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Nonlinear microrheology of active Brownian suspen-
sions

Eric W. Burkholder,a† John F.Brady,a,b∗

The rheological properties of active suspensions are studied via microrheology: tracking the mo-
tion of a colloidal probe particle in order to measure the viscoelastic response of the embedding
material. The passive probe particle with size R is pulled through the suspension by an external
force Fext , which causes it to translate at some speed U probe. The bath is comprised of a Newto-
nian solvent with viscosity ηs and a dilute dispersion of active Brownian particles (ABPs) with size
a, characteristic swim speed U0, and a reorientation time τR. The motion of the probe distorts the
suspension microstructure, so the bath exerts a reactive force on the probe. In a passive suspen-
sion, the degree of distortion is governed by the Péclet number, Pe = Fext/(kBT/a), the ratio of
the external force to the thermodynamic restoring force of the suspension. In active suspensions,
however, the relevant parameter is Ladv/`=U probeτR/U0τR ∼ Fext/Fswim, where Fswim = ζU0 is the
swim force that propels the ABPs (ζ is the Stokes drag on a swimmer). When the external forces
are weak, Ladv� `, the autonomous motion of the bath particles leads to “swim-thinning," though
the effective suspension viscosity is always greater than ηs. When advection dominates, Ladv� `,
we recover the familiar behavior of the microrheology of passive suspensions. The non-Newtonian
behavior for intermediate values of Ladv/` is determined by `/Rc = U0τR/(R+a)—the ratio of the
swimmer’s run length ` to the geometric length scale associated with interparticle interactions
Rc. The results in this manuscript are approximate as they are based on numerical solutions to
mean-field equations that describe the motion of the active bath particles.

1 Introduction
The focus of many theoretical and experimental investigations in
soft-matter physics has turned to the dynamic behavior of col-
loidal suspensions of self propelled particles, an example of active
matter. These systems pose an interesting challenge as their con-
stituents are able to generate their own internal stresses and drive
a suspension out of equilibrium without the influence of external
forces1,2. These inherently far-from-equilibrium materials do not
obey typical thermodynamic relationships—e.g. the fluctuation-
dissipation theorem (FDT)3,4—and exhibit fascinating behaviors
such as spontaneous collective motion5–11.

Macroscopic measurements of the shear-viscosity of active sus-
pensions have shown the potential for highly active suspensions
of tail-actuated, anisotropic swimmers under weak shear to reach
a superfluid-like state in which the total shear stress measured
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by bulk rheometry is zero—or even negative12,13. Theoretical
models suggest that the origin of this “superfluid" behavior is the
active hydrodynamic stress exerted by the swimmer on the sur-
rounding fluid; thus, this effect would only be observed in sus-
pensions of anisotropic particles. The hydrodynamic stress of an
extensile swimmer (“pusher”) or contractile swimmer (“puller”)
will either decrease or increase the apparent viscosity, respec-
tively14. These effects are hydrodynamic in origin, and reflect
the interaction of the swimmer with the fluid under shear, not the
interaction between swimmers in suspension.

Reductions in the zero-shear viscosity of suspensions of
anisotropic active particles thus give rise to non-Newtonian sus-
pension rheology, even at the single-particle level. The shear vis-
cosity of the suspension depends on the ratio of the shear-rate γ̇

to the rotary diffusion rate τ
−1
R of the swimmers, which defines a

Péclet number Peγ̇ = γ̇τR. When Peγ̇ � 1 swimming is dominant
and the active particles may greatly reduce the zero-shear New-
tonian plateau12–14. When Peγ̇ � 1, the fluid flow is able to over-
whelm the active random motion of the swimmers and align them
with the rate-of-strain field—this gives Brenner’s familiar correc-
tion to the shear viscosity for a single particle15. This transition
is non-monotonic in Peγ̇ —thus the suspension goes from being
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Newtonian in the absence of activity (at the single-particle level)
to non-monotonically shear thickening14. In passive colloidal sus-
pensions, shear-thickening can only arise at the pair-level, and is
usually attributed to lubrication interactions or frictional contact
forces between particles16,17.

