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Jammed packings of 3D superellipsoids with tunable
packing fraction, coordination number, and ordering†

Ye Yuan,a,b Kyle VanderWerf,c Mark D. Shattuck,d and Corey S. O’Hern∗b,c,e, f

We carry out numerical studies of static packings of frictionless superellipsoidal particles in three
spatial dimensions. We consider more than 200 different particle shapes by varying the three
shape parameters that define superellipsoids. We characterize the structural and mechanical
properties of both disordered and ordered packings using two packing-generation protocols. We
perform athermal quasi-static compression simulations starting from either random, dilute config-
urations (Protocol 1) or thermalized, dense configurations (Protocol 2), which allows us to tune
the orientational order of the packings. In general, we find that superellipsoid packings are hypo-
static, with coordination number zJ < ziso, where ziso = 2d f and d f = 5 or 6 depending on whether
the particles are axi-symmetric or not. Over the full range of orientational order, we find that the
number of quartic modes of the dynamical matrix for the packings always matches the number of
missing contacts relative to the isostatic value. This result suggests that there are no mechanically
redundant contacts for ordered, yet hypostatic packings of superellipsoidal particles. Additionally,
we find that the packing fraction at jamming onset for disordered packings of superellipsoidal de-
pends on at least two particle shape parameters, e.g. the asphericity A and reduced aspect ratio
β of the particles.

1 Introduction
Athermal particulate materials, such as granular media, foams,
and emulsion droplets, typically jam, or become solid-like with a
non-zero static shear modulus when they are compressed to suf-
ficiently large packing fractions.1–4 Unwanted jamming occurs in
many industrial processes, such as clogging in hopper flows,5 and
controlled jamming and unjamming has been used in robotics to
grip soft, sharp, or fragile objects.6 Further, unjamming in geo-
logical systems, such as landslides and earthquakes, causes sig-
nificant financial and human loss.

Many prior studies have focused on jamming in model sys-
tems composed of frictionless, spherical particles. Disordered
packings of frictionless, monodisperse spherical particles are iso-
static at jamming onset with zJ = ziso contacts per particle, where
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ziso = 2d f = 6 and d f = 3 is the number of translational degrees
of freedom for spheres, and with packing fraction at jamming on-
set φJ ≈ 0.64.1,2,7,8 Previous work has characterized the critical
scaling of the structural and mechanical properties1,9–11 and the
anomalous vibrational density of states12,13 of jammed packings
of spherical particles.4

However, most athermal, particulate systems in industrial
processes and in nature are composed of highly non-spherical
particles.14,15 In general, disordered jammed packings of non-
spherical particles are hypostatic with coordination number zJ <

ziso, where ziso = 10 or 12 for axisymmetric and non-axisymmetric
particles, respectively.16–19 Thus, disordered jammed packings
can possess a range of coordination numbers, 6 ≤ zJ ≤ 12, and
packing fractions at jamming onset that depend on the shape
of the constituent particles. In two spatial dimensions (2D), we
showed recently that disordered packings generated via athermal,
quasistatic compression for a wide variety of non-spherical shapes
are mechanically stable, despite the fact that zJ < ziso.20,21 The
mechanical stability of hypostatic packings with N nonspherical
particles in d spatial dimensions can be assessed by calculating the
eigenvalue spectrum of the dynamical matrix for each packing.
Hypostatic packings are mechanically stable because they possess
Nd f − d positive eigenvalues (in periodic boundary conditions),
which matches the number of nontrivial degrees of freedom in
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the system. Some of the eigenvalues correspond to “quadratic”
modes and the others correspond to “quartic” modes. For a given
quadratic mode, when the packing is perturbed by displacing the
particles by an amplitude δ along this eigenmode of the dynam-
ical matrix, the total potential energy U increases by δ 2. In con-
trast, at the onset of jamming where U → 0, U increases by δ 4

when the system is perturbed along a quartic mode.20,22 We find
that the number of quadratic modes is N2 =NzJ/2 and the number
of missing contacts below the isostatic value, Nd f −d+1, matches
the number of quartic modes of the dynamical matrix. This result
indicates that all of the degrees of freedom in the hypostatic pack-
ings are indeed constrained. From the perspective of the potential
energy landscape, a mechanically stable hypostatic packing corre-
sponds to a local minimum, but near the minimum, the directions
along the quartic modes are much flatter than along the quadratic
modes. Moreover, we have shown in prior work that hypostatic
packings of ellipses and ellipsoids possess nonzero shear moduli,
but the scaling of the shear moduli with pressure is different from
that observed for sphere packings.20,23

Given that jammed packings of non-spherical particles can oc-
cur over a wide range of coordination numbers and packing frac-
tions, is it possible to a priori determine whether a system is
jammed if we are only given its z and φ? For disordered pack-
ings of monodisperse spheres, we know that if φ > 0.64 and z > 6,
the packing is jammed. For disordered packings of convex-shaped
particles in 2D, we found that the packing fraction at jamming
onset can be collapsed approximately onto a master curve that
depends only on the shape parameter A = p2/4πa, where p is the
perimeter and a is the area of the particle.21 In 2D, φJ ≈ 0.84 for
A = 1, φJ increases with A, reaching a peak near A≈ 1.1, and then
decreases continuously with further increases in A. Results for φJ

have also been reported for packings of nonspherical particles in
3D, but separately for each family of shapes, e.g., ellipsoids,17

spherocylinders,18,24,25 and spheropolyhedra.26 Here, we will
address the question of whether there is a general relationship
between the packing fraction at jamming onset and one or more
particle shape parameters in packings of non-spherical particles
in 3D.

