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The elastic Rayleigh drop
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Bioprinting technologies rely on the formation of soft gel drops for printing tissue scaffolds and the dynamics of these drops
can affect the process. A model is developed to describe the oscillations of a spherical gel drop with finite shear modulus, whose
interface is held by surface tension. The governing elastodynamic equations are derived and a solution is constructed using
displacement potentials decomposed into a spherical harmonic basis. The resulting nonlinear characteristic equation depends
upon two dimensionless numbers, elastocapillary and compressibility, and admits two types of solutions, i) spheroidal (or shape
change) modes and ii) torsional (rotational) modes. The torsional modes are unaffected by capillarity, whereas the frequency of
shape oscillations depend upon both the elastocapillary and compressibility numbers. Two asymptotic dispersion relationships
are derived and the limiting cases of the inviscid Rayleigh drop and elastic globe are recovered. For a fixed polar wavenumber,
there exists an infinity of radial modes that each transition from an elasticity wave to a capillary wave upon increasing the
elastocapillary number. At the transition, there is a qualitative change in the deformation field and a set of recirculation vortices
develop at the free surface. Two special modes that concern volume oscillations and translational motion are characterized. A
new instability is documented that reflects the balance between surface tension and compressibility effects due to the elasticity
of the drop.

1 Introduction

More than a century ago, Lord Rayleigh1 showed that an in-
viscid spherical drop held by surface tension σ will oscillate
with characteristic frequency

ζ 2 = l(l −1)(l +2), (1)

and mode shape given by the spherical harmonic Y m
l (θ ,φ)

with polar/azimtuhal [l,m] wavenumber pair2. Here the fre-
quency ζ is scaled by the capillary time scale

√
ρR3/σ , where

σ ,ρ,R are the liquid surface tension, density and drop ra-
dius, respectively. We call this the Rayleigh drop. The dis-
persion relationship (1) has seen widespread use in multiple
technologies, such as spray cooling (drop atomization)3 and
inkjet printing (drop pinchoff)4,5. Bioprinting applications,
e.g. 3D printing of tissue scaffolds6,7, utilize the fluid mechan-
ical principles of inkjet printing but adapted to biologically-
compatible hydrogels, such as agarose and alginate8. These
soft viscoelastic gels have a finite elasticity and often a com-
plex rheology9,10. In this paper, we develop a theoretical
model to predict the dispersion relationship for a soft spher-
ical gel drop, which we refer to as the elastic Rayleigh drop.

Soft gels are polymeric fluids, a sub-class of complex flu-
ids, which are characterized by both a viscosity and elastic-
ity. For capillary-driven flows, the dynamics are character-
ized by three relevant time scales; the polymer relaxation time
tp = λ , a viscous time scale tv = γR/σ with γ the viscosity,
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and an inertial time scale tc =
√

ρR3/σ 11. Typical values
for the rheological properties λ ,γ are given in Barnes12. The
relative balance of these time scales gives rise to dimension-
less parameters that define the flow; the Ohnesorge number
Oh ≡ tv/tc = γ/

√
ρσR balances viscosity and inertia, and the

Deborah number De≡ tp/tc = λ/
√

ρR3/σ balances the poly-
mer relaxation with inertia. The special case De > 1 > Oh
(tp > tc > tv) corresponds to an ‘inviscid elastic fluid’13 which
is typical of dilute polymer concentrations, such as those typ-
ically used in bioinks. We are interested in this limiting case
in which drop oscillations are affected by elasticity, capillarity
and inertia.

