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No longer just the purview of artists and enthusiasts,
origami engineering has emerged as a potentially powerful
tool to create three dimensional structures on disparate
scales. Whether origami (and the closely related kirigami)
engineering can emerge as a useful technology will depend
crucially on both fundamental theoretical advances as well
as the development of further fabrication tools.

Origami and kirigami are ancient art forms that aim to turn a
flat sheet of paper into a three dimensional sculpture (Fig. 1). Be-
cause of new fabrication methods to design responsive materials,
recent years have seen a surge of interest in using origami-related
ideas in engineering to create three dimensional structures from
thin, and initially flat, films1–4. The needs of engineering have
similarly led to renewed interest in understanding the fundamen-
tal physics and mathematics that underlies folding.

Two factors have led to this interest. First, mathematical tools
have led to new and powerful ways to design complex sculp-
tures5–7. The fold pattern of these sculptures are, at least in part,
designed by a computer, and it has become clear that the world
of origami is far richer than one might have been led to believe.
In principle, any shape can be approximated from a single flat
sheet7. Second, new fabrication techniques have enabled the cre-
ation of “architected materials,” composite materials whose local
structure is designed to lead to new effective properties at longer
ranges8–10. The incorporation of responsive materials into these
architectural structures, from swelling hydrogels to liquid crystal
and dielectric elastomers, allows us to shape differential strains
within structures and thereby get them to fold into three dimen-
sions3,11,12.

Success could revolutionize the manufacture of devices from
macroscopic scales down to millimeter or even micron scales. Be-
cause origami structures are patterned while flat, self-folding de-
vices are amenable to lithographic or roll-to-roll processing. This
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suggests that, with the right processing and materials, self-folding
origami structures can be produced in large batches. Since the
mechanical principles driving self-folding are universal and scale-
free13,14, the techniques developed can be applied, at least in
principle, on a variety of materials and processes. One of the holy
grails of soft matter research has been to develop techniques to
self-assemble complex three-dimensional structures. Self-folding
origami is a potential alternative to these traditional self-assembly
pathways; by placing functional elements on the initially flat
structures and folding them into three dimensions, one could
achieve the same functionality.

Quite a bit of progress in origami engineering has so far fol-
lowed an “art-mimetic” approach: one borrows a design from the
world of origami art and adapts it to a new material and new
applications15,16. This is, of course, a fruitful way to proceed,
especially considering the wealth of experience from the world
of origami art. Despite the wealth of examples of this type, this
perspective will take a somewhat idiosyncratic view of origami
science. I will argue that fulfilling the full promise of origami en-
gineering will require theoretical and experimental progress, pro-
ceeding in tandem. Following this way of thinking, I will orient
the discussion from the side of origami mathematics17.

1 How should scientists define origami?

The traditional conception of what defines origami is not nec-
essarily applicable to science. A traditional origami artist might
impose arbitrary rules on themselves – for example, fold a single
sheet of paper without cutting – which is far too rigid to be use-
ful from the perspective of science. Similarly, two techniques that
an artist might describe as “origami” may lead to very different
underlying mathematics. Here we will take a different approach.
In order to avoid the inevitable splitting of hairs that comes with
the making of strict definitions, I will provide four assumptions,
none of which can be met experimentally, but which can serve the
basis to unite many types of origami and kirigami research into a
broader field of mathematics that can inform how we think about
origami structures. To that end, here are four characteristics of
ideal origami:
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1. An origami structure is constructed from vertices, edges
and faces which are zero-, one-, or two-dimensional re-
spectively. This means, in principle, that vertices are point-
like and edges and faces are infinitely thin. This assumption
is certainly not satisfied in practice and some effort has gone
in to understanding what happens when these assumptions
are lifted. For example, there has been theoretical work try-
ing to understand the folding of “thick” origami18–21.

2. Origami edges do not curve and faces do not bend.
Again, this is probably violated in practice, and excludes
work on curved folds22–24, and face bending is particularly
easy to see in an origami structure8. Nevertheless, if the
folds remain straight then any interior face can only bend
along a face diagonal anyway; this suggests that face bend-
ing origami can, in principle, be modeled by introducing
auxiliary folds across the diagonals. Thus, there is little loss
of generality with such an assumption.