Further, few studies have attempted to connect the coordina-
tion number to mechanical stability for ordered packings of non-
spherical particles,27,28 despite the fact that packings of monodis-
perse particles that deviate by less than 20% from perfect spheric-
ity can possess significant translational and orientational order. In
particular, does the relationship between the number of missing
contacts below the isostatic value and number of quartic modes
hold for ordered or partially ordered packings of non-spherical
particles? One might expect that some of the “extra” contacts that
occur in ordered packings may be mechanically redundant,29 and
therefore will not contribute to the packing’s stability, resulting
in a mismatch between the number of missing contacts and the
number of quartic modes.

We investigate these questions by generating static packings
of monodisperse, frictionless, superellipsoidal-shaped particles in
3D using numerical simulations.30–33 We consider more than 200
different particle shapes by changing the shape parameters that
define superellipsoids. For each packing, we determine φJ , zJ , the

orientational order, and the eigenvalues and eigenmodes of the
dynamical matrix. We carry out two packing-generation proto-
cols. In Protocol 1, we jam the packing via athermal quasistatic
compression,1,22,34,35 starting from a random, dilute initial con-
figuration of particles. In Protocol 2, we thermalize an unjammed
configuration at an intermediate packing fraction before apply-
ing the same athermal quasistatic compression protocol (Protocol
1). We find that Protocol 1 generates globally disordered pack-
ings with a narrow distribution of jammed packing fractions and
coordination numbers. Protocol 2, on the other hand, is able to
generate packings of superellipsoidal particles with a wide range
of orientational order.

We describe several key results. First, for disordered packings
of superellipsoidal particles in 3D generated via Protocol 1, we
show that the jammed packing fraction depends strongly on at
least two shape parameters, instead of only one as we found for
2D.21 In addition, we find that zJ , even in ordered packings of su-
perellipsoids, determines mechanical stability. In particular, the
number of quartic eigenmodes of the dynamical matrix matches
the number of missing contacts relative to the isostatic value Niso

c
in ordered superellipsoid packings, as well as in disordered pack-
ings.

The article is divided into several sections. In Sec. 2, we re-
view the definition of superellipsoids, describe the two packing-
generation protocols we implement, and define the orientational
order parameters we use to measure the degree of order in
jammed packings. In Sec. 3, we present our key results. Finally, in
Section 4, we summarize our results and discuss directions for fu-
ture research. We also include three Appendices. In Appendix A,
we show that we widely sample the two shape parameters that
characterize the shape of superellipsoids. In Appendix B, we ex-
amine the local orientational order in superellipsoid packings. Fi-
nally, in Appendix C, we show the correlation between the av-
erage curvature of the particles at interparticle contacts and the
coordination number for packings of superellipsoids.

2 Methods
In this section, we begin by defining the shape parameters for su-
perellipsoids, and explain the wide variation in particle shape that
is possible by tuning these parameters. Next, we describe our two
protocols, the athermal Protocol 1, and the thermal Protocol 2,
which we use to generate disordered and ordered jammed pack-
ings of these shapes, respectively. We then discuss calculations of
the eigenvalues and eigenmodes of the dynamical matrix for su-
perellipsoid packings to measure their mechanical response. Fi-
nally, we define the two order parameters that we use to quantify
the orientational order in the packings.

2.1 Model of superellipsoidal particles

The surface of a superellipsodal particle located at the origin is
defined by

|x/a|2p + |y/b|2p + |z/c|2p = 1, (1)

where a, b, and c (a ≤ b ≤ c) are the lengths of the semi-major
axes, and p is the deformation parameter.19,36 For superellip-
soids, there are three independent parameters that control the
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Fig. 1 Illustration of the simulation model for two contacting superellip-
soids i and j. n̂i j is the unit normal to the tangent plane at the point of
contact (pointing toward particle i), ~ri j is the center-to-center vector be-
tween particles i and j, and ~li j is the vector from the center of particle i
to the point of contact between particles i and j.

particle shape, i.e., p and the two aspect ratios w1 = a/b and
w2 = c/b. If a = b, there is only one relevant aspect ratio w = c/a
and if b = c, w = a/c. Note that the particle shape reduces to a
superball when a = b = c. By tuning p, we can vary the superel-
lipsoid shape from ellipsoidal (p = 1) to octahedral (p < 1) and
cuboidal (p > 1). We focus our studies on five specific p-values:
p = 0.75, 0.85, 1, 1.5, and 2.

