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Distinguishing deformation mechanisms in elastocapillary
experiments

Shih-Yuan Chen,a Aaron Bardall,b Michael Shearer,b and Karen E. Danielsa

Soft materials are known to deform due to a variety of mechanisms, including capillarity, buoyancy, and
swelling. In this paper, we present experiments on polyvinylsiloxane gel threads partially-immersed in three
liquids with different solubility, wettability, and swellability. Our results demonstrate that deformations due to
capillarity, buoyancy, and swelling can be of similar magnitude as such threads come to static equilibrium.
To account for all three effects being present in a single system, we derive a model capable of explaining the
observed data and use it to determine the force law at the three-phase contact line. The results show that the
measured forces are consistent with the expected Young-Dupré equation, and do not require the inclusion of
a tangential contact line force.

1 Introduction
Elastocapillarity is a study of how surface tension deforms soft
materials such as polymers and biological tissues,1–6 giving rise
to such phenomena as film wrinkles,7,8 the clumping of wet
hairs,9 capillary origami,10,11 substrate deformation due to par-
tial wetting,4,6,12–15 differences in advancing and receding con-
tact angles,16,17 the Shuttleworth effect,18,19 and more. An im-
proved, quantitative understanding of elastocapillary effects is
crucial to explaining various industrial and biological phenom-
ena, including soft stamp deformation,20 high-aspect-ratio poly-
mer pillars,21 bending flexible legs of water striders,22 and pas-
sive droplet motion23 including durotaxis24. A complete descrip-
tion of elastocapillary deformation will include all external and
internal forces on the soft material. These can simultaneously
include adhesion,6 hydrostatic pressure,25 electric forces,26 sur-
face tension changes due to uncrossliked oligomers from sili-
cone,27–29 and swelling30–33. These various mechanisms act
within the bulk, or only at an interface. In any elastocapillary
experiment, it is necessary to quantify both the relative magni-
tude of these forces, and the timescales over which they act, in
order to develop a valid, predictive model.

In this paper, we examine how hydrostatic forces and swelling
dynamics, commonly neglected in many elastocapillary experi-
ments, can significantly influence the observation of contact line
forces. Buoyancy is present for any material immersed in a liq-
uid, and swelling often occurs as the liquid is absorbed by the
gel, causing it to increase its volume34. To quantitatively re-
solve these two effects, we perform experiments on polyvinyl-
siloxane (PVS) gel threads partially immersed in three represen-
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tative liquids. These are chosen to be ethanol (polar and am-
phiphilic), glycerol (polar and hydrophilic), and Fluorinert FC-40
(nonpolar and hydrophobic). These liquids cover a wide range
of physical and chemical traits and are typical choices in many
previously-performed elastocapillary experiments13,25,35. We ob-
serve that the equilibration of internal stresses takes place over
several hours, regardless of the choice of fluid. In contrast, de-
formation due to swelling is a fluid-dependent effect: for ethanol
we observe that it dominates over buoyancy-induced deforma-
tions, while for glycerol or Fluorinert swelling effects are rela-
tively small. These observations regarding the swelling of PVS
with the these liquids are consistant with those of Lee et al. 30

for polydimethylsiloxane (PDMS). Specifically, they also observed
the swelling ratio of PDMS in ethanol was an order of magnitude
larger than PDMS in glycerol or Fluorinert.

To quantify and understand these deformations, we develop a
model that includes all three effects – capillarity, buoyancy, and
swelling. In what follows, we use the term surface tension to de-
scribe the capillary force at the liquid-air interface, and surface
stress to describe the capillary force at the solid-air and solid-
liquid interfaces. Our model successfully reproduces the observed
deformations with only surface stress and a small swelling ratio
as free parameters. Using this model, we are able to address a
current controversy surrounding the modeling of elastocapillary
wetting: the presence or absence of a tangential component of
the contact line force4,12,14,25,36–40. In previous experiments,25

it was reported that a partially-immersed thread experiences in-
ternal deformations consistent with the presence of a component
of the contact line force which is tangential to the substrate sur-
face:

F‖ = γ(1+ cosθ), (1)

where γ is the surface tension of the liquid, and θ is the Young’s
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Fig. 1 (a) Schematic of the experiment setup, showing the placement of the gel
thread within the cuvette. (b) A sample image of fluorescent beads located within
the gel thread. Each yellow circle marks a bead used to track displacements.
(c) Schematic of the response of the fluorescent beads to a change in stress, in
this case due to a change in the mass of the metal weights from m1 to m1 +m2.
Similar displacement measurements are used in all experiments, for measuring
the response due to swelling, buoyancy, and capillary force.

angle. The presence of this tangential component, hypothe-
sized to arise from the liquid molecules attracting polymers at
the surface of the thread via van der Waals forces, would mean
that the contact line for a soft solid follows neither the Young-
Dupré equation nor Neumann’s equation. Importantly, the ex-
periments of Marchand et al. 25 were done using ethanol as the
immersion fluid, while studies using water, glycerol, or Fluorinert
droplets13,14,36,40 deposited on a gel substrate found no neces-
sity for introducing a tangential component for the contact line
force in order to explain the observed deformations.

