two interfaces
via the ‘method of images’. We then performed probabilistic
simulations−with the stochasticity introduced by the swimmers’
rotational diffusion−to obtain statistically significant distribu-
tions of the mean swimmer position across the fluid film. The
influence of each multipole singularity was explored in isolation
and a number of interesting swimming behaviors were observed.
An important aspect of our analysis was the generalization of past
studies on near-surface swimming. Our simple model yielded
many swimming behaviors that were similar to those seen in more
complex numerical simulations and in experiments. This high-
lighted the value of performing a far-field, multipole-expansion
analysis of swimming motion. The main results of our work are
highlighted in Table 2, and shown pictorially in Fig. 14.

We emphasize here that the result about stable swimming near
surfacant-laden free surfaces (for quadrupolar swimmers with
ν > 0) did not require an extra set of calculations, and that
it can be based solely on our calculations for λ >> 1 in Sec-
tion 3.2.3, and the well-known similarity between incompress-
ible surfactant-laden interfaces and rigid surfaces30,70,72. It is
also important to note that even though we studied each singu-
larity in isolation, the behaviors of near-surface stable swimming
and preferential accumulation at the free surface (described in
Section 3.2.3) are robust to the inclusion of all singularities con-
sidered, albeit for certain sets of relative strengths of the sin-
gularities. As long as the force quadrupole strength is assumed
to be significant, our model gives good qualitative, and some-
what quantitative, agreement with many existing simulations
of near-wall/near-free-surface swimming of helically flagellated
swimmers11,31,38,43. To the best of our knowledge, existing nu-
merical studies of microswimmer dynamics near non-deforming,
clean free surfaces have universally predicted the absence of a
stable/parallel swimming regime15,31. As a reconciliation with
experimental observations, surfactant-induced hydrodynamic ef-
fects have been proposed (see ref.15) as one explanation of the
observed parallel swimming regime of flagellated bacteria near
free surfaces27,32. If the surfactant effects are modelled as that
due to an incompressible surfactant having large interfacial vis-
cosity, then the force quadrupole model can indeed yield a stable
swimming regime near surfactant-laden free surfaces.

While we performed studies near planar interfaces and com-
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Table 2 A summary of the important behaviors elicited by various far-field representations of a microorganism confined in a floating fluid film. The
pictorial/schematic representation of these results is shown in Fig. 14.

Multipole Sign Physical meaning Key Behavior

Force dipole (κ)
>0

Propulsion generated behind the
cell body, a ‘pusher’

Accumulation at both A-L and L-L, but less tightly than pullers

<0
Propulsion generated in front of the
cell body, a ‘puller’

Accumulation at both A-L and L-L, more tightly than pushers

Source dipole (σ)
>0 Finite sized ciliated microorganism

Preferential accumulation at A-L, ‘entrapment’ near L-L reduces
with an increase in the viscosity ratio

<0 Finite sized flagellated microorganism
Accumulation at L-L (resp. L-L and A-L) when considering
(resp. neglecting) rotary diffusion

Force quadrupole (ν)
>0

Relatively longer flagellum (compared
to cell body)

Stable swimming near the L-L when the viscosity ratio, λ >1;
stable swimming near surfactant-laden free surfaces

<0
Relatively shorter flagellum (compared
to cell body)

Preferential accumulation at A-L

pared them to numerical simulations under similar situations, we
can also point toward the generality of near-surface motion of
bacteria around spherical obstacles. The most important one be-
ing that ‘long-tailed bacteria’ get trapped in hydrodynamic bound
states around neutrally buoyant, spherical particles; and ‘short-
tailed bacteria’ get scattered upon encountering the same spher-
ical particles73. If the spherical particle is large enough in com-
parison to the swimmer, then, to a first approximation, the anal-
ysis of force quadrupolar interactions in Section 3 is able to pre-
dict these behaviors as well. We can even go a step further and
hypothesize the behavior of flagellated swimmers near neutrally
buoyant surfactan-laden drops. As an incompressible surfactant’s
ability to cause liquid-liquid interfaces to behave like rigid walls
is independent of the viscosity ratio across the interface, we can
make a very general observation: as long as a drop is covered by
an incompressible surfactant with large enough interfacial viscos-
ity, it will act as a passive hydrodynamic trap for bacteria with
long polar flagella, i.e., they can swim along the drop’s surface
for substantial times. This can prove to be a particularly useful
observation as it will provide an interesting incentive for the use
of dispersant in the aftermath of oil-spills, with implications in
bacterial bioremediation of heavy oil drops.