3. Edges do not stretch. While not true experimentally, in the
limit that the ratio of bending to stretching stiffnesses goes to
zero, this assumption is not difficult to satisfy approximately.
In practice, this can be achieved when the thickness is small
and any external forces are sufficiently weak.

4. There is no gluing, cutting, or rearranging of folds and
vertices. While we allow origami to explicitly allow the pos-
sibility of holes and cutting, we will exclude “gluing.” This
gluing assumption is often explicitly lifted by “kirigami”25,
though this usage kirigami does not at all conform to how
artists use those words and does not always fit the scientific
literature either. On the other hand, this assumption is fairly
easy to achieve experimentally.

No experiments can meet assumptions 1 - 4, though many do
come close and can, at least, be accurately modeled by making
these assumptions. For example, real paper is not infinitely thin,
and experience trying to fold a particularly tricky piece of origami
demonstrates that paper can crumple and deform in confounding
ways. Yet, paper is very thin compared to the lateral dimensions
of most origami, and fold lengths and faces do tend to be rigid

(a) (b)

Fig. 1 (a) An origami fold pattern is constructed from a single continuous
sheet while (b) a kirigami fold pattern with an excised face whose free,
internal edges can be “glued” together when folded.

under careful folding. In that sense, it is clear that there are con-
ditions in which real origami is at least close to ideal origami.

The above assumptions also contain a few surprising cases that
one might not traditionally think of as origami. As one exam-
ple, triangular meshes, which are used to model elastic mem-
branes, when elastically thin so that they bend far more easily
than stretch, can be an example of an origami mechanism. As
a second example, note that there is no assumption that vertices
should be flat. In some versions of kirigami, one generates ver-
tices with nonzero Gaussian curvature by removing wedges of
material and reattaching the paper along the newly cut seams25.
The process of cutting and gluing is excluded from assumption 4,
but the structures formed after gluing and cutting are not. It is,
perhaps, a subtle point: assumption 4 is there to exclude origami
that changes its structure dynamically as it deforms.

Among flat, ideal origami structures, two cases have been very
well-studied. The first is quad origami, in which all faces are
quadrilaterals and each vertex has four folds associated to it. This
case is a generalization of the celebrated Miura ori fold pattern26.
Four-fold vertices have precisely one degree of freedom and the
relationships between the dihedral angles can be determined an-
alytically. The second important case is triangulated origami, in
which all faces are triangles but vertices can have an arbitrary
number of folds emerging from them. In this case, faces are al-
ways planar and the length constraints associated with folds en-
sure that the planar angles between adjacent folds at each vertex
stay the same. This allows one to understand the kinematics of
triangulated origami in terms of the kinematics of linkages.

The assumptions 1 - 4 bring the study of origami squarely
within a venerable historical context going back at least as far as
Cauchy27 and J.C. Maxwell28,29, who have studied the rigidity
of frameworks and linkages. Indeed, origami and kirigami mech-
anisms conforming to the assumptions above can sometimes be
mapped directly to the mechanics of a specific class of frame-
works. This allows us to bring some powerful mathematical
tools to bear on the mechanics of origami. Similarly, others have
explored the folding of crystalline lattices30–33 and highlighted
some fundamental connections between random folding and spin
systems34,35 and coloring problems36. These two bring addi-
tional insights to the kinematics of origami structures and can
be used to shed light on the behavior of real origami systems that
approximate assumptions 1–4.

1.1 Infinitesimal isometries

We start our analysis of the motions of origami by assuming all
faces are triangles. This is, in some sense, the “base” case: any
origami fold pattern can be obtained by selectively rigidifying
some of the folds of a triangulated fold pattern. As will become
clear, we must distinguish the case in which the origami fold pat-
tern is flat from the case in which the initial origami structure
is not planar. Because the faces are triangular, preserving the
lengths of the edges necessarily preserved the interior angles of
the faces. Supposing that an edge joins vertex n to vertex m, the
kinematics of the origami are completely determined by a system
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Fig. 2 Origami can be represented as a mechanical linkage with vertices,
indexed by integer n, displaced by un. The blue origami is flat while the
gray is folded.

of equations – one for each edge – of the form

(Xn−Xm)
2 = L2

nm, (1)

where Xn is the three dimensional position of vertex n and Lnm

is the equilibrium length of the edge joining vertex n and m (Fig.
2). If one writes a vector, u concatenating the displacements of
all of the vertices in three dimensions, Eq. (1) determines the
displacements that preserve edge lengths to first order,

Ru = 0. (2)

The matrix R has a row for each edge and three columns for each
vertex.