In previous experiments on a thread immersed in ethanol,25

swelling and buoyancy effects were incompletely included in the
explanatory model. In this work, we take into account both
of these forces, together with the viscous equilibration of beads
within the thread, and thereby observe that the contact line force
law is in agreement with the Young-Dupré equation, consistent
with previous work on droplets13,14,36,40.

2 Methods
2.1 Apparatus
As was done in the prior experiments by Marchand et al. 25 , we
measure the internal deformation of a polyvinylsiloxane (PVS)
gel thread immersed in a fluid; the casting process for the threads
is described in §2.2. The thread is lowered into a glass cuvette via
a linear stage (Thorlabs), and then one of three fluids (ethanol,
glycerol, Fluorinert) is added; a schematic is shown in Fig. 1a.
The size of the cuvette (cross section: 2 cm × 5 cm, height: 5 cm)
is chosen to be large enough that the liquid surface can be as-
sumed to be flat at the center since the liquid meniscus is less
than 5 mm wide.

Internal deformations are observed via fluorescent beads
(525 nm absorption, 565 nm emission) cast into the gel, serving as
position markers. A green laser (Laserglow, 532 nm) illuminates
the beads, and the emitted light passes through a notch filter (Ed-
mund, 568 nm with 2 nm FWHM) before being recorded on a
low-noise digital CCD (Andor Luca R 604, 1004×1002 pixels). In
combination with the lens (10× Mitutoyo long working distance
objective), the resolution is 1.6 µm/pixel, and the depth of field is
around 1 bead diameter. Since the thread is longer than the field
of view (1.6 mm) of our camera, we take pictures of the thread
by moving the camera along its length using a 3-axis linear stage
(Thorlabs) with both coarse and fine control. We locate the posi-
tion of each bead using a computer code built around the MATLAB
regionprops algorithm, and then we stitch each series of images
into a single image by maximizing the cross correlation between
two adjacent images. A sample result is shown in Fig. 1b.

2.2 Gel thread preparation and characterization
Each gel thread is cast inside a glass capillary tube (Wheaton,
5 − 25 µL) from 2-part PVS (Ecoflex 00-10). To prevent stick-
ing between the gel and the capillary tube, we silanize the
inner and outer surfaces of the tube using a solution of 5%
(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (Gelest) in
95% 2-Propanol (Sigma-Aldrich) and dry it in an oven for 30 min-
utes at 150◦C. Fluorescent polystyrene beads (envy green, Bangs
Laboratories, 10 µm in diameter) are mixed into one component
of the gel mixture at a concentration of 10 µL/g (volume of bead
solution per weight of liquid). Immediately prior to casting, we
use a petri dish to mix the first and second components (1:1
weight ratio), and degas the mixture in a vacuum chamber un-
til there are no visible bubbles (typically at least 3 minutes). We
draw the gel-bead mixture into the capillary tube using a syringe
pump. The threads are cured at room temperature for 24 hours,
after which we break the capillary tube and pull it away to reveal
the cured thread. The density of the gel is ρs = 1040 kg/m3. We
pick one particular thread with a length L = 2.5 cm, and radius
R = 475 µm. All the observations presented in §4 result from us-
ing only this one thread to avoid accounting for changes in the
Young’s modulus and surface roughness among different threads.
The reproducibility and aging of the thread are discussed in §4.2.

To ensure that the thread hangs straight in all experiments, we
glue a small metal weight (0.38±0.01 g, shown as m1 in Fig. 1c)
to the lower end of the thread using a small amount of PVS gel.
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To measure the Young’s modulus of the thread, we temporar-
ily attach an additional metal weight m2 = 0.09, 0.16, 0.21, or
0.29 g to the thread, as shown in Fig. 1c, further stretching the
thread. From the displacement fields made by comparing the
positions of beads under pairs of loading conditions, we find a
linear relationship and measure the average Young’s modulus to
be E = 100±15 kPa, with the error bounds given by the standard
error across 7 pairwise measurements. All Young’s modulus mea-
surements were done in air.

2.3 Cleaning procedure

Typically, a cured elastomer will contain remnants of un-
crosslinked polymer oil known as oligomers; when the elastomer
is in contact with a liquid, some of these oligomers will dissolve
into the liquid30. These oligomers, when they migrate to the sur-
face of the liquid, have been observed to act as a surfactant and
thereby reduce the surface tension of the liquid27–29. In order
to perform controlled experiments, we follow the cleaning proce-
dure suggested by Hourlier-Fargette et al. 27 , modified in duration
to account for the use of ethanol in place of toluene. During two
sequential 24-hour immersions in ethanol, the oligomers dissolve
from the thread into the bath and are flushed away. Finally, we
dry the thread in a vacuum chamber for 15 minutes to remove
the residual ethanol, followed by air-drying for a week. After
each experiment, we submerge the thread in ethanol for 1 hour
to remove the residual liquid on the thread surface or absorbed
in the thread, followed by air-drying for one day.