Instead of p and the aspect ratios, w1 and w2, the shape of
superellipsoids can also be characterized by p, the reduced aspect
ratio β = ac/b2, and asphericity,

A = 1− (4π)1/3(3Vp)
2/3/Ap, (2)

where Vp and Ap give the particle volume and surface area.37,38

The shape parameter β allows us to distinguish “flattened” (β <

1) versus “elongated” (β > 1) shapes. The shape with β = 1 is
termed a self-dual ellipsoid, which shows anomalous properties
in disordered17 and dense39 packings. The asphericity satisfies
0 < A < 1, and A = 0 for spheres. For the p values studied,
the superellipsoidal particle shape in the β -A plane is roughly
bounded by the values for prolate βmax(A ) and oblate ellipsoids
βmin(A ) as shown in Fig. 12 in Appendix A. We focus on A -values
from 0 to ∼ 0.35 and sample βmin(A )< β < βmax(A ).

We consider pairwise, purely repulsive interactions be-
tween superellipsoids using the Perram and Wertheim formula-
tion.17,22,36,40,41. For each pair of overlapping superellipsoids i
and j, we calculate the volume scaling factor ηi j that brings the
two superellipsoids to exact tangency. The potential energy for
particles i and j is then defined by Ui j = εζ 2

i j/2, where ε is the
characteristic energy scale, ζi j = η2

i j − 1, and ηi j ≤ 1. The total
potential energy is given by U = ∑i> j Ui j. The repulsive force on
particle i from j, ~fi j = ~∇iU , is given by

~fi j = 2εζi jηi jn̂i j/(~ri j · n̂i j) (3)

where n̂i j is the unit normal of the tangent plane between just-
touching superellipsoids pointing toward i and ~ri j is the center-
to-center vector pointing from superellipsoid j to i. The torque~τi j

Fig. 2 Examples of nine static packings of superellipsoid particles with
different shapes. The particle shape is characterized by (p,w1,w2):
(a) oblate ellipsoid (1,0.3,1), (b) prolate ellipsoid (1,1,3), (c) self-dual
ellipsoid (1,0.8,1.25), (d) general ellipsoid (1,0.6,2.36), (e) superball
(2,1,1), and four superellipsoids with (f) (0.75,0.4,1), (g) (0.85,0.7,2), (h)
(1.5,0.5,1.5), and (i) (2,1,1.5).

on particle i from j is calculated using

~τi j =~li j×~fi j, (4)

where ~li j is the vector from the center of particle i to the point
of adjacency between superellipsoids i and j. See Fig. 1 for an
illustration of n̂i j, ~ri j, and ~li j for two contacting superellipsoids.
We will measure lengths, energies, and forces in terms of a, ε,
and ε/a.

2.2 Packing-generation protocols
We generate jammed packings of N = 400 frictionless, monodis-
perse superellipsoidal particles in cubic simulation cells with pe-
riodic boundary conditions using two compression protocols: 1)
an athermal protocol and 2) a thermal protocol. For Protocol 1,
we first initialize an overlap-free, dilute configuration of parti-
cles with random positions and orientations. We then compress
the configuration in small increments of packing fraction, ∆φ =

10−3, minimizing the total potential energy U using the L-BFGS
method42 after each compression step. We terminate the en-
ergy minimization procedure at each compression step when the
inter-particle overlaps are removed, achieving U/N <Utol, where
Utol = 10−10. We stop compressing the system when U/N > Utol

and concurrently the average normalized force on a particle is
below a small threshold, 〈|∑ j ~fi j|〉/〈 fi j〉< ∆, where ∆ = 10−4. We
then measure the packing fraction φJ , coordination number zJ ,
and other quantities of the first jammed packing with U/N >Utol

that is closest to Utol. We study the number of contacts in static
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Fig. 3 (a) The packing fraction at jamming onset φJ for packings of N =

400 prolate (a = b) or oblate (b = c) spheroids generated using Protocol
1 versus the aspect ratio w (open squares), as well φJ for packings of
spheroids from recent studies by Donev, et al. 17 (open circles). (b) φJ for
packings of superballs (a = b = c) generated using Protocol 1 versus the
deformation parameter p, as well as φJ for packings of superballs from
Jiao, et al. 19

packings of nonspherical particles with force and torque balance
on all non-rattler particles. We identify rattler particles as those
with less than 4 interparticle contacts. Contacts are defined as
nonzero overlaps between the two particles. The coordination
number is defined as zJ = 2Nc/(N−Nr), where Nc is the total num-
ber of contacts (excluding contacts from rattler particles) and Nr

is the number of rattler particles. We find that the results pre-
sented here do not depend on the thresholds ∆ and Utol. Ex-
amples of nine static packings of superellipsoids with different
shapes generated via Protocol 1 are shown in Fig. 2.