How many degrees of freedom does a generic, triangulated
origami structure support? To make an appropriate count, we
must distinguish between vertices and edges in the interior, which
are actual vertices and folds of the origami fold pattern, and those
on the boundary. Let Vi and Vb denote the number of interior and
boundary vertices respectively, and let Ei and Eb denote the num-
ber of interior and boundary edges. Then a simple counting argu-
ment shows that the solution space of Eq. (2) is generically of di-
mension Vb +3. To obtain this count, we need two relations. The
first is Euler’s formula for a planar graph, F−Eb−Ei+Vb+Vi = 1.
The second is the relation for triangulated origami that each
face abuts three edges but that, consequently, internal edges
are double counted. Therefore, 3F = 2Ei +Eb. Thus, the num-
ber of parameters needed to place Vb +Vi vertices in three di-
mensions is 3Vb + 3Vi = 3+ 3Eb + 3Ei− (2Ei +Eb) = 3+ 2Eb +Ei.
Finally, the dimension of the configuration space is given by
D = 3Vb + 3Vi−Ei−Eb since each edge provides one constraint,
leaving D = 3+Eb = 3+Vb since Eb =Vb for a polygon. However,
since there are six rigid body motions, this leaves a configuration
space of foldings with Vb−3 dimensions.

When the origami is flat, this naive count appears wrong. In
fact, in that case, there are Vb +Vi +3 possible motions since each

̂z

x̂

α12

θ12

Fig. 3 Rotations of a vertex can be constructed by the composition of
alternating rotations about the ẑ and x̂. To do so, start with one fold along
the x̂ axis, successive rotations of the origami about the ẑ axis and ẑ
must, eventually, bring us back to the original configuration.

interior vertex can be displaced vertically without changing the
edge lengths to first order. It turns out, however, that there are Vi

quadratic constraints in this case37, strongly suggesting D=Vb+3
is still the correct dimension of the configuration space. This is
an upper bound for the dimension of the origami configuration
space, in general. If we proceed to rigidify a single fold in order
to make a face with more than three sides, we must then add a
linear constrain to the infinitesimal motions, reducing the number
of degrees of freedom by one.

1.2 Nonlinear approaches to modeling
An alternative approach to modeling is to consider constraints on
a single origami vertex38,39. Consider, for example, the intersec-
tion of a single vertex with an imaginary sphere whose center is
placed on the vertex. This intersection traces out a spherical poly-
gon on the sphere’s surface. Now align one of the folds with the
x̂ axis and the face joining fold 1 to fold 2 with the xy−plane. To
get from the first to the second fold, one must then rotate the
vertex about the ẑ axis by the first interior angle, α12, so that the
second fold is now aligned with the x̂ axis. A second rotation can
be performed about the x̂ axis by the fold angle θ2. The compo-
sition of these rotations must then bring us back to our original
configuration. Specifically,

R(θ1, x̂)R(αN1, ẑ) · · ·R(θ3, x̂)R(α23, ẑ)R(θ2, x̂)R(α12, ẑ) = 1, (3)

where R(θ , n̂) denotes the rotation matrix rotating by an angle θ

about axis n̂. This method is closely allied with the analysis of
origami single vertex rigidity using spherical trigonometry40.

A system of constraints of this type allow one to generate nec-
essary (but not sufficient) conditions for an origami fold pattern
to be foldable, and provides information about the relationships
between folds38. More broadly, however, it turns out that de-
termining whether an origami fold pattern is foldable (without
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tearing or bending) at all is NP-hard41. And suppose an origami
fold pattern can be folded. Then the number of ways of folding
the origami structure is generically exponential in the number of
vertices37,42,43.