2.4 Liquids

Based on previous elastocapillary experiments,13,25,35 we select
the three representative liquids (ethanol, glycerol, Fluorinert FC-
40), the detailed properties of which are given in Table 1. All
liquids are purchased from Sigma-Aldrich; we measure the den-
sity ρl using a pycnometer (Kimble, 10 mL) and the liquid surface
tension γ using a tensiometer (Surface Tensionmat, Fisher). Af-
ter the thread is immersed in each liquid, we pour the liquid out
of the cuvette and check the surface tension again with the ten-
siometer. We observe no change in surface tension, confirming
that the oligomers in the thread are cleaned as described in §2.3.
To measure the Young’s angle θ for PVS, we first cast a thick, flat
slab and clean it using the methods given in §2.3. We deposit
droplets of diameter D & 3 mm, so that the ratio γ/ED � 1 is
satisfied, image each droplet from the side, and measure θ using
ImageJ. Errors reported are the standard error across 6 measured
droplets. Finally, to quantify the in-situ evaporation rate for each
liquid, we measure the combined mass of the liquid and cuvette
over a period of 3 hours, and record the loss.

2.5 Observing procedure

As summarized schematically in Fig. 2, we start from a state
in which the gel thread is hanging, centered, in a cuvette (not
shown). We pour in the chosen liquid until the liquid level is
higher than the position of the metal weight (L′

sl
) and then wait

for a specified waiting time, tw (ranging from 0 to 24 hrs). The
position of the liquid surface is denoted z′ = 0, and all primed

Liquid 95% ethanol glycerol
Fluorinert

FC-40
Density ρl 0.8 g/cm3 1.25 g/cm3 1.855 g/cm3

Surface tension
γ

22 mN/m 60 mN/m 16 mN/m

Young’s angle
θ to PVS ≈ 45◦ 106◦ ±6◦ 29◦ ±3◦

Evaporation
rate in cuvette 100 µm/hr < 1 µm/hr 10 µm/hr

polar polar nonpolar
amphiphilic hydrophilic hydrophobic

Table 1 The three liquids used in the experiments. Values are measured as de-
scribed in §2.4, except for the Young’s angle θ of ethanol, which is given by Marc-
hand et al. 25 .

variables are in reference to this initial state. Next, we perform
a vertical scan of images to record the bead positions, and then
increase the liquid level by a specified ∆L to z = 0 and again wait
for time tw . The un-primed variables refer to this final state. We
then perform a vertical scan of images to record bead positions,
and use particle tracking41 to measure the displacements of the
beads between the final and initial states.

3 Modelling
Our model is based on the differences induced within the
gel thread, between the initial and final configurations shown
schematically in Fig. 2. Both the left and right threads are in
static equilibrium, with the only external change being the liq-
uid level. We specify a different coordinate system for the two
states, with the initial (left) state specified by cylindrical coor-
dinates (r ′, φ′, z′), and the final (right) state by (r, φ, z). For an in-
crease in liquid level by a height ∆L, r ′ = r, φ′ = φ, and z′ = z+∆L.
Thread segments of length L′sg (above the liquid surface) and
L′
sl

(below the liquid surface) add up to the total length L′. We
further assume that L′ = L and radius R′ = R are approximately
constant for the two states; note that our bead displacements are
around 25 µm, and the length of the thread is 25 mm (see §4).

Two segments of the thread form the focus of our work: Seg-
ment A (Above the liquid in both states) and Segment B (Below
the liquid in the final state); we ignore the segment that remains
below the liquid surface in both states. Segment A therefore has
z′ > ∆L in the initial state and z > 0 in the final state while Seg-
ment B has z′ > 0 in the initial state and z < 0 in the final state.

To analyze the different deformations present in the initial and
final states, we derive the force balance equation that holds a
partially immersed thread in place using the principle of virtual
work. From this formulation, we compare the strain field in the
initial state (ε ′) to the strain field in the final state (ε), via the
strain difference, ∆ε = ε − ε ′. The integration of the strain differ-
ence gives us the displacement field u in the thread. Note that the
forces to be considered in calculating u for Segment A differ from
those required in Segment B, due to the absence/presence of the
liquid.

In writing our model, we consider two forces due to the pres-
ence of the liquid: buoyancy and capillarity. For changes in liquid
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Fig. 2 Schematic diagram for the observing procedure, with the left side representing the initial state (primed variables, coordinate system z′) and the right side
representing the final state (un-primed variables, coordinate system z). The two coordinate systems are displaced relative to each other by a distance ∆L, the imposed
increase in the liquid level between the initial and final states of the experiment. The horizontal dashed line on the left separates the segments above (length L′sg ) and
below (length L′

sl
) the liquid surface. On the right, the horizontal dashed line also separates the segment above from the segment below the liquid surface. Segments A

and B are defined by these two dashed lines. The thread has a metal weight of effective mass m∗ (modified by buoyancy) hanging from its end. Static force equilibrium
results from the stress balance (stresses are denoted F , measured in mN/m) balance among the holder, gravity, buoyancy, capillarity, and the proposed tangential
component F‖ of the force at the contact line.

level on the order of 1 cm, the change in buoyancy force acting
on the thread is approximately 100 µN for using Fluorinert. This
is slightly larger than the capillary force from the surface ten-
sion present in the experiment, which the Young-Dupré equation
specifies as 40 µN for a 1 mm diameter thread and the material
properties given in Table. 1.

3.1 Force balance equations from virtual work

As shown in Fig. 2, the partially immersed thread in the final state
is held up by an external force 2πRFext, where F has units of sur-
face tension (mN/m). Physically, this external force is the sum
of both capillary and buoyancy effects, the weight of the partially
immersed thread, and the effective weight of the immersed metal
weight. We calculate 2πRFext by the principle of virtual work, de-
termining the change in the potential energy as we lift the thread
by an infinitesimal distance δ above the current state:

2πR Fext =
d∆U
dδ

����
δ→0

(2)

where ∆U is calculated from the sum of the surface and gravity
potential energies: ∆U = ∆Usurface +∆Ugravity.

