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Active binary mixtures of fast and slow hard spheres†

Thomas Kolbab and Daphne Klotsa⇤b

We computationally studied the phase behavior and dynamics of binary mixtures of active parti-
cles, where each ‘species’ had distinct activities leading to distinct velocities, fast and slow. We ob-
tained phase diagrams demonstrating motility-induced phase separation (MIPS) upon varying the
activity and concentration of each species, and extended current kinetic theory of active/passive
mixtures to active/active mixtures. We discovered two regimes of behavior quantified through the
participation of each species in the dense phase compared to their monodisperse counterparts.
In regime I (active/passive and active/weakly-active), we found that the dense phase was segre-
gated by particle type into domains of fast and slow particles. Moreover, fast particles were sup-
pressed from entering the dense phase while slow particles were enhanced entering the dense
phase, compared to monodisperse systems of all-fast or all-slow particles. These effects decayed
asymptotically as the activity of the slow species increased, approaching the activity of the fast
species until they were negligible (regime II). In regime II, the dense phase was homogeneously
mixed and each species participated in the dense phase as if it were it a monodisperse system;
each species participated in the dense phase as if it were not mixed at all. Finally, we showed
that a weighted average of constituent particle activities, which we term the net activity, defines
a binodal for the MIPS transition in active/active binary mixtures. We examined the critical point
of the transition and found a critical exponent (b = 3/4) that is distinct from known monodisperse
active-matter systems and equilibrium systems.

1 Introduction
From schools of sardines to flocks of starling, the complex, col-

lective behavior found in natural swarms has spurred an inter-
est in active-matter systems, where constituents locally convert
energy into motion. At high constituent particle densities, such
systems can be viewed as “living” materials with the ability to
do work and adapt to stimuli, heal themselves, etc. similar to
e.g. biological tissue. The remarkable properties of active matter
(self-healing, responsiveness, adaptation, etc.) can be leveraged
in experimental setups to complete tasks and do work on the mi-
croscopic scale, e.g. bacteria can be used to turn a microscopic
gear1.

Simple models have been developed to capture the emergent
behavior of active matter, including the Vicsek model2 inspired by
bird flocks, run-and-tumble3–5 by bacterial swarms, and the ac-
tive Brownian particle (ABP)5,6 by self-propelled colloids. These
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models have demonstrated a variety of unusual nonequilibrium
states, such as robust flocking bands7, upstream swimming of
bacteria8 and a negative surface tension for active droplets9,10

respectively. Since the inception of the field, many equilibrium
mappings have been posited using a variety of effective thermody-
namic parameters, including temperature11–13, free energy14,15,
and pair-wise potentials16–19. These approaches have met vary-
ing degrees of success and function well for specific cases. For
example, by quantifying the violation of a Maxwell construction
on the pressure developed by Solon et al.20, the phase diagram
for monodisperse ABPs can be reproduced exactly21.

The standard ABP model consists of a monodisperse system of
active hard spheres confined to a plane. In the absence of any
attractive potential between particles, and at sufficient activity,
the system phase separates (either gas/liquid or gas/solid), in a
process known as motility-induced phase separation (MIPS), see
ref. 5 for a review and references therein. The predicted MIPS
was recapitulated in experiment with light-activated carbon-
coated Janus particles22 and has since been adapted to a vari-
ety of experimental set-ups which depend on either light, mag-
netic/electric fields, or acoustics to induce phoresis, see review23.
The ABP model has also been implemented with additional com-
plexities e.g. confinement19,24–26, anisotropy in particle shape27,
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particle interactions28 and size polydispersity24,29,30 leading to
the discovery of new emergent phenomena, such as particle sort-
ing and segregation.

Recent work has shown that mixtures of active and passive
Brownian particles also display MIPS, similar to a monodis-
perse active system31,32. Under certain parameters, for example,
steady states emerge wherein particles partially segregate into ac-
tive and passive domains31,32. Mixtures provide an additional
degree of control for performing specific functions. For example,
doping a monodisperse Brownian system with active particles can
help anneal crystals and rapidly relax jammed states33,34.

However, active living systems interact not only with pas-
sive Brownian particles and obstacles but also with other active
species. In nature we encounter a wealth of active/active sys-
tems ranging in scale from the microscopic (e.g. mixtures of bac-
teria with different motility mechanisms35 or speeds36 and mi-
croorganism swarms37) to the macroscopic (e.g. sheep herded by
sheepdogs38, or in the emergent flocking structure of pigeons39).
From a materials applications standpoint, it is reasonable to ex-
pect that mixtures of particles with various activities would pro-
vide more control and allow the exploration of novel assembling
and swarming states, resulting in additional functionality.

From a theoretical point of view, mixtures of active particles are
extremely relevant in trying to define effective thermodynamic
quantities in active matter in general. Consider the analogy to
equilibrium systems, described in ref. 12: a non-active mixture
of two types of particles at different initial temperatures, hot and
cold. As the system thermally equilibrates over time, information
is conveyed between particles (the hot and cold particles’ kinetic
energies), and the system reaches thermodynamic equilibrium,
governed by the initial number and temperature of each type of
particle. For a monodisperse active system of ABPs, it is well-
known that the particle activity sets the emergent phase behavior
of the system. But, what (if any) quantity equilibrates in a mix-
ture of active particles distinct in their activity? Thus to further
understand the existence of effective thermodynamic quantities, a
binary mixture of two distinctly active particles provides an ideal
context.

Simple models such as the ABP, which has been used to aid
much of the theory developed in active-matter systems, can be
used to study active/active mixtures too. While there is a lot of
work on monodisperse ABPs and more recently on mixtures of
active and passive particles, the ABP model has not yet been ap-
plied to mixtures of active particles with distinct, non-zero, activ-
ity. (We note that other models have been used to examine mix-
tures of two active constituents e.g. oppositely spinning active
rotors40,41, particles propelled by distinct colored noise42, poly-
mers and colloids equilibrating in distinct heat baths43–45 and
monodisperse ABPs and moving obstacles46.)

In this paper, we computationally studied binary active mix-
tures of ‘fast’ and ‘slow’ particles, using the ABP model. We first
obtained phase diagrams for active/active mixtures relating area
fraction and activity, and extended the kinetic theory of Sten-
hammar et al.

31 to include two active species. We discovered
two regimes of behavior quantified through the participation of
each species (fast and slow) in the dense phase compared to a

monodisperse system of each type. In regime I (active/passive
and active/weakly-active), we found that the dense phase was
strongly segregated by particle type; the edge comprised primar-
ily of fast particles, with domains of slow particles populating
the cluster interior. Additionally, in the first regime, fast parti-
cles were suppressed from entering the dense phase while slow
particles were enhanced entering the dense phase, compared to
a monodisperse system of all-fast or all-slow particles. These ef-
fects decayed asymptotically until they were negligible in regime
II. In regime II, the dense phase was homogeneously mixed and
each species participated in the dense phase as it would if it were
not mixed at all. Finally, we defined the net activity, which is an
average of each constituent particle’s activity weighted by its area
fraction. We demonstrated the utility of the net activity in defin-
ing the binodal envelope, and investigated a critical exponent of
this first-order phase transition via a reduced inverse net activity,
and found a critical exponent (b = 3/4) distinct from critical ex-
ponents in monodisperse active-matter47 systems or equilibrium
systems.