Both surface tension and elasticity resist motion and that
coupling defines an elastocapillary effect which becomes im-
portant on length scales smaller than the elastocapillary length
ℓe ≡ σ/E, where E is the elastic modulus. For a spherical gel
drop, the relevant length scale is the drop radius R which al-
lows one to define an elastocapillary number Σ = σ/ER. Note
that bulk elastocapillarity is distinguished from bendocapil-
larity in which surface tension can bend a thin object with
large elasticity. See the recent reviews by Style et al.14, An-
dreotti and Snoeijer15, Bico et al.16 for a detailed discus-
sion of the relevant scaling arguments, and a summary of the
many interesting recently observed and unexplained physics
in this emerging field. We note that gels are typically viewed
as solids and the existence of solid surface tension has been
known for some time17. Pioneering experiments by Monroy
and Langevin18 were the first to observe elastocapillary waves
on planar substrates and document the crossover between elas-
tic and capillary waves. These results were shown to agree
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well with a theory developed by Harden et al.19. In fact, many
of the classical capillary-driven instabilities of fluid mechan-
ics, e.g. Rayleigh-Taylor, Plateau-Rayleigh, have been ob-
served in soft gels20,21,22. Chakrabarti and Chaudhury23 have
shown how the frequency response of sessile hydrogel drops
is affected by elasticity. More recent work by Shao et al.24

have shown the crossover from elastic to capillary waves on
mechanically-excited Faraday waves on planar surfaces and
used the observed dispersion relationship to estimate the solid
surface tension. Our fundamental model of drop oscillations
can be viewed as an extension of the Rayleigh drop which in-
cludes elastocapillary effects.

In general, gels exhibit frequency-dependent viscoelas-
tic properties (or both solid-and fluid-like properties) which
means our model could be framed from either a fluid dy-
namics or elasticity perspective. However, we note that the
most commonly used biogel, agarose, behaves like a linear
elastic solid over a large frequency range25, but some gels
exhibit a nonlinear material response (e.g. strain stiffening)
26,27,28,29. However, we are interested in small amplitude os-
cillations in the linear elastic regime and nonlinear ampli-
tude effects are outside the scope of this work. The dual-
ity between solid mechanics and fluid mechanics for our ‘in-
viscid elastic fluid’ means we could formulate the problem
from either perspective. We adopt the solid mechanics per-
spective and assume our gel drop consists of a linear elastic
material that is characterized by two Lame’ parameters λ ,µ
and obeys the governing equations of linear elastodynamics
30. Capillary effects enter the problem through the Young-
Laplace equation on the free surface31,32,33. Elastic wave
propagation on a sphere is qualitatively different from that on
a plane; Rayleigh34 waves on a semi-infinite half space are
non-dispersive, whereas waves on a sphere are dispersive and
have been observed over many different length scales, from
geodynamics35 and seismology36 to nanophysics37,38. The
invariance in wave dynamics over such a large length scale
occurs because there is only one time scale for such problems,
the elastic time scale te = (ρR2/µ)1/2. In our problem, we
also have a capillary time scale tc = (ρR3/σ)1/2 and the bal-
ance between these two time scales gives rise to interesting
dynamic elastocapillary effects.

We begin this paper by defining the elastodynamic equa-
tions that govern the motion of the spherical gel drop. Dis-
placement potentials are introduced and we expand our so-
lution in a spherical harmonic basis to generate a nonlinear
characteristic equation for the scaled drop frequency, which
depends upon elastocapillary and compressibility dimension-
less numbers. Two mode types are reported; torsional modes
have a non-deforming interface, while spheroidal modes are
associated with shape change. Our solution recovers the lim-
iting cases of the inviscid Rayleigh drop and the purely elas-
tic globe. In the intermediate region between these two limits,

Fig. 1 Definition sketch of the spherical gel drop.

we show there is a transition between elasticity-dominated and
capillary-dominated motion and characterize the change in de-
formation field that occurs there. We identify two special mo-
tions, the ‘breathing’ and ‘translational’ modes, and character-
ize their dynamics. Our analysis of the breathing mode reveals
a new fundamental instability that reflects a balance between
surface tension and compressibility due to the elasticity of the
drop. Lastly, some concluding remarks are offered.