For values of the surface energy at the solid-air (γsg) and solid-
liquid (γsl) interfaces, the total surface energy changes by

∆Usurface(δ) = 2πR
[
(Lsg + δ)γsg + (Lsl − δ)γsl

]
(3)

Differentiating Eq (3), the capillary force arising from the surface

energy is

d∆Usurface
dδ

����
δ→0
= 2πR(γsg −γsl) = 2πRγ cosθ, (4)

with γ (see Table 1) the surface tension at the liquid-air interface,
and the last equality coming from the Young-Dupré equation.

The potential energy also changes due to an increase in grav-
itational potential energy as the thread is raised by a distance
δ, determined from both the thread and the metal mass. This
change is

∆Ugravity = πR2g

∫ δ

0
ρ(z)h(z)dz+m∗g

∫ δ

0
dz (5)

The first term on the right side is an integral of the thread density
over the whole length of the thread. Above the fluid surface, the
thread is in the air, so the density is ρ = ρs . Below the fluid sur-
face, the correct density for the calculation is the effective density
ρ∗ ≡ ρs − ρl . This gives

ρ(z)h(z) =
[
ρs(Lsg + z)+ ρ∗(Lsl − z)

]
The second term on the right side in Eq. (5) is the fixed metal
mass. Therefore, the gravitational force is

d∆Ugravity
dδ

����
δ→0
= πR2g(ρsL− ρlLsl)+m∗g. (6)

Adding Eq. (4) and (6) to form the right side of Eq. (2), we
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have an expression for the external force holding up the thread:

2πR Fext = 2πRγ cosθ + πR2g(ρsL− ρlLsl)+m∗g. (7)

For a given cross section of the thread immersed in the liq-
uid, we assume the cross section is subject to a force 2πRFimm,25

which equals the sum of gravity, buoyancy, and surface stress at
the solid-liquid interface. Similar to Eq. (7), one has

−2πR Fimm = 2πRΓ− πR2g(ρsL− ρlL′sl)−m∗g (8)

where the first term on the right side contains an unknown pa-
rameter Γ that comes from the change of the thread surface from
air to liquid. Unlike Eq. (7), which comes from principle of virtual
work, Eq. (8) comes from the balance of stress. Therefore, instead
of surface energy, Γ is the change of the surface stress from solid-
air to solid-liquid interface. The second and the third term in
Eq. (8) come from gravity and buoyancy on both the thread and
the metal weight. Note that this assumption leaves open the pos-
sibility of a tangential component of the contact line force given
by

2πR F‖ = 2πR (Fext −Fimm) = 2πR (γ cosθ +Γ) (9)

This expression allows us to measure the value of Γ, and thereby
determine whether or not a non-zero F‖ is present: if Γ = −γ cosθ,
then F‖ = 0 and the surface stress of the gel behaves as if it were
the surface tension of a liquid.

3.2 Displacement fields

To determine Γ, we follow the method suggested by Marchand
et al. 25 : we first measure the displacements of the beads, and
then fit the observed displacement data to a theoretical predic-
tion for Γ. In §3.1, we derived the force balance equation for a
partially immersed thread. Now we compare the force difference
before and after the liquid level increases, which corresponds to
the initial state (the left thread in Fig. 2) and the final state (right
thread). We start with the stress tensors and the strain fields in
two states. Then we derive the displacement field by integrating
the strain difference between the two states.

From §3.1, we know all of the applied forces on the thread,
which we can use to calculate the stress tensor inside the thread.
This includes contributions from not only the forces in the vertical
direction (z or z′), but also radial stresses which arise from the
surface stress. Again, all primed variables refer to the initial state,
and all un-primed variables to the final state.

We begin with the stress tensor in the final state: above the
liquid surface (z > 0), σrr = 0 as there is no hydrostatic pressure or
the change in surface interface. Below the liquid surface (z < 0),
we assume that the hoop stress is

σrr = −
Γ

R
+ ρlgz

where the first term on the right side comes from the change in
surface stress from air to liquid, and the second term comes from
hydrostatic pressure. Dividing Eq. (7) and Eq. (8) by the cross
section of the thread (πR2), we describe both the vertical and

radial stresses applied to the thread:

σzz (z) =


2γ cosθ
R −gρlLsl +α, z > 0

−2Γ
R −gρlLsl +α, z < 0

(10)

where α ≡ gρsL+m∗g/πR2 is a constant, and

σrr (z) =
{

0, z > 0
− ΓR + ρlgz, z < 0

(11)

The stress tensor for the initial state takes the same form, but with
z and L having primes.