The structure of the paper is as follows. In section 2 we out-
line the theoretical and computational methods, and simulation
details for the active systems studied here. In section 3, we dis-
cuss background, and specifically previous studies of monodis-
perse active and mixtures of active/passive systems. We describe
our results in section 4, and end with conclusions and outlook in
section 5.

2 Methods
Our system approximates the physics of active colloids confined

to a plane. We used N spheres, each with a body axis that in-
dicates a particle’s direction of self-propulsion (restricted to be
in-plane). Particles translate and rotate according to the over-
damped Langevin equations of motion for translation and rota-
tion:

g~̇ri = FWCA(~ri)+Fact bpi + g
p

2DtLt
i (1)

q̇i =
p

2DrLr
i , (2)

where ri is the position of particle i, bpi = (cosqi,sinqi) gives its
orientation in the xy-plane, FWCA is the conservative force due to
pairwise interactions, Fact is a particle’s active force, Dt and Dr
are the translational and rotational diffusion constants, and g is
the drag coefficient. The random force incorporates unit vari-
ance Gaussian white noise, implemented through Lt for trans-
lation and Lr for rotation such that hLii = 0 and hLi(t)L j(t 0)i =
di jd (t � t 0). In overdamped systems (low Reynolds number), the
Stokes-Einstein equation gives Dt =

kBT
3phs = kBT

g and Dr = 3Dt
s 2 ,

where s is the particle diameter, h the dynamic viscosity, and
kBT the thermal energy. We used s as the non-dimensional unit
of distance.

Activity was quantified through the Péclet number:

Pe =
3v0tr

s
, (3)

where (v0) is the intrinsic swim speed, i.e. the speed of an active
particle under the action of the active force Fact (in the absence
of collisions), and tr is the reorientation time, given by tr = D�1

r .
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Note that, while in the present model reorientation is set accord-
ing to the system temperature, our results need not be restricted
to particles of a specific size at a set temperature. Often, the re-
orientation of active particles stems from other sources such as
hydrodynamic interactions48 or chemical gradients49,50. Indeed,
our results are applicable when tr is not thermal in nature, as
the Péclet number defined in equation 3 encodes the persistence
length which is given by lp = v0tr. The persistence length quan-
tifies how far an active particle travels maintaining its direction
before it undergoes a rotation event (in this case, due to continu-
ous thermal rotation).

In simulations, we varied the active force, Fact = v0g bp via the
intrinsic swim speed. This was intentionally distinct from other
works, where activity was modulated through the diffusion con-
stant by varying the system temperature31,32,51. While both
temperature-variant and velocity-variant models encode the same
persistence length for a given activity, an important distinction
arises when examining mixtures of active particles. In simulations
of binary active mixtures (say A and B, with activities PeB > PeA)
using a temperature-variant model, the difference between dis-
tinct particle types arises through the reorientation timescale,
where the more active particle will undergo reorientation less
often (tB

r > tA
r ) and therefore have a greater persistence length

(lB
p > lA

p ). However, particles will move with the same velocity
and thereby experience an identical active force (FB

act = FA
act). In

contrast, in our velocity-variant model, a more active particle will
experience a greater active force (FB

act > FA
act), causing it to swim

faster (vB
0 > vA

0 ) while undergoing reorientation events with the
same frequency as the slower particle type (tB

r = tA
r ), still result-

ing in a greater persistence length (lB
p > lA

p ). In examinations of
MIPS, it has been shown that particle rotation controls the rate of
desorption from the dense phase, such that the faster the par-
ticle rotation the larger the rate of desorption from the dense
phase52,53. As a temperature-variant model directly changes the
rotational diffusion between particle types, it would also bias
the composition of the cluster edges to have more of the slowly-
rotating, fast species. To summarize, the velocity-variant model is
useful for systems where reorientation stems from the same effect
but particles swim at different speeds whereas the temperature-
variant model is applicable to systems where constituents move at
the same speed but reorient on different timescales. In this study,
we chose to use the velocity-variant model so as to study particles
with distinct swim speeds.

All particles, regardless of type, experience excluded volume
interactions via a Weeks-Chandler-Andersen (WCA) potential,

U(ri, j) =

8
<

:
4e[( s

ri, j
)12 � ( s

ri, j
)6]+ e 0  ri, j 

6p
2s

0 ri, j >
6p
2s ,

(4)

with corresponding force,

FWCA(ri, j  rcut) = 24e

 
2

s12

r13 � s6

r7

!
(5)

where ri j is the interparticle distance between the ith and jth

particles (with potential cutoff at rcut =
6p
2s). To nondimen-

sionalize our system we set s = 1 as the particle diameter, and
e = kBT (a+10) as the potential well depth, where a is an activity-
dependent coefficient (a ⇠ Facts) implemented to maintain a
constant, hard sphere, particle diameter. For passive particles,
the repulsive well depth reduces to e = 10kBT . To maintain a con-
stant particle diameter we consider the greatest force present at
a given set of parameters; in a Brownian system this is the ther-
mal force. As first acknowledged by Stenhammar et al.

51, this
is not the case in active systems where the active force typically
exceeds the thermal force. If we used the thermal force to set
the repulsive strength, particles would, on average, experience a
large degree of overlap (reducing the diameter by 25% of the in-
tended value). To determine the coefficient (a) and thus interac-
tion well depth e that corresponds to hard spheres we performed
simulations on monodisperse active systems, as well as binary
active/passive, and active/active ones, with e = kBT at total area
fraction, f = 0.6. We then extracted all the particle diameters that
occur in the simulations (d) and plotted a histogram for d  rcut .

For a hard sphere system, we expect a narrow distribution of
measured particle diameters where the peak (mode) of the his-
togram, we shall call it the effective diameter, is equal to the
intended (hard-sphere) diameter (seff = s = 1). Measured par-
ticle diameters less than the intended diameter (d < 1) indicate
that there are instances when the forces are larger than accounted
for by the repulsive pairwise potential and thus particles become
slightly “soft”. Indeed, this commonly occurs when the repulsive
depth is set by the thermal force (e = kBT ). The histogram for
these data exhibited values far lower than the intended particle
diameter (fig. 1b, d < 1).

To prevent this, we extracted the mode of the distribution (seff)
at several activities and particle fractions and substituted back
into equation 5 as r, to obtain the most common force experi-
enced by the particles. We then used that force on the left-hand
side of equation 5, with s = r = 1 (for hard spheres) and solved
for the interaction well depth required to prevent significant par-
ticle overlap (ereq). For monodisperse systems, plotting the ef-
fective diameter as a function of activity produced an interaction
well depth similar to that predicted by ref. 51: ereq = 4Facts/24
(fig. 1c, black diamonds), where an increasing active force corre-
sponds to a smaller effective diameter and therefore a larger re-
quired repulsive force (to correct for emergent particle softness).