The primary motivation of this manuscript was to study mi-
croorganism motion in biofilms floating over a base fluid. The
spatial distributions discussed in Figs. 3, 4, 6 and 15 tell us how
hydrodynamic interactions can affect bacterial concentration in
different regions of a film and thus either aid in, or desist from
colony formation. However, quite often biofilm formation is ac-
companied by the bacteria secreting surfactant and other poly-
meric substances which alter physico-chemistry of their surround-
ings, most importantly the bulk and interfacial rheology of the
fluids involved. In this study, as a first step, we treated the fluids
to be Newtonian and the interfaces to be clean but useful exten-
sions can be pursued within the current framework. For example,
the effect of interface rheology and more complicated boundary
conditions can be probed via the Fourier-transform-based analy-

sis detailed in refs.30,74,75. A useful study in this regard could
be drawing equivalence between surfactant-laden interfaces and
clean interfaces via identification of ‘effective viscosity ratios’ of
the latter, that would help predict swimmer behavior near com-
plex boundaries76. The effects of the bulk fluid’s rheology−at
least in the weakly non-Newtonian limit−can also be accounted
for rather straightforwardly as explained in refs.68,77. A sec-
ond level of functional detail that can be added to our analy-
sis is the inclusion of active behavior by microorganisms. E.g.,
many biofilms form over nutrient-emanating substrates and thus
chemotaxis−directed motion in search of nutrition78,79−is ex-
pected to play an important role in biofilm incipience (see for
example, refs.80,81). Chemotaxis could lead bacteria toward the
liquid-liquid interface if fluid-2 were to be a nutrient source, or
toward the free surface in case of, say, aerotaxis (e.g., for B. sub-
tilis)82,83. Yet another form of directed motion, more relevant for
algal biofilms, could be positive (resp. negative) phototaxis to-
ward (resp. away from) light sources84,85. The multipole repre-
sentation would allow one to model a variety of microorganisms
(by merely tweaking the multipole strengths in eqns. 9; see Ta-
ble 1) and the incorporation of active effects would be relatively
straightforward in our individual-based model86. It would then
be an interesting endeavour to see how the more non-trivial hy-
drodynamic interactions listed in this work interact and compete
with bacterial chemotaxis or algal phototaxis to dictate coloniza-
tion of hot-spots in the numerous scenarios involving films of mi-
croorganisms at interfaces51,57.
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Behavioral summary
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Fig. 14 A schematic of the main results in our problem. A− L (resp.
L−L) refers to the air-liquid (liquid-liquid) interface. The morphology of
the short-flagellated swimmers resembles the bacterium V. cholera, while
that of the long-flagellated swimmers resembles the bacterium P. aerugi-
nosa. These geometries were obtained from ref. 67. The swimming direc-
tion is denoted by the thick blue arrows. Notice that the short-flagellated
swimmers (ν ′ < 0) accumulate almost exclusively at the A−L; while the
long-flagellated swimmers (ν ′ > 0) accumulate near the L−L at a separa-
tion h∗. The difference between pushers (κ ′ > 0) and pullers (κ ′ < 0) can
be understood by noting the flagellar placement relative to the cell body
and the direction of swimming, shown by the blue arrows. lpull < lpush just
denotes that pullers accumulate more tightly near any interface, as com-
pared to pushers. For clarity of the figure, pusher/puller accumulation is
shown only near the L−L.

1604423).