For Protocol 2, we first thermalize unjammed configurations
at intermediate packing fractions φi ∼ 0.55, between the freezing
and melting packing fractions for hard superellipsoids,36,43 using
Monte Carlo methods that do not allow particle overlaps for Ns

steps. We then input these configurations into the compression
and energy minimization procedure described in Protocol 1. By
varying Ns and φi, we can obtain jammed packings of superel-
lipsoids with tunable φJ , coordination number zJ , and degree of
orientational order.

To calculate average quantities for φJ , zJ , and other quantities
at jamming onset, we average over 5 to 10 independent initial
conditions. We validated our methods for generating jammed
packings of superellipsoids by comparing our results for φJ from
Protocol 1 to those from recent studies of packings of spheroids
and superballs.17,19 (See Fig. 3.)

2.3 Dynamical matrix
The dynamical matrix, which provides all possible second deriva-
tives of the total potential energy with respect to the rotational
and translational degrees of freedom of the system, determines
the linear mechanical response of jammed particle packings. We
define the dynamical matrix as

Mkl = ∂
2U/∂ξk∂ξl , (5)

where ~ξ = {x1,y1,z1,aθ1,aφ1,aψ1, . . . ,xN ,yN ,zN ,aθN ,aφN ,aψN},
(xi,yi,zi) is the location of the center of particle i, and (θi,φi,ψi)
are the rotation angles about the x-, y-, and z-axes used to de-
fine the orientation of particle i. Thus, the dimension of the dy-
namical matrix is 6N× 6N. For jammed superellipsoid packings

(in cubic simulation cells with periodic boundary conditions), the
dynamical matrix possesses 6N′−3 nonzero eigenvalues λi (with
corresponding unit eigenvectors êi), where N′ = N−Nr and Nr is
the number of rattler particles with unconstrained translational
or rotational degrees of freedom.

To determine Mkl , we calculated the first-order derivatives of
the dynamical matrix, ∂U/∂ξk analytically, and calculated all of
the the second-order derivatives numerically. We find that the
eigenvalues of the dynamical matrix do not depend sensitively on
the numerical derivatives for displacements < 10−8.

2.4 Order parameters

In packings of non-spherical particles, one can measure the de-
gree of order in the translational (i.e. positions of the particle
centers) and rotational (i.e. orientations of the particles) degrees
of freedom. In the systems we study, when the particle orienta-
tions are ordered, the particle positions also contain significant
order. Thus, in these studies, we will focus on quantifying the
orientational order.

We measure the global nematic S2
24,44 and cubatic C4 order

parameters.45 S2 is defined as the largest eigenvalue of the 3×3
matrix:

Sαβ =
3
2
〈ŝαiŝβ j〉−

δαβ

2
(6)

where δαβ is the Kronecker delta, α, β = x, y, and z, ŝαi is the
α-compoent of the unit vector that characterizes the orientation
of particle i. and 〈.〉 indicates an average over all pairs of particles
i and j. ŝi is chosen as the shortest (longest) axis of the particle
when β < 1 (β > 1). With this definition of ŝi, S2 can capture
stacking order that can occur in packings of flat shapes, as well
as nematic order that can occur in packings of elongated shapes.
S2 = 0 for systems without orientational order and 1 for systems
with complete particle alignment.

The cubatic order parameter45 C4 is obtained by first calculat-
ing the fourth-order Legendre polynomial,

P4(t̂, ûi) =
1
8

(
35[t̂ · ûi]

4−30[t̂ · ûi]
2 +3

)
, (7)

where t̂ is the unit vector aligned with one of the 3N orientations
of the semi-major axes of each of the particles and ûi is a unit vec-
tor aligned with one of the three orientations of the semi-major
axes for particle i. For each particle i in a given jammed packing,
we select the ûi that maximizes P4(t̂, ûi) for a given t̂. We then
average Pmax

4 (t̂) over all particles for a given t̂ and define C4 as
the maximum over all 3N orientations t̂. For C4 ∼ 1, packings pos-
sess large cubatic order, which can occur in packings of cube-like
particles with p > 1. In Appendix B, we show results for the local
nematic and cubatic order in packings of superellipsoids.

3 Results and Discussion
Our results are divided into two subsections. In Sec. 3.1, we
present our results for disordered packings of superellipsoids gen-
erated via Protocol 1. We show the global nematic and cubatic or-
der parameters for packings containing a wide variety of superel-
lipsoidal shapes. We find that the packing fraction at jamming
onset for disordered packings of superellipsoids depends strongly
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Fig. 4 (a) A scatter plot of the global nematic S2 and cubatic C4 or-
der parameters for packings of superellipsoids generated via Protocol
1. The particle shapes include oblate ellipsoids (filled squares), prolate
ellipsoids (filled circles), self-dual ellipsoids (filled upward triangles), gen-
eral ellipsoids (downward open triangles), superballs (open diamonds),
nearly spherical particles with p ∼ 1 and w ∼ 1 (asterisks), and p = 0.75
(squares with lines), 0.85 (circles with lines), 1.5 (upward triangles with
lines), and 2.0 (pentagons with lines). The vertical (horizontal) arrow in-
dicates packings with increasingly flatter (cube-like) shapes. The inset
shows a scatter plot of S2 versus the normalized aspect ratio β for the
same data set. (b) Example packing of superellipsoids with p = 0.75 and
w = 0.3 and global nematic order S2 = 0.11. (c) Example packing of su-
perballs with p = 2 and global cubatic order C4 = 0.37. We show the (b)
local nematic and (c) local cubatic order by coloring the particles with
increasing local order from green to red.