Assuming a linearly elastic, incompressible material with L� R
(conditions reasonable for our thread), the vertical displacements
uz arise solely from εzz :

∂zuz = εzz =
1
E
(σzz −σrr ) (12)

A detailed derivation of the strain fields for both states is provided
in Appendix §6.1. Since our experimental measurements arise
from comparing the displacements for two different states, we
want to model the difference of the strain fields, ∆ε = εzz − ε ′zz .
We use the transformation z′ = z +∆L and L′

sl
= Lsl −∆L in the

calculations that follow. The strain difference in Segment A (z′ >
∆L, z > 0, always above the liquid) is

∆εA =
1
E

[
−ρlg(Lsl − L′sl)

]
= − ρlg∆L

E
. (13)

Note, this value is a constant, and all of the values are
known/measured from separate experiments (no free parame-
ters). The strain difference in Segment B (z′ > 0, z < 0, switches
from above to below the liquid) is

∆εB =
1
E

[
−2γ cosθ +Γ

R
− ρlg(z+∆L)

]
. (14)

Note that this predicts a position-dependent change in strain,
since the hydrostatic pressure increases along the length of the
immersed thread. In Eq. (13) and Eq. (14), the negative sign
indicates that the thread is compressed in both Segment A and B.

To determine the displacement field, we integrate Eq. (13) and
(14) along the vertical direction and obtain

uz (z) =

− ρlg∆L

E z, z > 0

−2γ cosθ +Γ
E R z− ρlg∆L

E z− ρlg2E z2, −∆L < z < 0
(15)

where the displacement field is referenced to the position in the
final state. In Segment A, z is positive so uz is negative, while in
Segment B, z is negative so uz is positive. Note that within Seg-
ment A, the displacement of the beads is due only to buoyancy,
for which there are no free parameters. This allows us to use
data from this region to measure the magnitude of the swelling
effects in the experiments. However, in Segment B, the displace-
ment of the beads comes from two effects: capillary forces (both
surface tension and surface stress) and buoyancy. Therefore, we
can determine the only unknown quantity, the change in surface
stress Γ, by measuring buoyancy, the surface tension γ cosθ, and
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the displacements of beads u. By fitting this data to Eq. (15),
Eq. (9) allows us to calculate F‖ , where γ cosθ is known, and Γ is
obtained from fitting.

4 Results

4.1 Equilibration time

To test the effect of waiting time on the deformation field, we per-
form experiments using Fluorinert, which has been reported to in-
duce little swelling30. We repeat an identical experiment using a
liquid level change of ∆L = 15 mm, for five different waiting times
tw (from light to dark green in Fig. 3), up to one day in duration.
As shown in Fig. 3a, the displacements of the beads uz in Seg-
ment A are statistically identical for all tw > 6 hrs. We conclude
that beads which remain above the liquid surface reach equilibra-
tion within 6 hrs. Within Segment B (see Fig. 3b), uz continues to
evolve up to tw = 18 hrs, after which uz above z = −5 mm is con-
sistent with the values observed at 24 hrs. Therefore, the higher
portion of Segment B reaches equilibration within about 1 day.

This long equilibration time is consistent with previous exper-
iments done on a droplet deposited on a thin film16,40,42,43. In
those experiments, the surface of the thin film deforms at a rate
of several microns per minute. Since our thread is several cen-
timeters long, we expect timescales to be an order hours rather
than minutes. In contrast, Park et al. 40 showed that the contact
angle of a droplet on a thin film develops within less than a sec-
ond, via a rapid elastic deformation of the substrate. This sets a
clear separation of timescales for our experiment: with the con-
tact angle between the thread and the liquid being determined
within a second by elastic deformation, while the internal strain
field equilibrates over many hours by viscous deformation. To fur-
ther test these viscoelastic traits, we cast a block of PVS and mea-
sure its complex shear modulus using a rheometer (Anton Paar
MCR-302). We find the loss modulus to be G′′ ≈ 7 kPa, while the
storage modulus is G′ ≈ 30 kPa. With these parameters, we expect
to observe a slow, viscous motion as well as an elastic response.

4.2 Swelling

Because our model (§3) doesn’t account for swelling effects, we
need to both determine under which conditions they are present.
Because all of the parameters in Eq. (15) are known for z > 0, we
are able to directly compare the displacements of beads uz in Seg-
ment A with the theoretical prediction. Any difference between
the data and the theory will identify the magnitude of swelling
effects. As an additional benefit, recall that uz in Segment A is
less sensitive to waiting time (see Fig. 3).

We perform experiments to measure bead displacements for
threads immersed in each of the three liquids, for a liquid level
change of ∆L = 10 mm; these results are shown in Fig. 4. As given
by Eq. (15), the buoyancy force compressing the thread increases
as we increase the liquid level; we therefore expect uz < 0 for
beads at locations z > 0. We observe this compressive effect for
experiments with both glycerol and Fluorinert. However, for ex-
periments with ethanol, we observe uz > 0 and attribute this to
swelling (as would be expected from the work of Lee et al. 30) Al-
though Segment A is not immersed in liquid, the ethanol absorbed

Fig. 3 Dependence of the measured displacement field uz on the waiting time
tw = 0 (light green) 6, 12, 18, 24 hrs (dark green). Data is shown (a) in Segment
A, which is always above the liquid surface and (b) in Segment B, which switches
from above to below the liquid surface. The inset pictures show how the thread
is compressed. The red arrows represent the displacement of the tracked beads
(marked red). The negative slope indicates a net compressive stress on the im-
mersed thread. The observable length of Segment A at tw = 0 (light green) is
shorter than the lengths at other waiting times because the initial liquid level (z′ = 0
in Fig. 2) is around 2 mm higher than in the other datasets.