In a binary mixture three potentials must be considered for in-
teractions between: fast-fast, fast-slow, and slow-slow particles.
As such, we broke down our diameter analysis by interaction
type. Our data showed that all interactions for a given simula-
tion predict the same interaction well depth (ereq, fig. 1c inset).
Additionally, we found that the magnitude of the interaction well
depth should be weighted according to the particle fraction of
each type (fig. 1c inset). This gave the following relationship for
the interaction well depth that was used in our studies,

ereq. =

✓
4(Fsxs +Ff x f )

24
+10

◆
kBT (6)

As the interaction well depth incorporates the fraction of each
species, this implementation correctly reduces to a = 4Facts/24
in the monodisperse case, (fig. 1c inset x f = 0,1).
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Fig. 1 Comparison of particle activity and interparticle distance for parti-
cle pairs within the WCA interaction cutoff (0 r  rcut). (Left) Histograms
of the measured diameters as they occur in our simulations, separating
interactions between passive-passive, passive-active and active-active,
as well as showing the cumulative distribution function (CDF) overlaid.
CDF displays the probability of a particle having diameter  x. Data are
computed for an active/passive simulation with x f = 0.1 and Pe f = 500.
(a) Histogram and CDF for simulations performed using e from equa-
tion 6 demonstrates that no particles have measured diameter d  0.95
while 50% of particles have measured diameters 0.95 < d  1.00. (b) His-
togram and CDF for simulations using e = kBT where all types of interac-
tion data deviate well below the intended diameter. (c) Plot of the effective
diameter measured in simulation as a function of particle activity. Simu-
lation data for monodisperse simulations with well depth e = kBT (black)
shows drastic particle overlap as activity is increased. Data for systems
simulated with interaction potential according to equation 6 (red), main-
tains a constant mode center-to-center distance that is equal to the in-
tended diameter (= 1 for hard spheres). Inset shows predicted e both
from equation 6 (dashed line) and computed from emergent simulation
data with respect to system composition. Required well depth is com-
puted for passive-passive (gold), passive-active (pink), and active-active
(teal) interactions.

We consider this to be a hard-sphere model in that it satisfies
the following two requirements: (1) the most commonly occur-
ring particle diameter for each particle type is the intended hard
sphere diameter (fig 1c, red diamonds) and (2) the largest devia-
tion from the intended diameter is at most 5% (fig 1a). Given this
definition, we found that our implementation for the repulsive
force can consistently be considered a hard-sphere one, irrespec-
tive of activity or particle fraction (see fig. 1a, c, red diamonds).

Implementing the interparticle potential according to equa-
tion 6 affects the maximum timestep permitted for a given sim-
ulation (dtmax = 1⇥10�5 ·

�
s2g/e

�
). Since we chose to vary the

swim velocity in our model, we also need to vary the potential
well depth and the timestep. Therefore, we present our results
using the temperature-dependent (and invariant) timescale for
the persistence of motion, tr. We also performed convergence
studies on our model to determine the necessary ratio of lp : lbox
to avoid finite size effects at the densities and activities used in
this study (see ESI, fig. S1).

2.1 Simulation Parameters and definitions
Simulations were performed using the GPU-enabled Molecular

Dynamics package available in HOOMD-blue54,55. We initialized
particles randomly (allowing a slight particle overlap, d = 0.70)
and then equilibrated the system via Brownian dynamics for 30tr.
After equilibration, simulations were run for 300tr. Total system

area fraction was constant at f = 0.6. At this area fraction, sys-
tems were above the minimum density required to display phase
separation (f ⇡ 0.45) and at the estimated critical area fraction
for monodisperse MIPS (f ⇡ 0.6)15,47,56.

The onset of MIPS was initially analyzed by a cluster al-
gorithm57 with a cutoff that was calibrated on simulations of
monodisperse active particles (Pe = 30) below the activity re-
quired for phase separation at the system density used in this
study (PeMIPS ⇡ 45 for f = 0.6). At this activity (Pe = 30), the sys-
tem does not undergo MIPS, however, small, short-lived clusters
will regularly form and fall apart. Thus it gives us the largest sig-
nal for transient clusters that are not truly phase separated both
in terms of size and lifetime. For simulations proximal to the bin-
odal, our algorithm was often insufficient in delineating which
systems were phase-separated due to the large fluctuations in the
number and size of transient clusters. So, in addition to the al-
gorithm, we examined the phase behavior by visual inspection.
Phase-boundary lines are indicated clearly in our plots. All simu-
lation images and videos were generated using OVITO58.

Our approach in this paper is to introduce the idea of a contin-
uum for active matter systems, with limiting cases defined by the
activity of the less active (or ‘slow’) species. When the less active
particles are Brownian we have an active/passive mixture. As the
activity of the ‘slow’ species increases we obtain a mixture of two
types of particles with distinct activities and velocities (fast and
slow). As the activity of the ‘slow’ species increases further, it ap-
proaches the activity of the fast species, until they are equal and
then we get a monodisperse active system. Monodisperse active
and active/passive systems can be viewed as subsets and limiting
cases of this broader active/active continuum. Here, we move be-
tween the two extreme cases via two parameters: the fast species’
particle fraction (x f ) and the slow species’ activity (Pes). In our
investigation of the active/active phase space we have found two
additional quantities. First, the ‘net activity’ which is an average
of each particle’s activity weighted by its particle fraction (sub-
script ‘s’ indicates variables for the slow species and ‘f’ for the fast
species):

Penet ⌘ xsPes + x f Pe f . (7)

Note that as either of the examined parameters (x f or Pes) is in-
creased the net activity also increases However, Penet does not
account for the relative activity between the two species. To this
end we also defined the activity ratio, which is a ratio of the slow
particle activity to the fast:

PeR ⌘ Pes
Pe f

(8)

and varies between zero (for an active/passive mixture) and one
(for a monodisperse active system).

3 Background
The onset of MIPS in the ABP model was first examined in

monodisperse active systems6. In their study, Fily and Marchetti
showed that even without symmetry-breaking, active systems will
phase separate. They went on to investigate the dynamics of the
ABP model and developed a continuum theory constructed from
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Fig. 2 Top row: Phase diagram in the xA-PeA plane for PeB = 10,40,50,150. Filled symbols denote phase-separated systems, as determined by our MIPS-
identifying algorithm, and open symbols denote a gaseous steady-state. The dashed lines indicate phase boundaries predicted by the active/active
equation for f0 in table 1, which is the theoretical binodal according to our kinetic theory. There is good agreement between the simulations and theory.
Bottom row: the same phase diagrams are shown illustrated by simulation (final) snapshots after 300tr, where ‘A’ particles are shown in gold and ‘B’
particles in teal. (See ESI, Fig. S2 for the full parameter range).

an effective, density-dependent, swim-speed. The phase diagram
of the ABP model was later investigated by Redner et al.52 who
calculated the densities of the dense and dilute phases versus ac-
tivity at various area fractions. At all area fractions, increasing
activity corresponded to more particles in the dense phase (and,
commensurately, fewer particles in the gas phase).