For triangulated origami, for example, the infinitesimal isome-
tries all have the form of vertical displacements of the Vb +Vi ver-
tices. Denoting the vertical displacement of the nth vertex by hn,
Bryan Chen and I have shown that the heights satisfy a system of
quadratic equations,37

∑
n,m

hnhmQnm,I = 0, (4)

for each internal vertex I. There are, therefore, Vi equations. For
origami with one degree of freedom (having Vb = 4), we use nu-
merical methods to find that, surprisingly, there are always 2Vi−1

solutions. This is a purely numerical result and implies that all
solutions of Eq. (4) are generically real. Whether it holds more
generally is unclear; what is clear is that a single fold pattern,
at least for triangulated origami, often has many ways of being
folded.

2 Origami Design
Some of the most important scientific and mathematical work on
understanding what is possible with origami comes from artists
and mathematicians. There are several important results that
highlight both the potential and challenges of origami design. It
is known that a single sheet of paper can be folded into any poly-
hedron, as will be described in the next section. This is the basis
behind the statement that any shape can be approximated. How-
ever, the number of folds required can be quite large; there is no
sense in which the computer program produces a design that is
optimal. Design within a more restricted set of patterns is, how-
ever, possible.

2.1 Designing shapes

The design of fold patterns that produce specific, desired shapes
is one of the oldest in origami44. Computation design tools have
been developed by several authors, most notably Robert Lang,
who developed a program called “Tree Maker”5,45. Tree Maker
allows a user to design an origami base – essentially by specifying
a tree graph that can serve as part of the body plan of a more
complex origami design. The program then proceeds to provide a
fold pattern which the artist can use to fold the basic body plan,
after which the artist adds additional folds to further shape the
structure.

One might wonder whether one can actually fold a single sheet
of paper into any shape. In fact, this question has been answered
in the affirmative. First, Demaine has proven that it is possible
to approximate any voxelated shape by folding alone using a sin-
gle, universal fold pattern46. The technique takes advantage of
an origami design motif called box pleating47. Second, further
work by Tachi and followed up by Demaine have demonstrated a
computer program, the “origamizer,” which takes as input a poly-
hedron and returns a fold pattern that can be used to fold into
the given polyhedron7,48.

Fig. 4 The Miura ori fold pattern and one of its three dimensional config-
urations.

Neither of these design tools are practical, however. In par-
ticular, because they are approximating polyhedra with vertices
that have Gaussian curvature using a sheet whose vertices do not,
some of the area of the original sheet must be tucked away and
hidden, essentially by forcing the origami faces to nearly over-
lap, and there is no sense in which the computations are optimal
from the point of view of minimizing hidden area. Secondly, tech-
niques such as box pleating for producing voxelated designs are
computationally hard47.

One possible approach to simplifying the origami design prob-
lem is to limit the search space to a smaller family of possible fold
patterns. These methods are typically variations on the Miura ori
design49 (see Fig. 4). Designs based on quadrilateral faces, such
as the Miura ori, are usually called “quad meshes.” The difficulty
with quad meshes as a design motif is that they are not necessarily
rigidly foldable. The counting arguments of the previous section
show this: each vertex has four folds and, consequently, one non-
trivial degree of freedom. Yet, each closed loop of folds must be
compatible in order for a folding motion to be possible. The high
symmetry of the regular Miura ori pattern in Fig. 4 introduces
enough redundancy that all of these additional constraints can be
satisfied. For arbitrary meshes, however, they could not generi-
cally be. One solution is to introduce folds along a diagonal of
each face. For an infinite structure, however, there are still only
enough degrees of freedom to balance the constraints; the generic
case is still rigid.

To rectify this, Tachi has developed equations that can de-
termine whether quad mesh origami is, indeed, rigidly fold-
able51. These developments, coupled with geometric consider-
ations, have allowed several groups to design new quad mesh
origami. In this vein, Dudte et al. and others have shown that
quad mesh origami can be designed to fold into a great variety
of curvatures by designing a precise spatial variation in the quad
mesh origami50,52,53. Some designs are shown in Fig. 5.