on two shape parameters, A and β . In Sec. 3.2, we show that we
can tune the packing fraction and coordination number at jam-
ming onset by increasing the orientational order of the packings
generated via Protocol 2. We also show that, even for ordered
packings, the number of quartic modes of the dynamical matrix
is equal to the isostatic number of contacts minus the number of
contacts in the packing. Thus, we find a direct link between the
coordination number and mechanical properties even for ordered
packings of superellipsoids.

3.1 Disordered packings of superellipsoids
In this section, we focus on the structural propreties of superel-
lipsoid packings generated via Protocol 1. In Fig. 4 (a), we show
a scatter plot of the global nematic S2 and cubatic C4 order pa-
rameters for all jammed packings generated using Protocol 1.
We find that many of the packings are disordered with S2 and
C4∼ 1/

√
N ∼ 0.07. However, as demonstrated in the inset to Fig. 4

(a), S2 increases as β decreases below 1 and the particle shape
flattens. For more elongated shapes with β > 1, S2 is roughly inde-
pendent of β . We also find that the cubatic order increases as the

Fig. 5 The packing fraction at jamming onset φJ versus the asphericity
A for packings of the same shapes described in Fig. 4 generated via
Protocol 1. The vertical dashed line marks the characteristic Ac ∼ 0.05 of
the peak in the φJ(A ).

particles become more cube-shaped with p > 1, even though the
packings were generated using the athermal protocol. In Fig. 4
(b) and (c), we show example packings of flattened and cube-like
superellipsoids generated via Protocol 1 with elevated values of
S2 and C4. In (b), we show the local nematic order of the parti-
cles for a packing of flattened superellipsoids with p = 0.75 and
w= 0.3. In (c), we show the local cubatic order of the particles for
a packing of superballs with p = 2. These packings possess local
nematic and cubatic order. (See Appendix B.)

In Fig. 5, we show the packing fraction at jamming onset φJ

as a function of the asphericity A for a variety of superellip-
soid shapes. The relation between φJ and A is similar to that
for packings of noncircular particles in 2D.21 φJ starts at a rela-
tively low value for spherical particles (i.e. random close pack-
ing for monodisperse spheres with φJ(0) ≈ 0.64), then grows
with increasing asphericity, reaching a peak φJ ∼ 0.70-0.74 near
A ∼ 0.05, and then begins decreasing, falling below φJ(0) for
A > 0.1. We also note that the data for φ(A ) does not collapse as
well onto a single curve in 3D, compared to the collapse of φJ(A )

for packings of 2D noncircular particles.21

In Fig. 6, we show the coordination number at jamming on-
set zJ versus the asphericity A for (a) spheroids with an axis of
symmetry and ziso = 10 and for (b) all other particle shapes with
ziso = 12. zJ = 6 for isostatic packings of spherical particles in the
limit A → 0. As found previously, zJ for packings of nonspher-
ical particles does not jump discontinuously from 6 to ziso when
A increases above zero. Instead, zJ increases continuously with
A . zJ for some of the particle shapes reaches ziso for A < 0.35,
e.g. oblate, prolate, self-dual, and general elliposoids, but others,
such as superellipsoids with p = 0.75, 0.85, 1.5, and 2.0 do not.
Note that ziso is smaller for spheroids, compared to ziso for other
non-axisymmetric particle shapes, and thus the maximum pack-
ing fraction for spheroids is smaller than that for the other shapes
we studied. We correlate values of zJ < ziso for superellipsoids
with the surface curvature at interparticle contacts in Appendix C.

The packing fraction at jamming onset φJ for packings of su-
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Fig. 6 The coordination number at jamming onset zJ versus asphericity
A for packings generated via Protocol 1 for (a) spheroids and (b) all other
shapes. The symbols are the same as those used in Fig. 4. The horizon-
tal dashed lines in (a) and (b) indicate ziso = 10 and 12 for the respective
families of shapes. The vertical dotted line marks the threshold in A ∼
0.05 above which zJ(A ) reaches a plateau for spheroids.

perellipsoids does not completely collapse when plotted versus a
single shape parameter, e.g. the asphericity A . (See Fig. 5.) This
result suggests that φJ for packings of nonspherical particles in
3D depends on two or more shape parameters. In Fig. 7 (a), we
show φJ versus the reduced aspect ratio β for several values of
the asphericity A = 0.1, 0.15, 0.2, and 0.25, excluding cube-like
superellipsoids with p > 1. All of the curves φJ(β ) are concave
down for the different values of A . In Fig. 7 (b), we show a con-
tour plot of φJ as a function of both β and A . We find that at
small A , the largest φJ , φ max

J , occurs near β = 1, however, φ max
J

shifts to β > 1 when A > 0.2. Thus, φJ depends on both shape
parameters A and β .