Expanding the phase space, Stenhammar et al. examined bi-
nary mixtures of active and passive particles31. Aside from the
total area fraction and particle activity, an additional parameter
was introduced, the particle fraction of each species. It was shown
that by increasing either the magnitude of the active species’ ac-
tivity, or the fraction of active particles, the system became more
likely to phase separate and MIPS was achieved at lower area frac-
tions of active particles (than in the corresponding monodisperse
all-active system). In other words, the presence of passive parti-
cles enhanced MIPS. It was also observed that the distribution of
particles within the dense phase was not homogeneous; instead,
there were small domains of predominantly active or predomi-
nantly passive particles. The domains were such that the interior
of the cluster consisted mostly of trapped passive particles while
the edges consisted mostly of active particles. This makes sense
considering that for MIPS to persist, the body axis of particles
at the cluster edge must form an acute angle with respect to a
normal to the cluster surface (or else they simply leave the clus-
ter)10,52,53. As a passive particle does not exert an active force it
cannot maintain the cluster edge.

Both studies developed a kinetic theory, to predict the condi-
tions necessary for MIPS based upon the parameters of activ-
ity and area fraction, thus producing nonequilibrium phase di-
agrams. In both cases, an assumption was made that there is a
steady-state equilibrium between an infinite, hexagonally close-

packed, dense phase and a gas phase. Additionally, for an ac-
tive/passive mixture, the area fraction of active particles in the
gas phase (f act

g ) and in the dense phase were assumed to be
equally proportional to the active particle fraction (fgxact = f act

g ).
For a monodisperse active system at steady-state, the derived
rates of particle adsorption (from the gas to the dense phase)
and desorption (from dense to gas phase) are equal (Table 1).
Thus, by writing expressions for these terms and equating them,
Redner et al. obtained a theoretical description for the density of
each phase52.

Monodisperse Binary Binary
Active Active/passive Active/active

(Redner et al. 52) (Stenhammar et al. 31) (this study)

kin
4fgv0
p2s2

4f act
g v0

p2s2
4(f s

gvs
0 +f f

g v f
0)

p2s2

kout
kDr

s
kDr

s
kDr

s

f0
3p2k
4Pe

3p2k
4xactPe

3p2k
4(xsPes +(1� xs)Pe f )

Table 1 Expressions for rates of adsorption on to (kin) and desorption
from (kout) the dense phase as well as the area fraction at which MIPS
is first observed (f0), for: monodisperse active, active/passive, and ac-
tive/active systems. The more complex active/passive and active/active
expressions reduce to the simpler monodisperse case.

In introducing a second (passive) species, these rates remain
equal, but the new expression included the effect of the particle
fraction of each species31. For both studies, particle desorption
was assumed to occur in cascading, ‘avalanche’ events, resulting
in a fitting parameter k. It is important to note that this approach

1–12 | 5

Page 5 of 13 Soft Matter



assumes the existence of a hexagonally close-packed dense phase,
and as such, it is not a good approximation at very high or very
low area fractions.

4 Results

4.1 Kinetic theory & phase diagram

By removing the restriction that the slow particles be pas-
sive, we introduced another parameter, the activity of the second
species. To populate this new phase diagram we restricted our
study to total area fraction f = 0.6 to ensure that we were examin-
ing a sufficiently high total area fraction to observe monodisperse
MIPS (f > 0.45). We simulated N = 15,000 particles and system-
atically varied three parameters: the activity of each species A,
B, (PeA,B = [0,150]) and the particle fraction (xA = [0.0,1.0];xB =

1� xA), resulting in 1,232 simulations in total (fig. 2). Figure 2
shows four representative slices of the three dimensional phase
diagram for this space, where PeB was held constant at 10, 40, 60
and 150. Each xA-PeA plane is a phase diagram showing whether
MIPS occurred, as computed by our MIPS algorithm and denoted
by filled points. In the bottom row of figure 2, the same phase
diagrams are shown illustrated by simulation (final) snapshots
after 300tr. On any given plane, increasing the fraction of the
more active species (moving up along a column if PeA > PeB or
down a column if PeA < PeB), or increasing the activity of species
A (to the right on a given row) gives parameters more conducive
to MIPS. Similarly, as we increased the activity of species B (fig. 2,
left to right), more of the phase plane becomes phase separated.
To distill these data, we found that the propensity for a system to
undergo MIPS increased as the activity of any constituent species
increased or as the fraction of the more active species increased
(fig. 2). It is important to note that the computational timescale
used in the studies comprising figure 2 (tr = 300) is likely not suf-
ficient to observe the nucleation and growth of some metastable
states, namely those which are proximal to the binodal59. Only
by simulating on much longer timescales or by computationally
seeding cluster nucleation can we access the long-time behavior
of such metastable systems.

We also extended the existing kinetic theories of monodisperse
active52 and passive/active31 systems, summarized in section 3
to include a second active species. In examining the rate of ad-
sorption (kin) and desorption (kout), we continued to make the
assumption of previous models that desorption from the dense
phase to the gas is governed exclusively by rotational diffusion
(and is therefore identical for each particle, given they are the
same size and equilibrated in the same heat bath). However, ad-
sorption from the gas onto the dense phase depends on particle
activity, because the more active particles have a larger persis-
tence length (lp) and therefore collide with the dense phase more
readily. Our expressions for kin and kout for active/active systems
are presented in table 1; where fg is the density of a given species
in the gas phase (subscript g)52.

We then considered dimensionless variables and extended what
has been reported as a ‘binodal relation’ (f act

g = xactf0) developed
by Stenhammar et al.

31 for passive/active systems to now in-
clude a second active species, which gives the binodal conditions:

f A
g = xAf0 and likewise f B

g = (1�xA)f0 for active species A and B.
The two together can be summarized by the sole relation initially
developed by Redner et al.

52, f0 = f A
g + f B

g = fg. The relation
produced by equating the flux at the cluster edge does, in fact,
predict very reliably, the onset of MIPS in simulation. However,
we should note that this is not a binodal in the strict thermody-
namic sense, namely there is no equilibration of a thermodynamic
quantity between phases. Substituting these relations into the
expressions for kin in Table 1, we can obtain an expression that
relates activity, particle fraction and area fraction to phase sepa-
ration (table 1, f0 in column active/active), where, if f0  f the
system will undergo MIPS. This theoretical ‘binodal’ should ide-
ally separate closed (phase separated) points from open points, as
identified from our simulation data. Our extension of this kinetic
theory demonstrates strong agreement with simulation as seen in
figure 2, where, the theory is represented by the dashed line on
each plane. We used k = 3.65, which produced the best fit across
the phase space examined in this study. While this kinetic theory
outlines the binodal of the first-order MIPS phase transition, we
do not investigate the potential for additional complex phenom-
ena within the dense phase (e.g. hexatic phase52, grain boundary
motion, or dislocation glide). The study of such phenomena via
principal component analysis or machine learning is an important
future direction for binary active/active mixtures.