Appendix

Stokeslet in a floating film: details

A formal solution procedure for our model of swimmer dynam-
ics in a floating film begins with the fundamental solution to the
Stokes equations (in fluid-1) perturbed by a point force (called a
Stokeslet) at a prescribed position y:

∇ ·u(1) = 0, (24a)

∇ ·T(1)+ fδ (x−y) = 0, (24b)

u(1) (|x| → ∞) = 0, (24c)

where, T(1) is the stress tensor in a Newtonian fluid, given by,

T(1) =−P(1)I+µ1

(
∇u(1)+∇u(1),T

)
, (25)

with P(1) being the fluid pressure, I the identity matrix, the super-
script ‘T’ denoting transposition and µ1 is the fluid viscosity. The
linearity of the Stokes flow equations allow us to write the solu-
tion of eqn. 24 as:

u(1) (x) = G Os (x−y) · f, (26)

where G Os is the free-space Green’s function for the problem, the
well-known Oseen tensor,

G Os (x−y) =
1

8πµ1

(
I

|x−y|
+

(x−y)(x−y)
|x−y|3

)
. (27)

Now, if instead of being in an unbounded homogeneous fluid-1,
the point-force is exerted at a distance z from fluid-2, then one
must also solve for the Stoke flow equations in fluid-2 (without
the forcing term), subject to the boundary conditions of continu-
ity of velocity and shear stress at the liquid-liquid interface (L-
L), as given in eqns. 3. This problem (eqns. 24(a,b), 25 and
3) was solved by Aderogba and Blake in ref.62. u(1) (x) can be
represented as a superposition of the original force singularity
with a system of ‘image singularities’ placed at the ‘image point’
y∗ = y−2(e3 ·y)e3 (see Fig. 1). One can write

u(1) (x) = G Os (x−y) · f+G LL
1 (x,y,y∗;λ ) · f, (28)

with,

G LL
1 (x,y,y∗;λ ) =−Nλ ·G Os (x−y∗)

+
{

2Λ1z(e3 ·∇0)+Λ1z2M ·∇2
0

}
G Os (x−y∗) ,

(29)

where ∇0 ≡ ∂/∂y, Nλ ≡ diag.(Λ2,Λ2,1), with Λ2 = (λ − 1)/(λ +

1); Λ1 = λ/(λ + 1); and, M ≡ diag.(1,1,−1). Similarly, the flow-
field in fluid-2 can also be represented as contributions from sin-
gularities placed at y, as u(2) (x) = G LL

2 (x,y;λ ) · f, with,

G LL
2 (x,y;λ ) =

2
1+λ

R ·G Os (x−y)+

2
1+λ

{
z(e3 ·∇0)−

z2

2
∇

2
0

}
G Os (x−y) ,

(30)

where R≡ diag.(1,1,0). Therefore, flow-fields given by u(1) (x) =(
G Os +G LL

1

)
· f and u(2) (x) = G LL

2 · f will satisfy the Stokes equa-

tions and the boundary conditions in eqns. 3.
One special case of the aforementioned discussion is when the

point-force acts near an air-liquid interface (A-L). Consider now
the presence of an A-L at x3 = H, which requires u(1) (x) to satisfy
the boundary conditions given in eqns. 4, indicative of vanishing
normal velocity and shear stresses. The solution to eqns. 24(a,b),
25 and 4 is obtained easily by a slight adjustment and reinter-
pretation of eqns. 28 and 29. We just need to substitute λ = 0
in eqn. 29 and note that now the image singularities must lie at
y∗∗ = y+2{H− (e3 ·y)}e3 (see Fig. 1). This yields

u(1) (x) = G Os (x−y) · f+G AL
1 (x,y,y∗∗) · f, (31)

with,

G AL
1 (x,y,y∗∗) = M ·G Os (x−y∗∗) , (32)

The solutions discussed thus far−for a point force near a L-L or
an A-L−are exact in terms of satisfying the governing equations
and the appropriate boundary conditions. However, errors are
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introduced when both these interfaces exist, the configuration of
interest in this work. The errors stem from the fact that the fluid
velocity in eqn. 28 does not satisfy the boundary conditions given
in eqn. 4, and the fluid velocity in eqn. 31 does not satisfy the
boundary conditions given in eqn. 3. Therefore, an accurate cal-
culation of u(1) (x) for a Stokeslet under confinement by two in-
terfaces would require us to obtain successive ‘images of images’
an infinite number of times42,59. However, for the evaluation of a
microorganism’s hydrodynamically induced translational and ro-
tational velocities, we can neglect the effect of the higher order
images as a first approximation, due to reasons mentioned in Sec-
tion 2.1.