2 Mathematical Formulation

Consider the spherical gel drop of equilibrium radius R shown
in Figure 1. The interface is given a small perturbation ζ ,
which generates a time-dependent displacement field U(x, t)
in the gel, which is assumed to be an isotropic, linear elastic
material with density ρ , Lame’ constants λ ,µ , and surface
tension σ . Normal modes U(x, t) = u(x)eiωt are assumed with
ω the oscillation frequency. The displacement field

u = ur(r,θ ,φ)êr +uθ (r,θ ,φ)êθ +uφ(r,θ ,φ)êφ . (2)

is defined in the spherical coordinate system (r,θ ,φ).

2.1 Field equations

The displacement field u is governed by the elastodynamic
Navier equations,

(λ +µ)∇(∇ ·u)+µ∇2u =−ρω2u. (3)

2 | 1–10

Page 2 of 10Soft Matter



For this linear elastic material, the strain field is given by ε=
(∇u+∇uT )/2 and the stress field by τi j = λεkkδi j +2µεi j.

Continuity of stress on the free surface r = R requires

τrr =
σ
R2

(
∇2
||ur +2ur

)
, τrθ = 0, τrφ = 0, (4)

where

∇2
|| ≡

1
sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1
sin2 θ

∂ 2

∂φ
(5)

is the surface Laplacian. The normal stress condition in Equa-
tion (4) is simply the linearized Young-Laplace equation re-
lating the jump in normal stress across the free surface to the
mean curvature there.

2.2 Displacement potential

The governing equation (3) is simplified by defining the dis-
placement field u in terms of the scalar potentials Φ,T,S;

u = ∇Φ+∇× (T êr)+∇×∇× (Sêr). (6)

Substituting (6) into (3) yields a set of uncoupled Helmholtz
equations for the potentials,

∇2Φ+α2Φ = 0, ∇2
(

T
r

)
+β 2

(
T
r

)
= 0,

∇2
(

S
r

)
+β 2

(
S
r

)
= 0,

(7)

with α ≡ ω
√

ρ
λ+2µ and β ≡ ω

√
ρ
µ . Equation (7) yields

compressional and shear wave solutions with velocities cp =√
λ+2µ

ρ and cs =
√

µ
ρ , respectively39.

The general solution of (7) can be written by expanding the
potentials Φ,T,S in a spherical harmonic Y m

l (θ ,φ) basis40;

Φ =
∞

∑
l=0

l

∑
m=−l

Alm jl(αr)Y m
l (θ ,ϕ),

T =
∞

∑
l=0

l

∑
m=−l

rBlm jl(β r)Y m
l (θ ,ϕ),

S =
∞

∑
l=0

l

∑
m=−l

rClm jl(β r)Y m
l (θ ,ϕ),

(8)

where jl is the spherical Bessel functions of the first kind.
Note that we suppress the spherical Bessel function of the sec-
ond kind in our solution, because they diverge at the origin
and are unphysical. The unknown constants Alm,Blm,Clm are
determined from the boundary conditions (4). For reference,
the components of the displacement field (ur,uθ ,uφ ) are ex-
pressed with respect to these unknown constants in Appendix
A.

2.3 Characteristic equation

We scale lengths by R, time with the elastic shear wave time
scale

√
ρR2/µ , and apply the solution (8) to (4) to yield a set

of linear equations,

AlmT11(κη)+ClmT31(η)

=
Σ
2
(2− l − l2)(AlmQ1(κη)+ClmQ2(η))

(9a)

AlmT12(κη)+ClmT32(η) = 0 (9b)
BlmT22(η) = 0, (9c)

for the dimensionless frequency η ≡ ωR
√

ρ/µ . Here

T11 =

(
l2 − l − 1

2
η2

)
jl(κη)+2κη jl+1(κη),

T12 = (l −1) jl(κη)−κη jl+1(κη),

T22 = (l −1) jl(η)−η jl+1(η),

T31 = l(l +1){(l −1) jl(η)−η jl+1(η)} ,

T32 =

(
l2 −1− 1

2
η2

)
jl(η)+η jl+1(η),

Q1 = l jl(κη)−κη jl+1(κη), Q2 = l(l +1) jl(η).