4.2 Phase behavior

In figure 3 we show characteristic snapshots of the system
at different slow particle activity and particle fraction. As the
systems are highly dynamic, we suggest the reader watch the
videos for each snapshot as well (ESI)†. The snapshots quali-
tatively show how the emergent phenomena characteristic of ac-
tive/passive mixtures transitions to the distinct steady-state be-
havior of monodisperse active systems. The columns in figure 3
correspond to four different slow activities that are representa-
tive of this phase space: Pes = 0 (Brownian), 25 (< PeMIPS below
the activity required for MIPS if the system were monodisperse),
100 (> PeMIPS above the activity sufficient for MIPS if the system
were monodisperse), and 200 (about half of the fast species ac-
tivity). Rows correspond to three particle fractions, x f = 0.3, 0.5,
and 0.7 in order to examine majority slow, equal, and majority
fast mixtures respectively.

In the case of an active/passive mixture (fig. 3, left column
(a),(e),(i)) we found agreement with previous studies31, (see
also section 3), both in terms of structure and dynamics, an
additional verification of our velocity-variant model. We now
discuss the effect of changing the particle fraction for an ac-
tive/passive system. For a system composed entirely of passive
particles (x f = 0), MIPS did not occur and the system remained
a homogeneous gas undergoing random Brownian diffusion. If
we substitute a small fraction of passive particles for active par-
ticles (e.g. x f = 0.05) the resulting system still remained in the
gaseous state. The small number of fast active intruders left tem-
porary wakes behind them as they swam through the majority
passive gas (ESI, movie and fig. S4)†, as has been observed in
the literature60. Increasing the fraction of fast particles further
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Fig. 3 (Video online) Simulations of active Brownian particles with distinct slow (gold) and fast (Pe f = 500, teal) particle fractions and activities. All
snapshots were taken after steady-state had been reached, tr = 300. The particle fraction is constant in each row: x f = 0.3, 0.5, and 0.7; illustrating
majority slow, equal and majority fast mixtures respectively. The activity of the slow species is constant in each column: Pes = 0, 25, 100, and 200. The
activity of the fast species is fixed at Pe f = 500.

(x f = 0.1), small clusters formed and were quickly annihilated
as a thin outer edge of fast particles pushed through the passive
interior (ESI, movie and fig. S5)†. At the particle fraction nec-
essary for MIPS (x f = 0.15); there was still a majority of passive
species and a small number of very fast active particles. This was
perhaps the most volatile system to undergo sustained MIPS in
that clusters engaged in fission and fusion events repeatedly, yet,
the dense phase was never absent entirely and the system still
coarsened in time. Fast particles predominated at the cluster edge
and pushed the slower particles into the dense phase (similar to
fig. 3(a)). The clusters here seemed to be qualitatively different
to the clusters that occur through MIPS in typical monodisperse
active systems52 due to their volatility. Increasing the fraction of
fast particles further (x f > 0.15) did not prevent partial segrega-
tion by particle type, but, the system behavior gradually moved
toward a monodisperse (fast) active system becoming markedly
less volatile as fast particle fraction increased (fig. 3(e), (i)).

By turning on the activity of the slow species (fig. 3, (b)), we
observed how an active slow component altered the system be-
havior. Note that a monodisperse system prepared at Pes = 25

with the same total system density is below the required activity
for MIPS. We found the same trends with respect to particle frac-
tion as in the active/passive case. Below the fast particle fraction
required for phase separation (now xMIPS

f = 0.05), we found a gas
with few active tracers where the path left by the fast compo-
nent now collapsed more quickly (as the slow component did not
rely on Brownian diffusion to consume the void left by the fast
particle). As fast particle fraction increased (fig.3 (f), (j)), we ob-
tained the same behaviors present in the active/passive case with
a seeming decrease in system volatility. The partial segregation by
particle type observed in active/passive systems, persisted when
the slow species was active, but to a lesser extent. Ultimately,
there was no discontinuous jump in system behavior with respect
to slow activity and particle fraction.

As we continued increasing the slow activity (e.g. for Pes = 100,
200, see fig. 3 (c),(d)), the system underwent MIPS regardless of
fast particle fraction. Additionally, the distribution of each parti-
cle type appeared homogeneous, with no prevalent species at the
cluster edge nor in domains in the cluster interior. For systems
prepared at a slow activity that was sufficiently high for MIPS,
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we found that the particle fraction controlled the participation
of particles in the dense phase between the limiting cases of a
monodisperse slow system (for x f ! 0) and a monodisperse fast
system (for x f ! 1). As the slow particle activity approached that
of the fast species, system volatility decreased.

As one of the characteristics of a mixture is the distribution of
particles in each phase, with the most extreme case being a par-
tially segregated dense phase of an active/passive mixture, we
can qualitatively distinguish two regimes. One where phase sepa-
ration also shows segregation by type (active/passive is included
here) and a second regime where there is a more homogeneous
dense phase (even though Pes 6= Pe f ). In other words, keeping
the fast activity constant, at low slow activity the system behaves
like an active/passive mixture and at high slow activity the system
behaves like a monodisperse active system.

4.3 Steady state composition of dense phase

To gain more insight and obtain a quantitative understanding
of the two regimes observed, we computed the dense-phase com-
position after steady-state had been reached. To examine the ef-
fect of mixing, we compared the composition of the equivalent
monodisperse system for each simulation, i.e. one with the same
total area fraction and activity. For example, in figure 4a, dia-
mond teal symbols show the percentage of fast particles in the
dense phase as a function of the fast particle fraction, at constant
slow activity Pes = 50 and constant fast activity Pe f = 500. The
teal dashed line at ⇡ 98% shows the percentage of fast particles
in the dense phase for a monodisperse active system of fast parti-
cles at Pe = 500. Similarly, for slow particles, gold triangles show
the percentage of slow particles in the dense phase as a function
of the fast particle fraction, for constant slow activity Pes = 50 and
constant fast activity Pe f = 500. The brown dashed line at ⇡ 45%
shows the percentage of slow particles in the dense phase for a
monodisperse active system of slow particles with Pe = 50.

In regime I (Pes . 110), we observed deviations in the steady-
state composition of each species in the dense phase with respect
to a monodisperse system (of the same activity, fig. 4a). We found
that the faster species experienced a suppression in the percent-
age of particles participating in the dense phase relative to its
monodisperse counterpart. The slower species experienced the
opposite effect, the steady-state participation in the dense phase
was enhanced upon being mixed with a faster species.