6 | 1–11

Page 6 of 12Soft Matter



Fig. 4 Measured displacement uz for the three liquids considered, all taken
within Segment A (above the liquid surface), where the results are less sensitive
to waiting time. For glycerol and Fluorinert, tw = 12 hrs; for ethanol tw = 6 hrs
(to minimize the influence from evaporation).

within Segment B can also diffuse into Segment A. This causes the
whole thread to swell enough to overcome the compression due
to buoyancy, and appear as if it is in tension (uz > 0).

Using experiments with glycerol and Fluorinert, we can per-
form a direct comparison to the model using the known param-
eters provided in Table 1. In Fig. 5(a), we observe that data ob-
tained from the experiment with glycerol is in agreement with
the model. Data for ur displacements (for experiments with glyc-
erol) are shown in the Appendix (Fig. 8 in §6.2) and are also in
agreement with predictions. From this, we conclude that there
are no swelling effects due to the glycerol, that buoyancy (alone)
controls the changes to strain within Segment A, and that the
assumption of constant total length L and radius R are valid. In
Fig. 5(b), we observe that uz for the thread in Fluorinert is slightly
less than predicted, suggesting a small swelling ratio.

To make sure that the thread is not aging during the exper-
iments, we also compared the glycerol data in Fig. 4 with the
theory, and found the data again match. The two experiments in
Fig. 4 and 5 were performed around 6 months apart, so we con-
clude that there is no aging in that time frame. This also demon-
strates the reproducibility of our experiments.

In separate experiments on a centimeter-sized PVS block, we
directly measure the swelling rate of PVS immersed in Fluorinert,
ethanol, and glycerol. As reported in detail in the Appendix
(§6.3), we observe a weight change corresponding to a volume-
swelling ratio ≈ 0.2% for using Fluorinert, ≈ 1.3% for ethanol,
and none for glycerol, which is consistent with the discrepancy
shown in Fig. 4 and Fig. 5. Because the swelling occurs within
15 minutes, this timescale is well-separated from the hour-long
equilibration time for the bead position measurements.

Note that although we use PVS for our experiments, the
swelling effect we observe is consistent with previous elastocap-
illary studies using polydimethylsiloxane (PDMS) substrates. Un-

(a)

(b)

Fig. 5 Measured displacement uz in Segment A (above the liquid surface), com-
pared to predicted values from Eq. (15) where the pair of dashed lines are the
upper and lower bounds of the theoretical prediction, calculated from the standard
error on the Young’s modulus measurement. (a) Results for glycerol, tw = 12 hrs.
(b) Results for Fluorinert, tw = 24 hrs.

1–11 | 7

Page 7 of 12 Soft Matter



der room temperature, Lee et al. 30 found that the volume of
PDMS immersed in ethanol increased 4%, but by less than 1%
for PDMS in glycerol, water, ethylene glycol, or perfluorocarbon
liquids (such as Fluorinert). Importantly, since the swelling ratio
changes as a function of temperature,44 it is important to fix the
experimental conditions in such experiments.

4.3 Electrostatic forces

In our model, we excluded electrostatic forces, which can arise
due to triboelectric charging when the thread is removed from
the silanized capillary tube. Such forces are observed in our ex-
periments before the intial-state measurements, when the thread
is electrically-attracted to the wall of the glass cuvette. Polar sol-
vents such as glycerol could shield these forces, while nonpolar
liquids like Fluorinert have limited shielding ability45. To deter-
mine whether electrostatic forces are present in our experiments,
we neutralize the charges on the surface of the thread and the cu-
vette with an anti-static gun (Zerostat 3, Milty™), and observe the
same displacement results as presented in Fig. 5b. Therefore, we
determine that there is no significant influence from electrostatic
charges on the results of our experiments.

4.4 Tangential component of the contact line force

Finally, we are able to use the results from our experiments on
waiting time, swelling, and electrostatics to determine whether
there is a measurable tangential component to the contact line
force F‖ in Eq. (9). To select a liquid, we consider several require-
ments. To avoid both significant swelling and a high evaporation
rate, we need to select either glycerol (no swelling) or Fluorinert
(small swelling). However, glycerol has an additional difficulty:
its lack of optical clarity makes it unsuitable for measurements
in Segment B, where images must be collected below the liquid
surface. This leads us to a choice of Fluorinert, which is optically
clear, with the caveat that we will then need to account for the
measured swelling ratio by adapting the model.

Since the swelling ratio is small, we approximate its effects in
Eq. (15) as being constant throughout the whole thread. We mod-
ify this equation to include a swelling parameter β which takes the
same value in both Segment A and Segment B. Thus,

uz +uA− βz = − ρlg∆L
E

z, z > 0

uz +uB − βz = −2γ cosθ +Γ
E R

z− ρlg∆L
E

z− ρlg
2E

z2, z < 0

(16)

We have additionally included a constant offset (uA and ub) to
each displacement field to account for measurement uncertainty
in the determination of the location of the liquid surface (z = 0),
due to the presence of the meniscus. The unknown parameters
in Eq. (16) are the swelling parameter β and a constant material
property Γ which represents the change in surface stress from
immersion in air vs. liquid.