(10)

Two dimensionless groups result from this choice of scaling,

κ ≡ α
β

=

√
µ

λ +2µ
, Σ ≡ σ

µR
, (11)

where the compressibility number κ is the ratio of compres-
sional to shear wave speeds and the elastocapillary number Σ
measures the relative importance of surface tension and elas-
ticity.

Equation (9) admits two sets of solutions, which we will re-
fer to as torsional and spheroidal modes. Equation (9c) is un-
coupled and gives the characteristic equation for the torsional
modes,

(l −1) jl(η)−η jl+1(η) = 0, (12)

which is consistent with Lamb’s modal classification41. The
spheroidal modes satisfy the set of equations

T12(κη)Alm +T32(η)Clm = 0,(
T11(κη)− Σ

2
(2− l − l2)Q1(κη)

)
Alm

+

(
T31(η)− Σ

2
(2− l − l2)Q2(η)

)
Clm = 0.

(13)

The solvability condition generates the nonlinear characteris-
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tic equation,

− 1
2

(
2l2 − l −1

η2 − 1
2

)
jl(κη) jl(η)

+

(
l3 + l2 −2l

η3 − 1
2η

)
jl(κη) jl+1(η)

+

(
l3 +2l2 − l −2

η3 − 1
η

)
κ jl(κη) jl+1(η)

+
2− l − l2

η2 κ jl+1(κη) jl(κη)

− Σ
2
(2− l − l2)

(
− l

2η2 jl(κη) jl(η)+
l

η3 jl(κη) jl+1(η)

−
(

2l2 − l −1
η3 − 1

2η

)
κ jl+1(κη) jl(η)

− κ
η2 jl+1(κη) jl+1(η)

)
= 0,

(14)

for the frequency η of the spheroidal modes. These solu-
tions correspond to the shape oscillations of the drop. There
are an infinite number of roots η to Eq. (14), which depend
upon the parameters Σ, l,κ . We enumerate these solutions us-
ing the radial mode number s that corresponds to the sth root
of the characteristic equation (14). To summarize, we report
η = η(s, l,Σ,κ). The absence of the wavenumber m implies
the frequency spectrum is degenerate with respect to m, as
with the inviscid Rayleigh drop42. For Σ = 0, surface tension
effects are negligible and we recover the characteristic equa-
tion for an elastic globe30.

2.4 Incompressible limit κ → 0

Elastic materials typically have a finite compressibility, but
many soft gels of interest are often incompressible43,44. The
characteristic equation (14) can be greatly simplified in this
limit. To illustrate, we redefine κ with respect to the Poisson
ratio ν , κ ≡

√
1−2ν

2(1−ν) . For incompressible materials ν = 1/2,
κ → 0 and the resulting characteristic equation is

η
(
2+η2 − l3Σ+2l(Σ+1)− l2(Σ+4)

)
jl(η)

−2
(
η2 + l(Σ+2)(2− l − l2)

)
jl+1(η) = 0.

(15)

3 Results

Frequencies η are readily computed from the nonlinear char-
acteristic equations for the spheroidal (14) and torsional (12)
modes, as they depend upon the polar wavenumber l, elas-
tocapillary number Σ and compressibility number κ . Recall
that frequencies are degenerate with respect to the azimuthal
wavenumber m. For the spheroidal modes, the corresponding

(a)

2 4 6 8 10 12
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5
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35
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s=2

s=3

s=4

s=5

(b)

2 4 6 8 10 12

l

5

10

15

20

25

30

η

s=1
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s=3

s=4

s=5

Fig. 2 Dispersion relationship. Frequency η against wavenumber l
for (a) κ = 0,Σ = 1 and (b) κ = 0.5,Σ = 0 for the first five radial s
modes.

motions are determined from (13). We note that the torsional
modes are independent of Σ,κ , because they do not change
the shape of the sphere or have radial displacement ur that is
independent of the torsional potential T (Appendix A). Our
interest is in shape change and the spheroidal modes of oscil-
lation.