In regime II (Pes & 110), the enhancement and suppression
characteristic of regime I have disappeared (i.e. are within er-
ror of a monodisperse system of either type). Instead, each
species, regardless of what it was being mixed with, assumed the
same percentage of particles participating in the dense phase as a
monodisperse system of the same activity (fig. 4b). This result is
counterintuitive: as fast and slow activities approach one another
but while still very different (e.g. Pes = 200 and Pe f = 500 fig. 4b),
each species behaved as if it weren’t mixed at all, as long as Pes
was sufficiently high. The significance of the slow particle activity
at which this regime change occurs, as well as its dependence on
parameters not studied here (e.g. the total area fraction) are of
great interest to the authors and require further study.

Our data gives a clear relationship for which parameters affect
the magnitude of the enhancement or suppression effect that is
found in regime I. The trends in these data are most evident in
figure 4c, where we show percent difference between the dense
phase of a mixture and a monodisperse system, versus the slow
particle activity. The fast species is always suppressed (relative
to a monodisperse fast system, bottom half of fig. 4c) just as a
slow species can only be enhanced (relative to a monodisperse
slow system, top half of fig. 4c). We see that for any set slow
activity, the extent of the enhancement and/or suppression was
dependent on both the particle fraction and activity ratio. More-
over, the particle fraction was found to control the dominant be-
havior (suppression/enhancement) for a given system. A system
composed of a majority of fast particles predominantly undergoes
enhancement of the slow species (fig. 4a, x f = 0.9) just as a major-
ity slow system primarily exhibits suppression (fig. 4a, x f = 0.1).
The activity ratio was found to control the amount of suppres-
sion/enhancement. For low activity ratio, both enhancement and
suppression are amplified (fig. 4a, PeR = 0.1) and for activity ra-
tio close to unity the effect is greatly reduced (and evidently non-
existent at PeR = 1). Additionally, both behaviors need not occur
in a given system at the same time (e.g. in fig. 4a, at x f � 0.5 the
slow species is being enhanced while the fast species is not being
that suppressed).

To contextualize this result we relate to active/passive sys-
tems. In active/passive systems the slow (passive) species is being
‘pushed’ into the dense phase by the fast species (enhanced rel-
ative to a monodisperse passive system which does not undergo
MIPS at all). We have shown that this finding is not exclusive
to an active/passive mixture, in fact, this effect can be found at
slow particle activity far above the activity required for MIPS in a
monodisperse system (PeMIPS ⇡ 45 for f = 0.6). The extent of the
enhancement/suppression decays asymptotically with respect to
the slow activity. As such, our ‘regime II’ simply indicates that the
asymptotic decay has approached close enough to zero so that the
effect of enhancement or suppression is within standard deviation
of the steady-state cluster participation.

4.4 Dynamic behavior

We then examined the formation and growth of the dense
phase on short timescales. We found that both fast and slow
species nucleated the dense phase at the same time, however, the
rate of growth of each species was distinct where the more ac-
tive component would add to the dense phase more rapidly (ESI,
fig. S6)†. Additionally, we report that the early-stage dense phase
composition did not track that of a monodisperse system of ei-
ther the slow or fast particle type. This effect is observed upon
varying activity ratio at constant particle fraction and upon vary-
ing particle fraction at constant activity ratio (given that x f and
PeR 6= 0,1). At constant particle fraction (fig. 5a), increasing the
activity ratio corresponds to a faster rate of decomposition into
the dense phase (increasing PeR brings lines closer to a monodis-
perse system of fast particles, maroon dashed line). The same
behavior was observed at constant activity ratio (fig. 5b) for in-
creasing fast particle fraction (dark purple dashed line).

8 | 1–12

Page 8 of 13Soft Matter



Fig. 4 Steady-state participation in the dense phase for both fast and slow species. (a, b) Percentage of each particle type in the dense phase for
different particle fraction in (a) regime I (Pes = 50) and (b) regime II (Pes = 200) compared to a monodisperse system of each particle type (dashed
lines). Error bars are shown when larger than the symbol size and in grey shading for monodisperse systems. (a) In regime I slow species experience
enhancement and fast species exhibit suppression with respect to a monodisperse system of the same total area fraction. (b) In regime II fast and slow
species assume the dense phase participation (within error) of a monodisperse fast or slow system respectively. These data are condensed in (c) a
plot of the difference in the percent participation in the dense phase between a mixed and monodisperse system at distinct activity ratios and particle
fractions. Negative values (filled symbols) indicate suppression of the fast component and positive values (unfilled symbols) show enhancement of the
slow component. Regime I persists for systems that undergo MIPS with slow activity up to Pes ⇡ 110 and activity ratio less than unity. Beyond this point,
each species assumes the steady-state participation in the dense phase correspondent to a monodisperse simulation at the same activity and total
system area fraction.

Both of these observations can be captured by the net activ-
ity, whereby increasing the net activity, a system either moves a
homogeneous gas closer to the binodal line or causes a greater
percentage of particles to join the dense phase, at a quicker
rate. While in sections 4.2 and 4.3 we showed that active/active
mixtures at steady state take on the characteristics of an ac-
tive/passive mixture or monodisperse active system, the dynamic
behavior of binary active systems is distinct from either extreme
case.

As demonstrated in figure 5c, the net activity also affects the
nucleation time of an active system. We extracted the time that
the mean cluster size began to increase (fig. 5c, inset) and plot-
ted this against the net activity on a log-log scale (fig. 5c). The
initial nucleation event has a power law dependence on the net
activity with exponent �6/5, (fig. 5c), where a higher net activity
corresponds to a faster nucleation time. This phenomenon is also
dependent on the activity ratio, as such, we fit data at constant
activity ratio to a fixed power law and renormalize the nucleation
time by the produced constant (eb, where b is a function of the
activity ratio). However, this renormalization (and thus the ac-
tivity ratio) does not affect the exponent of the power law. So,
the net activity (an intrinsic quantity) sets a single time for clus-
ter nucleation, independent of the activity of individual species.
Growth of the cluster thereafter is controlled by each species’ ac-
tivity, where an increase in the net activity corresponds to more
rapid coarsening rate.

4.5 Net activity

So far, we have observed the importance of the net activity in
a number of ways: setting the repulsive potential, as a compo-
nent of our kinetic theory, and being a key quantity in describing

the trends of active/active mixtures (e.g. a high net activity cor-
responds to faster nucleation times). We now show the further
utility of the net activity, specifically, how it dictates MIPS into
dense and dilute phases of varying area fractions.