Hydrodynamically induced linear and angular velocities

The swimmer’s translational velocities, for each of the singulari-
ties considered in this work, are:

uD
HI · e3

Vs
=− κ ′ (3λ +2)

8(λ +1)z′2

(
1−3p2

3

)

+
κ ′

4(z′−1)2

(
1−3p2

3

)
,

(33)

uSD
HI · e3

Vs
=− σ ′ (4λ +1)

4(λ +1)z′3
p3 +

σ ′

4(z′−1)3 p3, (34)

and,

uQ
HI · e3

Vs
=

−ν ′

4(λ +1)z′3

{
(9λ +6) p3

2 +(−7λ −4)
}

p3

+
ν ′

2(z′−1)3

(
3p3

2−2
)

p3;

(35)

while, the swimmer’s rotational velocities are:

ΩΩΩ
D
HI · e2

Vs/H
=

3κ ′

8z′3

{
1+G

λ +(λ +2) p2
3

2(λ +1)

}
p1 p3

− 3κ ′

8(z′−1)3

(
1+Gp2

3

)
,

(36)

ΩΩΩ
SD
HI · e2

Vs/H
=− 3σ ′

8(λ +1)z′4

{
λ +

G
2
(3λ +1)

(
1+ p2

3

)}
p1

+G
3σ ′

16(z′−1)4

(
1+ p2

3

)
p1,

(37)

and,

ΩΩΩ
Q
HI · e2

Vs/H
=

−3ν ′

32(λ +1)z′4

[
{12λ +10} p2

3−4λ −2
]

p1

−3Gν ′

32(λ +1)z′4

[
3{λ +2} p4

3−2p2
3−{11λ +4}

]
p1

+
3ν ′

16(z′−1)4

[{
5p2

3−1
}
+G

{
3p4

3− p2
3−2

}]
p1

(38)

The super-scripts ‘D’, ‘SD’ and ‘Q’ in the above equations refer to
the force dipole, source dipole and the force quadrupole, respec-
tively. Note that uSD

HI · e3 in eqn. 34 is proportional to p3, just like
the swimmer’s self-propulsion in the e3 direction, Vsp ·e3. This al-
lows a source dipolar swimmer’s vertical velocity

(
Vsp+uSD

HI
)
·e3

to vanish close to the L-L at a distance z′min (see eqn. 17), thus
resulting in the ‘entrapment’ near the L-L as shown in Figs. 4 and
17. As a check for our derivations, we note that taking the limit
λ → ∞ in the expressions in eqns. 33 to 38 reduces them to those
derived in ref.50 for the case of a liquid film (wall at z′ = 0, free
surface at z′ = 1). For the force quadrupolar expressions, uQ

HI and
ΩΩΩ

Q
HI , one must multiply our derivations by −1/2, because of a dif-

ferent definition of uQ (see eqn. 9c), which has also been used in
ref.14.

Accumulation characteristics: additional information

In Section 3.2.1 we had mentioned that pullers accumulate more
tightly near both interfaces, irrespective of the values of swimmer
elongations, γ, and viscosity ratios, λ . This is shown in Fig. 15
for a further set of values. In addition, we had mentioned that
dipolar swimmers do not show a strong preference toward any
one interface. Fig. 16 quantifies this statement, showing that
the difference in swimmer accumulation at the two interfaces,
∆F = F 0−F 1 (see eqn. 16), is very small for both pushers and
pullers, over a range of values of γ and λ . Figs. 4(a-b) in Section
3.2.2 show the spatial distribution of source dipolar swimmers. In
particular, we saw the existence of local maxima near the L-L, at a
separation of z′min given by eqn. 17. This corresponds to the small
fraction (< 10%) of swimmers that get trapped at this height. Fig.
17 shows how the value of this maxima reduces as the viscosity
ratio, λ , increases. A comparison with the deterministic trajec-
tories of Fig. 5 shows a correlation between a reduction in the
swimmers’ retention time and a reduction in the local maximum
values of F (z̄), with an increase in the viscosity ratio.
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The distribution of microorganisms within a film floating over an underlying liquid depends on 
their morphology and the viscosity ratio across the liquid-liquid interface.
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