We begin this section by showing how the dispersion re-
lationship, η against l, is effected by Σ and κ and contrast
with the Rayleigh drop (1). For an incompressible gel drop
κ = 0, we capture and describe the transition from elasticity-
dominated to capillary-dominated motion for fixed l as it
depends upon Σ. Asymptotic dispersion relationships are
then derived in the elasticity-dominated Σ → 0 and capillary-
dominated Σ → ∞ limits. Lastly, we discuss the unique l = 0
‘breathing’ and l = 1 ‘translational’ modes and their depen-
dence on Σ,κ .

3.1 Dispersion relationship

Recall that inviscid Rayleigh drops oscillate with a single fre-
quency given by Equation (1) for each mode number l. For the
elastic Rayleigh drop, the dispersion relationship is affected
by the elastocapillary Σ and compressibility κ numbers. Fig-
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ure 2 plots the frequency η against wavenumber l for an (a)
incompressible drop with finite surface tension (κ = 0,Σ = 1)
and a (b) purely elastic compressible drop (κ = 0.5,Σ = 0). In
contrast to the inviscid Rayleigh drop, Figure 2 shows there
are an infinite number of solutions for each wavenumber l that
can be distinguished by a radial number s. For each s the dis-
persion curve is a monotonically increasing function of l but
there are regions of faster and slower growth depending upon
Σ and κ , which we discuss in detail next.

3.2 Frequency transition

Figure 3(a) plots the l = 4 incompressible (κ = 0) frequency
against the elastocapillary number Σ for the first five radial
modes. As Σ increases, each frequency increases from a con-
stant frequency plateau region to another plateau region of
higher frequency. The low and high frequency regions corre-
spond to elasticity-dominated and capillary-dominated behav-
ior, respectively, and are separated by a sharp transition region
characterized by a rapidly increasing capillary effect. Each
frequency displays only one such transition and higher mode
numbers transition at higher values of Σ. Similar behavior is
seen for every spheroidal mode with l ≥ 2.

To better understand the transition region, we plot the dis-
placement field u in Figure 3(b) for various Σ along the fre-
quency curves. Note these are two-dimensional axisymmetric
m = 0 deformation fields. Consider the s = 1 case, a single
layer of recirculation vortices develops in the transition re-
gion Σ = 0.3 that becomes fully-developed in the capillary-
dominated region Σ = 10. For the s = 2 mode, the single layer
of recirculation vortices seen in the elasticity-dominated re-
gion Σ = 0.001 gets pushed to the center of the drop in the
transition region Σ = 1 by the emergence of an additional
layer of vortices that become fully-developed in the drop in
the capillary-dominated region Σ = 10. Similar transitions oc-
cur for the s = 3 and higher order modes but at higher values
of Σ. In general, the number of layers of vortices changes from
s− 1 to s in the transition region and within each layer there
are 2l individual vortices.

This behavior is robust and extends to all spheroidal modes.
Recall the frequency is degenerate with respect to azimuthal
wavenumber m, but the mode deformation fields are unique.
For the axisymmetric modes m = 0, we observe the emer-
gence of an additional layer of vortices in the transition re-
gion (cf. Figure 3). We observe similar behavior in sectoral
l = m and tesseral m ̸= 0 modes. Figure 4 plots the surface
shapes for the s = 1 (4,2),(6,3),(2,2) modes and associated
deformation fields in the elasticity-dominated and capillary-
dominated regions.