This gives us two equations, and two fitting parameters,
for each experimental run. We determine the optimal values
for β and Γ by simultaneously fitting (using MATLAB function
lsqnonlin) the data from Segments A and B, for two separate ex-

Fig. 6 Measured displacement uz in Segment A (above the liquid surface)
and Segment B (below the liquid surface), compared to predicted values from
Eq. (16). The continuity of the fit across the two equations is guaranteed by the
simultaneous fitting process. The two datasets are for ∆L = 15 mm (green cir-
cles) and 20 mm (black diamonds), both with a waiting time tw = 24 hrs. Fitting
parameters are discussed in the text.

periments. Two experiments were done, with liquid level changes
∆L = 15 mm and ∆L = 20 mm. The difference in the liquid level
between these two experiments (5 mm) corresponds to 20% of
the total thread length L. The boundary condition of the fluid
diffusing into the swelling thread is set by the amount of liquid
in contact with the thread (Segment B) and the amount of dry
thread surface, since liquid evaporates from the thread (Segment
A).46,47 These boundary conditions are different in the two ex-
periments, due to differing values of ∆L. Therefore, the amount
of diffusive fluid is not the same, so the magnitude of the swelling
changes. Hence, we allow β to be different for the two experi-
ments, but we expect Γ to match.

The data and fitting results are shown in Fig. 6. We find that
the best-fit swelling ratio is β = 0.11% for ∆L = 15 mm and β =

0.24% for ∆L = 20 mm. These values are both consistent with our
direct measurements of the swelling ratio (see §4.2 and Appendix
§6.3.) We determine that the surface stress consistent with both
sets of measurements is Γ = −12.8± 10.0 mN/m (95% confidence
interval). Using the known values of γ and θ in Eq. (9), this gives
the measured value of the tangential component of the contact
line force

F‖ = 1.2±10 mN/m,

which is consistent with F‖ = 0. As a comparison, the reported
value in previous liquid-thread experiments25 is Feth

‖ = 43.3 ±
8.2 mN/m. Using values from Table 1, we normalize F‖ and
Feth
‖ by the surface tension γ for each liquid. The results are

F‖/γFluorinert = 0.1±0.6 and Feth
‖ /γethanol = 2.0±0.4. Because these

two normalized values are mutually outside each other’s confi-
dence intervals, we conclude that our value of F‖ disagrees with
what was measured previously.
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Note that the brand of PVS used in previous liquid-thread ex-
periments25 was EC00 RTV rather than Ecoflex 00-10, and there-
fore might have a slightly different composition. However, since
we found the force law at the contact line to be consistent with
those found in the droplet-PDMS experiments,13,40 we believe
that the force law is independent of the elastomer chemistry.

Several other explanations are possible for the discrepancy be-
tween the reported F‖ and Feth

‖ . First, ethanol causes large
swelling during the observation period (see §4.2). However, in
our thread experiments and previous droplet-PDMS experiments,
liquids with small swelling ratio like water, glycerol, and fluo-
rinert are used, which reduces the swelling problem. Second,
if data were recorded quickly (to minimize the swelling effect,
and also the effect of evaporation), the beads would not yet have
reached their equilibrium positions (see §4.1). In this case, a
static theory cannot be applied. Third, in both cases the models
are based on linear elastic theory. However, when the gel thread
experiences swelling, gel porosity should also be taken into ac-
count48–51. Finally, the measured strain in our experiments is
an order of magnitude smaller than was present in the Marchand
et al. experiments. It is unknown what effect the magnitude of
strain has on the magnitude of the tangential component of the
contact line force.

Recent papers5,18,35,52–54 aim to disentangle how the surface
stress of an elastomer changes under tangential stresses. This
effect, known as the Shuttleworth effect55 argues that the solid
surface stress changes in response to any applied tangential stress.
If the strains of the substrate are different for solid-air vs. solid-
liquid surfaces, the Young’s angle θ might change due to the Shut-
tleworth effect. It has been shown that the Young’s angle for PVS
gel does not change when a uniform strain is applied to the sub-
strate35: the vertical strain due to our hanging weight m∗ does
not affect Young’s angle. Second, the strain of the thread in Seg-
ment A comes only from buoyancy, while in Segment B, the strain
comes from both capillarity and buoyancy. Therefore, there is a
strain difference between the solid-air surface and the solid-liquid
surface. Our results suggest that Γ ≈ −γ cosθ = −γsg + γsl , such
that the Young’s angle θ remains constant. This is consistent with
the expected lack of a Shuttleworth effect in our system.

5 Conclusions
We perform controlled experiments to quantify the elastocapil-
lary effects on a PVS gel thread partially immersed in a variety
of liquids. We show that swelling and buoyancy have effects of a
similar magnitude to capillary forces. We also demonstrate that
the differing swelling ratios among various liquids render some
as poor choices for elastocapillary experiments: glycerol and Flu-
orinert are favored over ethanol. In the worst cases, swelling can
overwhelm what would have otherwise been compressive forces.
However, glycercol also presents difficulties due to a lack of opti-
cal clarity. Because the swelling ratio for using Fluorinert is less
than 1%, as well as excellent optical clarity and slow evaporation,
we find it to be a good choice for elastocapillary experiments.