Though the bulk rheological behavior of active fluids is inter-
esting, the local (microscopic) behavior is often of greater rele-
vance in suspensions of active particles. Microrheology—which
measures the local viscous response via the drag on a colloidal
probe particle—is an ideal framework for analyzing the suspen-
sion mechanics of active systems because it does not require large
sample volumes, which may be prohibitively expensive or ex-
perimentally unrealizable for active biological materials, and it
can probe micro-scale heterogeneity in the material structure18.
For example, the interior of a cell may be modeled as a concen-
trated colloidal dispersion wherein many of the constituents are
self-propelled (i.e. motor proteins). Understanding how the ac-
tivity of biocolloids affects the micro-mechanics of such systems
promises to give greater understanding of fundamental cellular
processes, such as cellular reproduction where cytoskeletal fil-
aments undergo directed motion by motor proteins in prepara-
tion for mitosis. (How would the active motion of other cellular
components affect the force required to move these filaments?)
Enhanced understanding of these biological processes may en-
able more effective drug delivery and gene therapy at the cellular
level19,20.

Macrorheology and microrheology measure fundamentally dif-
ferent quantities: macrorheology measures the material response
at length scales on the order of the gap distance between two
surfaces (usually in the range of a few millimeters), whereas mi-
crorheology measures the material response on the order of the
probe size (a few microns). The two methods measure distinct
viscoelastic properties that may not quantitatively agree with one
another. Qualitatively, however, the two methods have shown
remarkable agreement21. Indeed, even quantitative agreement
between the Einstein viscosity correction and microviscosity has
been found in the limit of a large probe particle moving in a sus-
pension of point bath particles, as would be expected22.

Relatively little attention has been given to the microrheol-
ogy problem in active media3,4,13,23,24. The linear microrheol-
ogy problem has been studied in the context of the fluctuation-
dissipation relation in active materials3,4, and in studies of active
nematics23,25. In contrast to microrheology of passive suspen-
sions, Foffano et al. find stark qualitative differences between
the microrheology and macrorheology of an active nematic25;
a negative microviscosity was found for contractile suspensions,
whereas negative shear-viscosities are usually associated with ex-
tensile suspensions23. To-date, no studies have investigated the
viscoelastic response of active suspensions when subjected to non-
linear microscopic deformations—when the external force is com-
parable to or much larger than both the thermal energy kBT and
the activity of the swimmers.

In this paper, we extend our previous investigation of the lin-
ear microrheology of an active Brownian suspension to the non-
linear regime. In that study we calculated the average speed of
a probe particle of size R moving slowly through a suspension

of active Brownian particles (ABPs) with swim speed U0, size a
and reorientation time τR. The relative thermal Stokes-Einstein-
Sutherland diffusivity of the probe-swimmer pair was Drel and the
center-to-center separation distance of the probe-swimmer pair
upon contact was Rc = R+a. In our previous study we implicitly
assumed that the distance moved by the probe during a time τR,
Ladv =U probeτR (where U probe is the probe speed) was small com-
pared to the run length of the swimmers `=U0τR. The run length
of the swimmers was varied with respect to the length scale of
Brownian motion δ =

√
DrelτR and the size of the particles Rc.

In this paper, we relax the constraint on probe speed and allow
Ladv/` to become & O(1). Based on previous work4,26 we offer
some predictions of the microrheological behavior in the nonlin-
ear regime.

When Ladv � ` the swimmers travel a much greater distance
` between reorientations than does the probe. The swimmers
are thus able to bombard the probe equally well from all direc-
tions and keep up with it as it moves. The microviscosity is de-
termined only by the strength of activity relative to thermal fluc-
tuations and the particle sizes, `/Rc and `/δ , and is the same as
we found previously4. Active suspensions exhibit a weak-force
Newtonian plateau that is the same as that found in passive sus-
pensions when `� Rc or `� Rc, but lower when the run length is
comparable to the contact length `∼ Rc—the suspension exhibits
swim-thinning that is nonmonotonic in `/Rc and similar for dif-
ferent values of `/δ . In the opposite limit, Ladv/`� 1, the probe
is moving much farther between swimmers’ reorientations than
they are. This means that swimmers behind the probe will not
be able to fill in the wake left by the probe. Similarly, the swim-
mers that accumulate in the advective-diffusive boundary layer
on the front of the probe are not able to escape and swim out
of the probe’s way before they reorient. They remain trapped in
the boundary layer and accumulate just as if they were passive
Brownian particles (top row of Fig. 8). Thus, an active suspen-
sion will exhibit the same large-force plateau as found in passive
suspensions regardless of `/Rc and `/δ .