(a)

s=1 s=2 s=3 s=4 s=5

1

1000

1

100

1

10
1 10 100 1000

Σ

5

10

15

20

η

(b)
Elasticity 

dominated

Transition 

region

Capillarity 

dominated

s=1

Σ=0.001 Σ=0.3 Σ=10

s=2

Σ=0.001 Σ=1 Σ=10

s=3

Σ=0.1 Σ=1.8 Σ=10

Fig. 3 Frequency transition for the l = 4 mode. (a) Frequency η
against elastocapillary number Σ shows a transition from low
frequency elasticity-dominated motion to high frequency
capillarity-dominated motion for each radial s mode. (b) The
deformation fields illustrate that in the transition region a set of
vortices develop near the interface that eventually propagates into
the bulk and becomes fully-developed in the capillary-dominated
region.
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(4,2) (6,3) (2,2)

Fig. 4 Typical deformation fields for modes (l,m) illustrate the transition from elasticity- to capillary-dominated motion. Corresponding 3D
mode shapes are shown in the bottom row. Note the deformation amplitude has been exaggerated for illustration purposes.

3.3 Asymptotic dispersion relations

It is straightforward to obtain closed-form dispersion relation-
ships for the limiting cases Σ → 0 and Σ → ∞. These are the
capillary-dominated and elasticity-dominated limits, respec-
tively. For the capillary limit Σ → ∞, we introduce the capil-
lary time scale tc = (ρR3/σ)1/2, define ζ = ωtc, and take the
first order expansion of (15) about Σ = ∞ to give

ζ 2 = l(l −1)(l +2)+(2l +1)(4l +3)
1
Σ
. (16)

Note that we recover (1) in the limit Σ → ∞, as expected. The
scaling relationship with respect to Σ reproduces that reported
by Chakrabarti and Chaudhury23 for sessile drops. For the
elasticity-dominated limit Σ → 0, we note that (15) is already
scaled with the elastic time scale te = (ρR2/µ)1/2 with η =
ωte and we take the first order expansion about Σ = 0 to give

η2 =
2(l −1)(5+2l)(3+4l +2l2)

(2l +1)(3+4l)
+l(l−1)(l+2)(5+2l)

Σ
3+4l

.

(17)
Both (16) and (17) allow one to obtain quick frequency esti-
mates without having to solve a nonlinear equation (15).

3.4 The l = 1 ‘translational’ mode

For the inviscid Rayleigh drop, Equation (1) predicts zero-
frequency l = 0 and l = 1 modes that correspond to volume
conservation and translational invariance, respectively. How-
ever, for a soft elastic drop these produce non-trivial motions.
The l = 1 ‘translational’ mode corresponds to a rigid transla-
tion of the sphere, as shown in Figure 5(b), and is therefore in-
dependent of Σ (capillary effects) as there is no shape change

(a)

0 0.142 0.283 0.425 0.566 0.707

κ

5

10

15

η

s=1

s=2

s=3

s=4

s=5

(b) (c)

Fig. 5 ‘Translational’ l = 1 mode. (a) Frequency η against
compressibility number κ , (b) typical mode shape and (c) associated
deformation field.
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(a)
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κ0
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η
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(b) (c)

Fig. 6 ‘Breathing’ l = 0 mode. (a) Frequency η against
compressibility number κ displays oscillatory behavior, as well as
an unstable root Re[iη ]> 0 which bifurcates at a critical
compressibility number κ∗ for Σ = 50. The unstable mode has (b)
mode shape and (c) associated deformation field for κ = 0.2.

associated with this motion. This can be easily seen by set-
ting l = 1 in Equation (14). However, compressibility κ ̸= 0
does affect the oscillation frequency for this mode. Figure 5(a)
plots the frequency η against compressibility number κ and
shows complex behavior, whereby for fixed radial wavenum-
ber s there are distinct plateau regions of constant frequency
separated by transition regions where the frequency decreases
with increasing κ . For reference, a typical deformation field
for the s = 1 mode is shown in Figure 5(c).