2.2 Designing mechanical response

In contrast to shape, even less is known about designing the me-
chanical response of origami structures10,54,55. Many origami tes-
selations are naturally auxetic1, as is the classic Miura ori tessela-
tion, whose Poisson ratio can be tuned by the fold geometry13,14.
Even for a fixed fold geometry, different folding paths can lead
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Figure 2: Optimal calculated origami tessellations and their physical paper analogs. (a,g)
Logarithmic spiral - zero Gauss curvature (generalized cylinder) (b,h) Sphere - positive Gauss
curvature (c,i) Hyperbolic paraboloid - negative Gauss curvature (d,j) Pill - cylindrical waist
with positively-curved caps (e,k) Candlestick - cylindrical waist with negatively-curved caps
(f,l) Vase - positively-curved base with negatively-curved neck.

14

Fig. 5 Reproduced from ref. 50 with permission from Springer Nature,
copyright 2016. Note that, in this work, quadrilateral faces are allowed
to stretch slightly and bend but that this can often be accommodated by
triangulated the design first.

(a)

(b)

(c)

Fig. 6 Schematic methods to fabricate self-folding structures. (a) Tri-
layer or bilayer systems with swellable gel (orange) sandwiched between
stiffer layers (blue). (b) Contracting or swelling liquid at folds. (c) Material
inhomogeneity driving differential swelling at a fold.

to different, and tunable, fold configurations56. For example, the
Miura ori with different configurations of “pop-through” defects
have a rationally tunable mechanical response8,57.

Beyond this, there is a great deal of experience, from traditional
origami artists, on how different fold patterns respond to defor-
mations. Designs exist for bistable and self-locking origami58,
and some design approaches exist within certain classes of
origami structures59. While there have been some successes us-
ing topology optimization to design mechanical response60, but
we have only begun to scratch the surface of what is possible.

3 Self-folding
The driving impetus for the emergence of origami as a tool of en-
gineering comes from the fabrication of structures that can fold
themselves up from an initially flat, thin film. There seems to be
two main mechanisms for driving the self-folding of origami. One
can draw the folds to bend by adding small droplets of an evap-
orating or contracting liquid, or one can fabricate materials that
develop differential strains cross their thickness. Because mech-
anisms of differential strain are, essentially, scale-free, materials
have been developed on disparate length scales from the human-
scale to a scale of tens of microns.

The mechanism for self-folding origami devices is primarily
one of differential growth. This is often achieved by bonding
together materials with different proclivities toward expansion
under changes in temperature, pH, or some other change of en-
vironmental conditions. This has taken the form of graphene-
glass bimorphs61, polymer trilayers with a swellable hydrogel
sandwiched between two stiffer layers11, shape memory compos-
ites62, or contracting solder2. In most of these cases, the folding
generates a preferred fold angle on several of the folds.

In the typical case of modeling the self-folding process, one
usually assumes that each fold acts as a torsional spring,

E =
1
2 ∑

f∈folds
k f
(
θ f − θ̄ f

)2
, (5)
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R
θ

θ = fold angle

Fig. 7 Folding a Hookean elastic sheet at fixed width leads to an energy
in the form of a torsional spring.

θ1

θ1

θ2

θ3

θ3

θ4 θ4

Fig. 8 Three fold angles of a degree four vertex. Note that the calculated
angles are periodic in the interval (−2π,2π] and the origami structure
can, in principle, self intersect.

where f indexes the folds of an origami fold pattern. There is a
connection between this form of a fold energy for discrete struc-
tures and in the continuum. The bending of an elastic sheet is
usually modeled by an energy of the form,

Econt =
1
2

κ

∫
dA (H−H0)

2, (6)

where H is the mean curvature, H0 is a spontaneous curvature,
and κ is a rigidity that scales with the cube of the sheet thickness.
If we imagine that a fold is a portion of an elastic sheet that has
been rolled into a cylinder of radius R to over an angle θ . The
width of the fold is, therefore, w = Rθ so that R = w/∆θ (Fig. 7).
Substituting this back into the energy,

Econt =
κ

8w
L(θ −H0w)2 . (7)

This is precisely of the form in Eq. (5) when the folding width
is fixed. The preferred fold angle is, therefore, given by θ̄ = H0w
and the fold stiffness k f is proportional to the fold length, L. In
real materials, one expects deviations from this simple form63,64.