3.2 Tunable hypostaticity
In this section, we show that we can increase the nematic or cu-
batic order in packings of superellipsoids using Protocol 2 to gen-
erate the packings. We compare φJ and zJ at jamming onset for
packings generated via Protocols 1 and 2. We focus on packings of
superballs with p = 1.25 and 1.5 and packings of oblate ellipsoids
with w = 0.3.

In Fig. 8 (a), we show the global nematic S2 and cubatic C4

order parameters versus the packing fraction at jamming onset φJ

for single packings of oblate ellipsoids (with w = 0.3) and super-
balls (with p = 1.25 and 1.5) generated via Protocol 2. We also

Fig. 7 (a) Packing fraction at jamming onset φJ versus the reduced as-
pect ratio β for packings of superellipsoids generated using Protocol 1.
The plot includes ellipsoids with four values of the asphericity A = 0.1,
0.15, 0.2, and 0.25 and two families of superellipsoids with p = 0.75
(se0.75) and 0.85 (se0.85). (b) Contour plot of φJ as a function of A
and β . The horizontal dashed line indicates β = 1.

compare these results to those for packings of the same shapes,
but generated using Protocol 1. Example packings are displayed
in Fig. 8 (b). We find that S2 and C4 < 0.1-0.2 for packings gener-
ated via Protocol 1. However, S2 and C4 can become larger than
0.7 for packings generated using Protocol 2. For all shapes stud-
ied, φJ increases with increasing orientational order.

In Fig. 9 (a), we show the eigenvalue spectrum of the dynami-
cal matrix (Eq. 5) sorted from smallest to largest for packings of
6 different types of superellipsoids. As found in previous studies
of packings of ellipsoids, the eigenvalue spectrum has three dis-
tinct regimes.22 For a given eigenvector êi, the contribution of the
translational degrees of freedom is defined by

Ti =
N

∑
j=1

∑
γ

[êi]
2
jγ , (8)

where γ is summed over the three translational degrees of free-
dom x, y, and z for particles j in êi and Ti + Ri = 1. In Fig. 9
(b), we find that in regime 3 (i > 3N), the eigenmodes are largely
translational (Ti ∼ 1). The Ti values in regime 2 for nearly spher-
ical shapes (i.e. superballs with p = 1.02 and self-dual ellipsoids
w1 = 0.98) are small, indicating that the modes are largely rota-
tional. As the asphericity increases, regimes 2 and 3 merge and
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Fig. 8 (a) Global nematic S2 (left axis) and cubatic C4 (right axis) or-
der parameters for single packings of superballs (p = 1.25 and 1.5) and
oblate ellipsoids (w = 0.3) generated using Protocol 2 are plotted versus
φJ . The average values of S2 and C4 for an ensemble of packings with the
same particle shape, but generated using Protocol 1, are shown using
corresponding symbols with crosses on the inside. The filled symbols
represent the four packings shown in panel (b). (b) [top] Example pack-
ings generated via (left) Protocol 1 and (right) 2 for oblate ellipsoids with
w= 0.3 and [bottom] example packings generated via (left) Protocol 1 and
(right) 2 for superballs with p = 1.5.

Ti increases. Quartic modes always correspond to the lowest fre-
quency modes, and the translational content of these eigenmodes
is small for nearly spherical particle shapes, and increases with
asphericity.

When the system is perturbed along a quartic eigenmode êi in
regime 1, the change in the total potential energy ∆U between the
unperturbed and pertrubed packings first increases quadratically
with the perturbation amplitude δ , but then scales as δ 4 beyond
a characteristic amplitude δ ∗ that scales to zero with decreasing
pressure. (See the left of Fig. 10 (a).) We found in previous
studies of nonspherical particles that the number of quartic modes
Nq matches the deviation in the number of contacts at jamming
onset from the isostatic value, i.e. Nc = Niso

c −Nq, where Niso
c =

d f (N−Nr)−2. We show this result for packings of superellipsoids
generated via Protocol 1 in Fig. 10 (b). This result emphasizes
that even though Nc <Niso

c , disordered packings of superellipsoids

Fig. 9 (a) Sorted eigenvalues λi of the dynamical matrix for packings
of several shapes, including three types of superballs (p = 1.02, 1.15,
and 1.5) and three types of self-dual ellipsoids (w1 = 0.98, 0.9, and 0.6).
Three distinct regimes of the spectrum are marked 1, 2, and 3. (b) The
contribution of the translational degrees of freedom Ti to each eigenvector
êi for the same packings as in (a).

generated via Protocol 1 are mechanically stable.
Is the relationship between the number of contacts and number

of quartic modes the same for packings of nonspherical particles
with significant orientational order? For example, in ordered sys-
tems, it is possible that some of the Nc contacts are redundant and
therefore do not provide independent constraints to block the de-
grees of freedom in the packings. In Fig. 11 (a), we show the zJ

for packings of three types of superellipsoids generated via Proto-
col 2 that possess significant global nematic and cubatic order (c.f.
Fig. 4 (a)). The coordination number in these systems (zJ → 10)
is much larger than that for packings generated using Protocol 1.