3.5 The l = 0 ‘breathing’ mode

The l = 0 ‘breathing’ mode produces a pure volumetric shape
change in which the sphere uniformly compresses and ex-
pands during oscillation. These pure radial motions have zero
curl ∇×u = 0 (6) and associated unknown constant A00 that
can be determined from the normal stress balance (4) (the
shear-free conditions are naturally satisfied). The resulting
characteristic equation T11(κη) = ΣQ1(κη) can be simplified
into the following form,

tanκη
κη

=− 4+2Σ
η2 − (4+2Σ)

(18)

For Σ = 0, the equation gives Love45 solution for an elastic
sphere which has infinite frequency when κ = 0. For com-
pressible materials κ > 0, the frequency decreases with in-
creasing compressibility. In addition to oscillatory motions,
we find an unstable mode Re[iη ]> 0 for finite elastocapillary
number Σ ̸= 0.

Figure 6(a) plots the l = 0 frequency η against κ for fi-
nite elastocapillary number Σ = 50 and shows the oscillatory
modes as well as the unstable mode bifurcating at a critical
compressibility number κ∗. After the bifurcation, the growth
rate for the unstable mode continues to increase with κ . The
mode shape and associated deformation field for the unstable
mode are shown in Figures 6(b,c), respectively. Here the ra-
dius of the drop decreases because surface tension tends to
minimize the surface area of the drop. This leads to the col-
lapse of the drop, as the elastic resistance is unable to counter-
act the increase in capillary pressure as the drop radius shrinks.
This runaway process is typical of instabilities.

This instability is directly related to the compressibility of
the soft solid. Recall that drops of incompressible liquid are
stable due to the fluid pressure which resists surface tension.
In contrast, bubbles have finite compressibility related to ther-
modynamic effects, but can similarly be stabilized provided
the internal gas pressure is large enough. Soft compressible
gel drops are most similar to bubbles since they also exhibit
finite compressibility due to elastic effects. With regard to the
elastic drop, surface tension exactly balances elasticity on the
neutral stability curve shown in Figure 7(a), which plots κ∗

against Σ. This boundary separates region of instability from
oscillatory (stable) behavior. For fixed κ , increasing Σ leads
to instability. In the unstable region, the growth rate increases
with both Σ and κ as shown in Figure 7(b). That is, surface
tension and compressibility drive the instability.

3.6 Torsional modes

As noted above, the torsional modes are decoupled from the
spheroidal modes and satisfy the characteristic equation,

(l −1) jl(η)−η jl+1(η) = 0. (19)

These motions do not change the shape of the sphere and, as
such, are independent of compressibility κ and capillary Σ ef-
fects. This is evident by the absence of the potential function
T in the radial displacement ur (Appendix A. Figure 8 plots
the dispersion relationship η against l for these modes with
sample deformation fields.

4 Conclusion

We have developed a model that describes the oscillations of
a soft spherical gel drop, which behaves as a linear elastic
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Fig. 7 (a) Stability diagram for the l = 0 mode plotting the critical
compressibility number κ against elastocapillary number Σ
separates regions of oscillatory (stable) and unstable behavior. (b)
The growth rate Re[ıη ] against compressibility number κ and
elastocapillary number Σ for the unstable mode.

2 4 6 8 10 12 14 16 18 20
l
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η

s=1
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s=4

s=5

(2,1) (4,2)

Fig. 8 Torsional modes. Dispersion relationship plotting frequency
η against wavenumber l (left) and typical deformation fields for the
s = 1 (2,1) and (4,2) modes (right).

solid with non-trivial surface tension. In contrast to the invis-
cid Rayleigh drop, there are an infinity of radial modes s for
each polar wavenumber l and the dispersion relationship for
each depends upon the elastocapillary Σ and compressibility κ
numbers. The nonlinear characteristic equation is independent
of the azimuthal wavenumber m and admits two classes of so-
lutions; i) spheroidal and ii) torsional modes. The spheroidal
modes are associated with droplet shape change, while the
torsional modes are not and therefore independent of Σ. For
the spheroidal modes, we show a transition from elasticity-
dominated to capillary-dominated motion for increasing Σ and
this transition is accompanied by the emergence of a set of re-
circulation vortices at the drop interface that propagates into
the bulk in the capillary region. Two asymptotic dispersion re-
lations are developed for low and high Σ that recover existing
asymptotic limits, such as the Rayleigh drop. Lastly, we dis-
cuss the special l = 0 breathing and l = 1 translational modes
and their unique dependence on Σ and κ . Notably, we have
documented an unstable l = 0 mode that leads to drop col-
lapse and computed the associated neutral stability curve that
reflects a balance between surface tension and compressibility.
For an incompressible material, the drop is stable consistent
with well-known results for incompressible liquids.