The best understood cases of self folding are single vertices and,
especially, vertices associated with four folds. In that case, we
know that there are precisely two distinct fold branches and one
can obtain the fold angles in closed form65,66. Since there are
four folds, we can plot the fold angles of three of them as a func-

tion of a fourth (Fig. 8). If one allows for the faces to pass through
each other, the two branches are actually connected to each other
and only become distinct when self-intersections are disallowed
(though proving this can be a challenge67,68). One can superim-
pose, on Fig. 8, the energy of Eq. (5), whose equi-energy surfaces
are ellipsoids. The origami will fold along one branch or the other
so long as the energy decreases along that branch. One can now
formulate the question: when is the energy decreasing only along
one origami branch? The answer, according to Tachi and Hull, is
that the gradient of the energy in the flat state should be perpen-
dicular to all the “wrong” branches69 rather than being directed
along the correct branch. In fact, this arises from the fact that
the branch structure near the flat state is always invariant under
flipping the sign of all the fold angles (after all, flip the origami
over). If the gradient isn’t perpendicular to a branch, the energy
necessarily must decrease along one direction of the branch. The
gradient of the fold energy is

∂E
∂θ f

∣∣∣∣
θ=0

=−k f θ̄ f , (8)

meaning one can use both the stiffness k f and prescribed angle
θ̄ f to tune the gradient.

This is, unfortunately, asking a lot. For triangulated origami
with no holes, the number of folds is

Ei =Vb +3Vi. (9)

As the origami complexity increases, the number of branches
grows exponentially whereas the number of folds grows only lin-
early. There are not enough parameters to ensure that the perpen-
dicular condition of Tachi and Hull can always be satisfied! The
problems are only exacerbated with non-triangulated origami,
which must have strictly fewer folds than in the triangulated case.

Yet this may not be the end of the story. In many cases, the
branches are governed by individual vertex buckling. Recently,
Hayward et al.70 have found that origami folding can be con-
trolled by engineering vertices that are biased to buckle upward
or downward independently of the folds. Stern et al.71 have
also found methods that can control the bifurcations of mechan-
ical linkages and, in particular, origami. These new results show
clearly a need for further analysis in order to understand and fine-
tune the folding of origami.

4 Where are the emerging challenges?
As we have progressed, we also have developed a better picture
of the most difficult challenges that must be solved before this
becomes a technology. There are, first of all, the challenges we
know. Given the proliferation of folding pathways for even simple
origami designs in tandem with the difficulty of determining if a
pattern is even foldable, new methods to ensure robust folding
will certainly need to be developed, and the interplay between
energetics and kinematics will need to be better understood. And
while some progress has been made in designing fold patterns
that achieve targeted three dimensional shapes, much remains
unsolved.

Beyond this, little is understood in how fold patterns deter-
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mine the effective mechanical properties of folded figures. The
same isometric motions that allow origami to fold also ensure
that there is a pathway toward easy unfolding. To deal with this,
packagers either use adhesives (which experience tells us can be
a struggle to open) or mechanisms that lock, for example through
flaps. The degree of geometrical control required to do this is still
beyond what any experiments have achieved. To do this would
likely require dynamically altering how a system folds, perhaps
by activating folds sequentially72. Only then could one create a
structure that folds on its own and, subsequently, becomes rigid.

There are also unknown challenges. Most examples of self-
folding origami structures are still at the “proof-of-principle”
stage. The pathway to get from this stage to one where folding
is fast and the resulting mechanism performs robustly remains
unclear, though some work has been attempted along these di-
rections. How easily can self-folding materials be coupled with
the kinds of materials one builds electronic or optical devices
from73? Can origami mechanical structures carry a load? To
what extent can the folding pathways be programmable or, even,
reprogrammable74? What kind of yield could one expect and
how complex could the origami be?

Finally, and importantly, more realistic models of origami fold-
ing will need to be developed to better understand the behav-
ior and buckling of origami devices in the real world. Here I
am envisioning something between the idealized mathematical
approaches that have been mostly studied until now and more
accurate but computationally expensive finite-element simula-
tions75,76. How would a typical origami structure deform? What
parts of the structure determine the rigidity, for example?

The field of origami is still in its infancy, yet it could revolution-
ize the manufacture and fabrication of three dimensional struc-
tures. We are at the point now where, perhaps, we could start
asking some of these more difficult questions.
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tion DMR-1822638.
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