In quantifying each of these effects, we observed several dis-
tinct timescales, shown in Fig. 7, that need to be considered
when undertaking experimental designs. In our experiments, the

second minute hourmillisecond

Surface contact Thread equilibrationThread swelling

1

Fig. 7Comparison of the timescales for various dynamical processes observed in
elastocapillary experiments. The surface contact timescale is from Park et al. 40 ;
other values are measured here.

beads in the thread take hours to reach their equilibrium posi-
tions, while the deformations due to capillarity and swelling take
less than an hour.

Finally, guided by these choices of material and timescale, we
performed experiments in which only two free parameters re-
mained: a swelling ratio β and the change in surface stress Γ.
Our results show that the tangential component of the contact
line force is likely zero, as suggested by the results of droplet-
film experiments13,14,36,40. Moreover, we observe that the solid
surface stress remains unchanged under tangential compression,
suggest that a Shuttleworth effect is not present for this system,
consistent with prior work35,56,57.
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Fig. 8 Measured displacement uz in Segment A (above the liquid surface), com-
pared to predicted values fromEq. (22) for glycerol, where the pair of dashed lines
are the upper and lower bounds of the theoretical prediction, calculated from the
standard error on the Young’s modulus measurement. tw = 12 hrs.
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Fig. 9 PVS gel weight swelling ratio with different liquids. w/: gel with beads.
w/o: gel without beads.

6 Appendices
6.1 Strain derivation
Due to the cylindrical geometry of the thread, we choose a cylin-
drical coordinate system. The linear stress tensor is given by

σi j =
E

1+ ν

[
εi j +

ν

1−2ν
εkkδi j

]
(17)

where E is the elastic modulus, ν is the Poisson’s ratio, εi j is the
strain tensor with i, j as (r, φ, z), εkk = εrr + εφφ + εzz is the trace,
and δi j is the Kronecker delta function. Formulas for the strains
are given by

εrr = ∂rur, εφφ =
ur
r
+

1
r
∂φuφ, εzz = ∂zuz (18)

where ui is the displacement of a given position in the thread. In
the experiment, ui is the displacements of the beads. We assume
the solution is axisymmetric, as no torque is applied to the thread.
Thus, all variations with respect to angle φ can be set to zero.
For a small radius thread (R � L), εrr ≈ εφφ and the trace of
the strain tensor can be written as εkk ≈ 2εrr + εzz . Hence, εrr =
1
2 (εkk − εzz ). The following calculation then isolates an expression

for axial strain εzz = ∂zuz :

σzz −2νσrr =
E

1+ ν

[
(∂zuz −2ν∂rur )+

ν

1−2ν
(1−2ν)εkk

]
=

E
1+ ν

[(∂zuz − ν (εzz − ∂zuz ))+ νεkk ]

= E∂zuz

(19)

We take our thread to be incompressible (ν = 1/2) as assumed for
most elastomer experiments, leading to Eq. (12) in the main text.

By Eq. (10), (11), and (12), the strain field in the final state is

εzz (r, z) =


2γ cosθ
E R − ρlgLsl

E , z > 0

− ΓE R −
ρlg(z+ Lsl)

E , z < 0
(20)

Transforming Lsl → L′
sl

and z→ z′, the strain field for the initial
state is

ε ′zz (r, z′) =


2γ cosθ

E R −
ρlgL′ls

E , z′ > 0

− ΓE R −
ρlg

(
z′+ L′ls

)
E , z′ < 0

(21)

From incompressibility (ν = 1/2), one has εzz + 2εrr = 0, giv-
ing a strain difference in radial direction as ∆εrr = ∆εzz/2. With
Eq. (13) and (14), the displacement in the radial direction is

ur (r, z) =


ρlg∆L

2E r, z > 0(
2γ cosθ +Γ

2E R +
ρlg(z+∆L)

2E

)
r, −∆L < z < 0

(22)

6.2 Displacement field in radial direction
In Fig. 8, we show that the displacement field ur is in agreement
with the theoretical prediction from Eq. (22).

6.3 Measuring swelling ratio
To determine the swelling ratio for PVS immersed in our three
liquids, we perform soaking experiments of various durations.
Each experiment uses a PVS block, cast either with or without
fluorescent beads, and cleaned as presented in §2.3. Each block
was weighed before and after immersion for a duration up to
60 minutes, placed in ethanol, glycerol or Fluorinert FC-40. The
blocks are dry initially, and are dried with an compressed air after-
wards. The %-difference in weight gives the swelling ratio. The
resulting measurements are shown in Fig. 9. Glycerol is observed
to be non-swelling (no statistically-significant change in weight),
consistent with the thread experiments in Fig. 5a. However, the
weight change ratio when using ethanol can reach more than 1%
in an hour. For Fluorinert, the measured swelling ratio depends
on whether beads are present (swelling ratio 0.3%) or absent
(swelling ratio 0.5%). The difference between results with ab-
sent/present beads might come from the swelling in polystyrene
beads. The swelling occurs on timescales less than 15 min. As-
suming the weight change is dominated by the absorption of liq-
uid, the density ratio for PVS (ρs = 1.040 g/cm3) predicts a vol-
ume change ratio for using ethanol (ρl = 0.8 g/cm3) is 1.3%, and
0.17% for using Fluorinert (ρl = 1.855 g/cm3), for gels with beads.
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Soft materials are known to deform due to a variety of mechanisms, including capillarity, 
buoyancy, and swelling. The choice of liquid plays a significant role in the outcome of 
experiments.
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