Recent interest in bioprinting applications make our results
particularly timely. Specifically, bioprinting uses the same
principles of inkjet printing, such as capillary breakup, but
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adapted for biologically-compatible gels, such as agarose or
alginate. These gels are typically soft (small, but finite elastic-
ity) and have dynamics that are affected by both elasticity and
surface tension. Hence, the Rayleigh drop dispersion relation-
ship (1) can be expected to be of limited utility in predicting
the complex dynamics. Our results illustrate elastocapillary
effects in a dynamic system and contribute to this emerging
field. In fact, our model predictions could be used as a diag-
nostic tool to measure the surface tension of soft gels, similar
to immiscible liquid drops46 or free drops in microgravity47.
This technique has been recently applied to hydrogels using
mechanically-excited planar Faraday waves24 and the oscilla-
tions of a hemispherical drop excited by white noise48. For
a drop with a complex viscoelastic rheology, the shear modu-
lus µ = µ ′+ iµ ′′ has a real part corresponding to the storage
modulus (elasticity) and an imaginary part corresponding to
the loss modulus (proportional to viscosity) and these quanti-
ties often depend upon the frequency µ ′(ω),µ ′′(ω). For such
materials, the governing equations depend upon the rheology
and become more complex to solve since the frequency ap-
pears in the stress-strain relaxation equations; each problem
would have to be treated independently.

To model the dynamics that incorporates a complex rhe-
ology one would need to consider a frequency dependent
complex shear modulus with real and imaginary parts cor-
responding to stored and lost energy due to strain, replacing
µ = µ ′+ iµ ′′. Here, µ ′′ will characterize the energy lost dur-
ing the oscillation due to viscous damping.

Future directions include experimental realization of our
model predictions, adapting our model to predict other fun-
damental capillary instabilities in soft materials (Plateau-
Rayleigh, Rayleigh-Taylor), extending our basic model to in-
clude viscoelastic effects for materials with complex rheology,
and adapting the model to account for wetting effects49,50 in
sessile gel droplets. For example, recent work by Chakrabarti
and Chaudhury23 on sessile hydrogel drops has shown that
higher order modes cannot be excited due to viscous effects;
i.e. the resonance peak disappears in a frequency response di-
agram for those modes, thus highlighting the role of elasticity
and viscosity in drop oscillations. This is also seen for sessile
drops of Newtonian fluids and it is well-known that higher
order modes damp out more quickly51. Therefore, new mod-
els of drop oscillations in complex fluids should include both
elasticity and viscosity.
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A Displacement components

The components of the displacement field u = (ur,uθ ,uz) are
given by

ur =
1
r
[Alm (l jl(αr)−αr jl+1(αr))

+Clml(l +1) jl(β r)]Y m
l (θ ,φ)

(20)

uθ =
1
r
[Alm jl(αr)+Clm ((l +1) jl(β r)−β r jl+1(β r))]×(

mcotθY m
l (θ ,φ)+

√
(l −m)(l +m+1)e−iφY m+1

l (θ ,φ)
)

+
iBlmm jl(β r)

sinθ
Y m

l (θ ,φ)
(21)

uφ =
im

r sinθ
[Alm jl(αr)+Clm ((l +1) jl(β r)

−β r jl+1(β r))]Y m
l (θ ,φ)− 1

r
Blm jl(β r)(mcotθY m

l (θ ,φ)

+
√
(l −m)(l +m+1)e−iφY m+1

l (θ ,φ)
)

(22)
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