We found that, similar to activity in monodisperse systems, the
net activity outlines the binodal of coexisting area fractions at
steady state (fig. 6a). At low net activity (Penet < 45), we ob-
served that the majority of particles participated in the gas phase
at steady state. As the net activity increased (Penet � 45), we found
that the area fraction of the dense phase exceeded that of the gas
phase. The surplus of particles participating in the dense phase
grew more drastic as the net activity continued to increase. To
further quantify this transition we introduced an order parame-
ter, the difference in the area fraction of dense and dilute phases
(normalized by the total system area fraction),

m =
fl �fg

f
. (9)

Many studies have attempted to determine the universality
class of the MIPS phase transition and have reported the critical
area fraction for monodisperse MIPS (fc = 0.6, the same value
used in this study). As our expression for the net activity re-
duces to the activity for a monodisperse system (for x f ! 0,1 or
Pes = Pe f ), we examined the critical point of this first-order phase
transition with respect to the net activity. Similar to Siebert et
al.47, we examined the inverse net activity in place of tempera-
ture. We extracted the critical inverse net activity, that is the in-
verse net activity when the order parameter is zero, Pe�1

net,c ⇡ 1/45,
(fig. 6b). While the data proximal to the zero-crossing of the or-
der parameter is admittedly sparse in this study, we found fair
agreement with the critical activity reported in similar studies
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Fig. 5 Time-resolved participation of all particles in the dense phase at
constant particle fraction (x f = 0.3) showing the effect of changing slow
particle activity is shown in (a). Colorbar indicates the activity ratio of
each simulation (Pe f = 500). Constant activity ratio (b, PeR = 0.1) illus-
trates the effect of varying the particle fraction (where shade indicates
each simulated particle fraction and dashed lines indicate monodisperse
systems). Dynamic data shows a power-law relationship between nucle-
ation time and net activity (c). Nucleation time is normalized by a constant
(eb) for each value of the activity ratio to emphasize the common slope of
the data. Points are collapsed from a wide variety of activity ratios (PeR),
particle fractions (x f ), and fast particle activities (Pe f ). Inset shows com-
putation of the nucleation time, taken as the local minimum in the mean
cluster size vs. time.

of monodisperse systems (Pec 45 in this study as compared to
Pec = 40)in ref.47. We then constructed the reduced inverse net
activity,

t =
Pe�1

net �Pe�1
net,c

Pe�1
net,c

. (10)

Extracting the slope from a plot of the order parameter versus
the reduced inverse net activity, we determined the critical expo-
nent b = 3/4, for m = (�t)b , (fig. 6b inset). This value is dis-
tinct from previously reported values; both for simulation-based
studies (b = 1/2)47, and in theoretical examinations (b = 1/8 in
agreement with the 2D-Ising model)61. To further probe the va-

Fig. 6 Steady-state area fraction of liquid (circles) and gas (diamonds)
states outline a binodal when plotted against net activity (a). Activity ratio
(color), appears to account for minor deviations from complete collapse
of the data. Order parameter of systems at steady-state (b) where in-
creasing the inverse net activity corresponds to a transition to the gas
phase. Zero-crossing of the order parameter (dashed line) gives the in-
verse net activity at the critical point (Pe�1

net,c = 1/45). (Inset) Determination
of the critical exponent b with respect to the reduced inverse net activity
(m = (�t)b ) gives b = 3/4 (with residual r2 = 0.96 for linear scales).

lidity of the exponent reported in this study, more simulation data
proximal to the inverse critical net activity is required.

5 Conclusion
We computationally studied mixtures of active particles of dif-

ferent activities and thus velocities (fast and slow). We calculated
the binodal envelope for MIPS in the particle fraction-activity
phase space and extended existing kinetic theories on monodis-
perse active and active/passive systems to incorporate a second
active species. Our extended kinetic theory was in good agree-
ment with simulations for the binary systems studied here.

In analyzing the dynamics and steady-state behaviors of ac-
tive/active systems we summarize the main findings and discuss
implications. Emergent phenomena known from monodisperse
active matter and from active/passive mixtures (e.g. MIPS, segre-
gation by particle type, volatility etc.) can be tuned to appear or
vanish in active/active mixtures showing that these phenomena
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are part of a continuum of behaviors. We can however categorize
into two mixing regimes: (i)Regime I: the faster/slower parti-
cles experience suppressed/enhanced participation in the dense
phase due to mixing. (ii) Regime II: each particle type partici-
pates in the dense phase as if it were a monodisperse system. The
two regimes and the transition between them indicates that there
is a tolerance of the emergent behaviors with respect to the two
species’ activities, i.e. there is a whole range of parameters for
which we see each regime. It is interesting to note, for exam-
ple, that the transition between the two regimes for the systems
studied here occurs when Pes ⇡ 110 regardless of the fast activ-
ity (for activity ratio PeR = 0.1 � 0.9 in steps of 0.1). In other
words, the two activities in a mixture can be quite different in
magnitude and still the system would act like a monodisperse ac-
tive system. This could explain the robustness of natural swarms
where we might expect that differences in the velocities of an-
imals/organisms would not immediately result in a collapse of
the group (swarm) behavior. Moreover, this transition between
a regime where there is segregation by type due to distinct ac-
tivities and a regime where the system acts like a monodisperse
homogeneous one could have implications in biological systems
such as liquid-liquid phase separation in the cell62. For example,
it could be that distinct activities contribute (together with other
interactions) to phase separation and a change in the activities of
two species could regulate transitioning from a gas (no MIPS) to
a phase separated state with segregated domains (regime I) to a
mixed dense phase (regime II). Furthermore, one quantity nat-
urally emerges from our analysis, capturing the physics of these
mixtures: the net activity (eq. 7). The net activity gives the repul-
sive strength and is a natural result of a simple kinetic theory for
this system. It provides a clearly defined binodal and coincides
with previously studied limiting cases of active/active mixtures,
(monodisperse active and active/passive systems).

While our results demonstrate the complex behavior that is ac-
cessible to multi-component active mixtures, the work presented
here is only the first step. A number of interesting future direc-
tions emerge. We expect that a greater degree of control is achiev-
able in synthetic active matter via the introduction of additional
active species (as is the case in biological contexts). Furthermore,
a mixture of active species (distinct in their activity) gives an in-
triguing setup for the examination of potential thermodynamic
quantities that set the characteristics of active matter, such as
the active pressure and its implications regarding an equation of
state20,63–65.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No.
(NSF grant number DGE-1650116). DK and TK are thankful for
conversations with Ehssan Nazockdast, Julien Tailleur and John
Brady. We also thank Thomas Dombrowski, Ian Seim and Clayton
Casper for insightful comments.

References
1 R. Di Leonardo, L. Angelani, D. Dell’arciprete, G. Ruocco,

V. Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Ange-

lis and E. Di Fabrizio, PNAS, 2010, 107, 9541–5.
2 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,

Physical Review Letters, 1995, 75, 1226–1229.
3 H. C. BERG and D. A. BROWN, Nature, 1972, 239, 500–504.
4 M. J. Schnitzer, Physical Review E, 1993, 48, 2553–2568.
5 M. E. Cates and J. Tailleur, Annual Review of Condensed

Matter Physics, 2015, 6, 219–244.
6 Y. Fily and M. C. Marchetti, Physical Review Letters, 2012,

108, year.
7 A. P. Solon, H. Chaté and J. Tailleur, Physical Review Letters,

2015, 114, 068101.
8 R. W. Nash, R. Adhikari, J. Tailleur and M. E. Cates, Physical

Review Letters, 2010, 104, 258101.
9 J. Bialké, J. T. Siebert, H. Löwen and T. Speck, Physical

Review Letters, 2015, 115, year.
10 A. Patch, D. M. Sussman, D. Yllanes and M. C. Marchetti, Soft