In Fig. 11 (b), we show the eigenvalue spectrum of the dynam-
ical matrix for three packings of superballs with p = 1.5 gener-
ated using Protocol 2. As shown previously, the spectrum includes
three regimes with a regime of quartic eigenmodes at the lowest
values. Further, the crossover in behavior from ∆U ∼ δ 2 to ∼ δ 4

occurs at a similar value of δ ∗ that scales to zero with decreas-
ing pressure. (See the right panel of Fig. 10 (a).) In the inset of
Fig. 11 (b), we show the number of contacts Nc versus the number
of quartic modes Nq for all of the packings generated using Pro-
tocol 2. We find that even with significant orientational order, the
number of quartic modes matches the deviation in the number
of contacts from the isostatic value. Thus, we find that there are
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Fig. 10 (a) Change in the potential energy per particle ∆U/N between
the perturbed and unperturbed packing for perturbations with amplitdue
δ along several eigenmodes of the dynamical matrix for two packings of
superballs with p = 1.5 and zJ = 8.205 (left) and 9.08 (right). ∆U ∼ δ 4

at large δ for perturbations along the quartic eigenmodes (solid lines),
whereas ∆U ∼ δ 2 for perturbations along all other modes (dashed lines).
(b) The number of contacts Nc versus 6(N−Nr)−Nq−2, where Nr is the
number of rattler particles and Nq is the number of quartic eigenmodes
for all the configurations in Figs. 5 and 6. The dashed line has unit slope
and passes through the origin.

no redundant contacts for hypostatic packings of superellipsoids
with zJ < ziso, and zJ determines their mechanical stability. In
other words, the number of quadratic modes is consistently given
by the number of existing contacts Nc, and the other degrees of
freedom are constrained by the quartic modes.

4 Conclusions and Future Directions
In this article, we carried out computational studies of jammed
packings of frictionless superellipsoids for more than 200 differ-
ent particles shapes in three spatial dimensions. We implemented
two protocols to generate static packings: Protocol 1, which uses
athermal quasistatic compression, and Protocol 2, which includes
thermal fluctuations and compression. Protocol 1 typically gener-
ates packings with small values of the global nematic and cubatic
orientational order parameters, lower packing fraction φJ and co-
ordination number zJ at jamming onset. In contrast, Protocol 2
allows us to tune the orientational order (as well as φJ and zJ) in
packings of superellipsoids over a much wider range compared to
those generated via Protocol 1.

We found several important results. Prior studies of disordered
jammed packings of 2D nonspherical particles have shown that
the packing fraction at jamming onset φJ for a wide variety of
shapes can be collapsed onto a masterlike curve with respect to a
single shape parameter—the asphericity.21 For disordered pack-
ings of superellipsoids in 3D, we find that two shape parameters,
e.g. the asphericity A and reduced aspect ratio β , are required

Fig. 11 (a) The coordination number at jamming onset zJ verus the
packing fraction at jamming onset φJ for the packings of superellipsoidal
shapes considered in Fig. 8 generated via Protocol 2. Results for pack-
ings generated using Protocol 1 are represented by crosses. (b) Eigen-
values λi of the dynamical matrix sorted from smallest to largest for the
three packings of superballs with p = 1.5 marked by the solid symbols in
(a). The packings possess zJ = 8.205, 9.08, and 9.785. The inset shows
Nc versus Niso

c −Nq for all packings of superellipsoids generated via Pro-
tocol 2. The dashed line has unit slope and passes through the origin.

to determine φJ . Additionally, prior studies have found that pack-
ings of nonspherical particles are hypostatic with zJ < ziso, and
the number of missing contacts below the isostatic value matches
the number of quartic eigenmodes of the dynamical matrix.20–22

Most of these prior studies have considered disordered pack-
ings of nonspherical particles with small values for global mea-
sures of orientational order. We find that the number of contacts
Nc = Niso

c −Nq, where Niso
c is the number of contacts for an iso-

static system and Nq is the number of quartic modes, for both
disordered and ordered packings of nonspherical particles. The
lack of redundant contacts implies that the number of quadratic
modes is consistently given by the number of contacts Nc of the
packing, and the other degrees of freedom are constrained by the
quartic modes. If there were redundant contacts, we would ob-
serve packings with Nc > Niso

c −Nq.
Our work opens up several new avenues of future research.