Matter, 2018, 14, 7435–7445.
11 D. Loi, S. Mossa and L. F. Cugliandolo, Physical Review E -

Statistical, Nonlinear, and Soft Matter Physics, 2008, 77, year.
12 S. C. Takatori and J. F. Brady, Soft Matter, 2015, 11, 7920–

7931.
13 M. E. Cates and J. Tailleur, EPL, 2013, 101, year.
14 J. Tailleur and M. E. Cates, Physical Review Letters, 2008,

100, year.
15 S. C. Takatori and J. F. Brady, Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, 2015, 91, year.
16 M. Rein and T. Speck, The European Physical Journal E, 2016,

39, 84.
17 T. F. F. Farage, P. Krinninger and J. M. Brader, Physical Review

E, 2015, 91, 042310.
18 U. M. B. Marconi, N. Gnan, M. Paoluzzi, C. Maggi and

R. Di Leonardo, Scientific Reports, 2016, 6, 23297.
19 Y. Fily, A. Baskaran and M. F. Hagan, The European Physical

Journal E, 2017, 40, 61.
20 A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri,

M. E. Cates and J. Tailleur, Physical Review Letters, 2015,
114, 198301.

21 A. P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri and
J. Tailleur, New Journal of Physics, 2018, 20, year.

22 I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger and
T. Speck, Physical Review Letters, 2013, 110, year.

23 M. Driscoll and B. Delmotte, Current Opinion in Colloid &
Interface Science, 2019, 40, 42–57.

24 X. Yang, M. L. Manning and M. C. Marchetti, Soft Matter,
2014, 10, 6477–6484.

25 S. Das, G. Gompper and R. G. Winkler, New Journal of
Physics, 2018, 20, 015001.

26 P. S. Mahapatra, A. Kulkarni, S. Mathew, M. V. Panchagnula
and S. Vedantam, Physical Review E, 2017, 95, 062610.

27 C. Kurzthaler, S. Leitmann and T. Franosch, Scientific Reports,
2016, 6, 36702.

28 M. Pu, H. Jiang and Z. Hou, Soft Matter, 2017, 13, 4112–
4121.

1–12 | 11

Page 11 of 13 Soft Matter



29 Y. Fily, S. Henkes and M. C. Marchetti, Soft Matter, 2014, 10,
2132–2140.

30 P. Dolai, A. Simha and S. Mishra, Soft Matter, 2018, 14,
6137–6145.

31 J. Stenhammar, R. Wittkowski, D. Marenduzzo and M. E.
Cates, Physical Review Letters, 2015, 114, 018301.

32 R. Wittkowski, J. Stenhammar and M. E. Cates, New Journal
of Physics, 2017, 19, 105003.

33 S. Ramananarivo, E. Ducrot and J. Palacci, Nature
Communications, 2019, 10, 3380.

34 A. K. Omar, Y. Wu, Z.-G. Wang and J. F. Brady, ACS Nano,
2019, 13, 560–572.

35 G. Pessot, H. Löwen and A. M. Menzel, arXiv:1907.13583,
2019, 3401–3408.

36 M. Theves, J. Taktikos, V. Zaburdaev, H. Stark and C. Beta,
Biophysical Journal, 2013, 105, 1915–1924.

37 E. Ben-Jacob, A. Finkelshtein, G. Ariel and C. Ingham, Trends
in Microbiology, 2016, 24, 257–269.

38 A. J. King, A. M. Wilson, S. D. Wilshin, J. Lowe,
H. Haddadi, S. Hailes and A. J. Morton,
Selfish-herd behaviour of sheep under threat, 2012.

39 B. Pettit, Z. Ákos, T. Vicsek and D. Biro, Current Biology,
2015, 25, 3132–3137.

40 N. H. Nguyen, D. Klotsa, M. Engel and S. C. Glotzer, Physical
Review Letters, 2014, 112, 075701.

41 K. Yeo, E. Lushi and P. M. Vlahovska, Soft Matter, 2016, 12,
5645–5652.

42 R. Wittmann, J. M. Brader, A. Sharma and U. M. B. Marconi,
Physical Review E, 2018, 97, 012601.

43 S. N. Weber, C. A. Weber and E. Frey, Phys. Rev. Lett., 2016,
116, 058301.

44 J. Smrek and K. Kremer, Physical Review Letters, 2017, 118,
098002.

45 A. Y. Grosberg and J.-F. Joanny, Phys. Rev. E, 2015, 92,
032118.

46 I. Ahmed, D. Q. Ly and W. Ahmed, Materials Today:
Proceedings, 2017, 4, 65–74.

47 J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck and
P. Virnau, Physical Review E, 2018, 98, year.

48 S. Thutupalli, D. Geyer, R. Singh, R. Adhikari and H. A.
Stone, Proceedings of the National Academy of Sciences of
the United States of America, 2018, 115, 5403–5408.

49 B. Hancock and A. Baskaran, Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 2015, 92, year.

50 B. Liebchen and H. Löwen, Accounts of Chemical Research,
2018, 51, 2982–2990.

51 J. Stenhammar, D. Marenduzzo, R. J. Allen and M. E. Cates,
Soft Matter, 2014, 10, 1489–1499.

52 G. S. Redner, M. F. Hagan and A. Baskaran, Physical Review
Letters, 2013, 110, year.

53 G. S. Redner, A. Baskaran and M. F. Hagan, Physical Review
E, 2013, 88, 012305.

54 J. A. Anderson, C. D. Lorenz and A. Travesset, Journal of
Computational Physics, 2008, 227, 5342–5359.

55 J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga,
J. A. Millan, D. C. Morse and S. C. Glotzer, Computer Physics
Communications, 2015, 192, 97–107.

56 T. Speck, A. M. Menzel, J. Bialké and H. Löwen, Journal of
Chemical Physics, 2015, 142, year.

57 E. S. Harper, M. Spellings, J. Anderson and S. C. Glotzer,
Zenodo, 2016.

58 A. Stukowski, Modelling and Simulation in Materials Science
and Engineering, 2010, 18, 015012.

59 D. Richard, H. Löwen and T. Speck, Soft Matter, 2016, 12,
5257–5264.

60 C. Reichhardt and C. J. Reichhardt, Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 2015, 91, year.

61 B. Partridge and C. F. Lee, Physical Review Letters, 2019, 123,
year.

62 A. A. Hyman, C. A. Weber and F. Jülicher, Annual Review of
Cell and Developmental Biology, 2014, 30, 39–58.

63 S. C. Takatori and J. F. Brady, Current Opinion in Colloid &
Interface Science, 2016, 21, 24–33.

64 Y. Fily, Y. Kafri, A. P. Solon, J. Tailleur and A. Turner, Journal of
Physics A: Mathematical and Theoretical, 2018, 51, 044003.

65 A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kar-
dar and J. Tailleur, Nature Physics, 2015, 11, 673–678.

12 | 1–12

Page 12 of 13Soft Matter



 

Page 13 of 13 Soft Matter