First, in this work, we were able to generate packings of superel-
lipsoids with tunable orientational order, φJ , and zJ . However, we
only considered packings with zJ < ziso. It will be interesting to
generate packings of nonspherical particles with even more order,
where zJ > ziso. In this case, do quartic modes still occur and if so,
what determines their number? Another future research direction
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Fig. 12 The reduced aspect ratio β versus the asphericity A for all of
the particle shapes studied. The solid and dashed curves correspond to
Eqs. 9 and 10 for oblate and prolate ellipsoids, respectively. The dashed-
dotted curve corresponds to superellipsoids with p = 2.

involves packings of frictional non-spherical particles.46–50 Pack-
ings of frictional spherical particles can occur with coordination
numbers that satisfy d f + 1 < zJ < 2d f , where d f = d for spheri-
cal particles.51,52 Prior studies have shown that packings of fric-
tional ellipsoids can possess zJ ≈ d + 1 = 4.46 Do these packings
possess quartic modes, and if so, how many? It is clear that much
more work is needed to understand the number of contacts that
is required to determine the mechanical stability of packings of
frictional, nonspherical particles.
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Appendix A: Variation of the shape parame-
ters β and A

In this Appendix, we show the range of reduced aspect ratio β and
asphericity A that can be achieved for superellipsoidal particle
shapes. For oblate and prolate ellipsoids, the asphericity A (β )

can be written explcity. For oblate ellipsoids, we find

A (β ) =
2β 2/3

1+ β 2

sinγ
ln
(

1+sinγ

cosγ

) , (9)

where γ = cos−1 β . For prolate ellipsoids, A (β ) can be expressed
as

A (β ) =
2β 2/3

1+ βα

sinα

, (10)

where α = cos−1 β−1. In Fig. 12, we plot the relations between
β and A for oblate and prolate ellipsoids, as well as β (A ) for
superellipsoids with p = 2. We find that these curves serve as
upper and lower bounds for the shape parameters of all other
shapes that we study for A < 0.35.

Fig. 13 (a) The global nematic order parameter S2 plotted versus the
local nematic order parameter Slocal

2 for all particle shapes studied. (b)
The global cubatic order parameter C4 plotted versus the local cubatic
order parameter Cloc

4 for all particle shapes studied.

Appendix B: Local nematic and cubatic order
parameters
In the main text, for example in Figs. 4 (a) and 8 (a), we showed
results for the global nematic S2 and cubatic C4 order parameters
for packings of superellipsoids. In these figures, we also show
example packings from the simulations with the particles colored
according to the value of the local nematic and cubatic order pa-
rameters. The local nematic order parameter Sloc

2 is defined anal-
ogously to Eq. 6 as the largest eigenvalue of the 3×3 matrix:

Sloc
αβ

=
3
2
〈
ŝαi · ŝβ j

〉
j−

δαβ

2
, (11)

where 〈.〉 j averages over particles j that overlap particle i.
To define the local cubatic order parameter Cloc

4 for particle i,
we first calculate

P4(ûi, û j) =
1
8

(
35[û j · ûi]

4−30[û j · ûi]
2 +3

)
, (12)

where û j is a unit vector aligned with one of the three orientations
of the semi-major axes for particle j that overlaps particle i. We
first select the ûi orientation along one of the three semi-major
axes that maximizes P4(ûi, û j) for a given û j. We then average
Pmax

4 (û j) over all particles j that overlap i. The local cubatic order
parameter Cloc

4 is defined as the maximum over the three orien-
tations for û j. We plot the global versus the local orientational
order parameters in Fig. 13. For the nematic and cubatic order,
the global and local order grow proprotionately.

Appendix C: Gaussian curvature at contact
points
In this Appendix, we show that for packings of superellipsoids
with small coordination numbers at jamming onset, the Gaussian
curvature KG at the points of contact are typically small, sug-
gesting that two flat contacting surfaces can constrain multiple
rotational degrees of freedom. In Fig. 14, we show the probabil-
ity distribution P(KG), where KG = KG(abc)2/3, for superellipsoid
packings generated via Protocol 1. (Note that each contact point
contributes two KG values.) We find that P(KG) for packings of
cube-like superellipsoids, e.g. with p = 2 and small zJ , possesses
a wide tail that extends to small values of KG. For other parti-
cle shapes, such as oblate and prolate ellipsoids, P(KG) is much
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Fig. 14 Probability distribution of the scaled Gaussian curvature at each
interparticle contact P(KG) in superellipsoid packings generated via Pro-
tocol 1, including oblate ellipsoids (w = 0.65), prolate ellipsoids (w = 1.5),
four types of superballs (p = 0.75, 1.25, 1.5, and 2), self-dual ellipsoids
(w1 = 0.6), and three types of superellipsoids with p = 2 (w = 0.3, w = 2,
and w1 = 0.7 and w2 = 2.11).

narrower and does not extend to small values of KG.
These results suggest that contacts between flat surfaces are

more likely to induce quartic modes than those between curved
surfaces53. However, it is difficult to establish this correlation
quantitatively because the vibrational modes of the dynamical
matrix describe the collective behavior of all of the degrees of
freedom within a jammed packing, while contact curvature only
includes local geometric information23. Alternatively, previous
studies focused on the convexity and concavity of the feasible re-
gion for constrained hard nonspherical particles in configuration
space to understand hypostaticity.17,21 A physical picture unify-
ing these two approaches is a topic of ongoing studies.
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