When Ladv ∼ `, the swimmers and the probe move a compa-
rable distance between reorientations of the active particles. A
cartoon of the physical behavior for Ladv ∼ ` at various `/Rc may
be found in Fig. 1. In what we call the continuum limit `/Rc� 1
the swimmers’ motion is effectively Brownian on the length scale
of probe motion. Neither the swimmers nor the probe move a sub-
stantial distance compared to Rc during the time τR. The swim-
mers keep pace with the probe, but are not able to move out of
the probe’s path in front or get into the wake behind. Thus, the
activity has little effect on the non-Newtonian behavior, and the
suspension force-thins from the low-force Newtonian plateau to
the high force Newtonian plateau, just like a suspension of passive
particles27.

Next, consider the case when `/Rc� 1 (Fig. 1, bottom panel).
Particles will accumulate at the front of the probe due to advec-
tion as they do in passive suspensions, but some of the particles
will be able to escape the advective-diffusive boundary layer and
swim out of the probe’s path. Conversely, some of the particles
behind the probe will be able to fill in the wake, or even col-
lide with the probe from behind. Both of these behaviors tend to
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Fig. 1 Sketch of swimmer trajectories for various `/Rc = U0τR/Rc and Ladv = U probeτR ∼ `. The swimmer’s reorientation time and swim speed are τR
and U0, respectively, and the probe speed is U probe; Rc is the center-to-center separation distance of a probe-swimmer pair at contact. In each panel,
the dashed circles represent the probe (orange) and bath (grey) particle positions at a time τR before the solid circles. Top Left: when `� Rc the
swimmer reorients quickly after colliding with the probe, behaving no differently than a Brownian particle. The microrheology is thus similar to passive
suspensions (Fig.7, left) Top right: when `∼ Rc swimmers that slide to the front of the probe upon collision are more likely to reorient and push against
the probe, while swimmers that slide to the rear of the probe will be left behind as the probe continues moving forward. This is the physical mechanism
for force-thickening (see Fig. 7, center). Bottom panel: when ` ∼ Ladv � Rc, swimmers behind the probe are unable to keep up with it, and swimmers
that collide with the probe and slide to the back are similarly unable to keep up with it. As a result, the suspension microviscosity is no different than
that in a passive suspension (Fig. 7, right).

decrease the apparent viscosity of the suspension, and thus the
force-thinning behavior seen in passive suspensions is retained in
this limit. For `∼ Rc (Fig. 1,top right), swimmers near the probe
remain within striking distance of the probe surface after reori-
entations when Ladv� `. On average, more swimmers ended up
pushing the probe forward than pushing against the probe. When
the probe speed increases, the swimmers behind the probe now
have more difficulty pushing the probe along because it is trav-
elling approximately the same distance as they are in a time τR.
The opposite is true for the swimmers pushing against the probe
out front. Thus, the suspension will actually force-thicken in this
regime. This is notable, as force-thickening in passive suspen-
sions arises from hydrodynamic lubrication interactions, which
we have neglected here. This force-thickening is non-monotonic.

In the next section we write down the Smoluchowski equation
that describes the dynamics of a passive Brownian probe parti-
cle moving through a suspension of active Brownian bath parti-
cles (ABPs). We then review the results of Yan & Brady26 and
Burkholder & Brady4 for the case of a stationary and slowly-
moving probe, respectively. Finally, we compute the nonlinear
microviscosity for arbitrary values of `/δ , `/Rc, and Ladv/` by
numerically solving orientation-averaged moments of the Smolu-

chowski equation28. These calculations confirm the above phys-
ical predictions of the force-dependent microrheology of active
suspensions.

2 Theoretical framework

We consider a dispersion of N − 1 swimmers and one passive
probe particle of size R with thermal Stokes-Einstein-Sutherland
(SES) diffusivity DP in a Newtonian solvent with viscosity ηs. The
swimmers are modeled as active Brownian particles (ABPs) with
size a, (constant) swim speed U0, thermal SES diffusivity DT , and
a characteristic reorientation time τR. The probe moves at speed
U probe due to an applied external force Fext ; either the force or
probe speed may be fixed. The dynamics of this suspension are
described by a Smoluchowski equation in position and orientation
space:

∂PN

∂ t
+

N

∑
i=1

∇xxxi · jjjTi +
N

∑
i=1

∇Ri · jjjRi = 0, (1)

which is simply a conservation statement for PN({xxxi},{qqqi}; t), the
time-dependent N-particle probability distribution of the suspen-
sion that depends on the positions (xxxi) and orientations (qqqi) of
each particle. The rotational operator ∇Ri is given by qqqi×∇qqqi

for

1–13 | 3

Page 3 of 13 Soft Matter



an axisymmetric particle.

When the suspension is sufficiently dilute (φ = 4πn∞a3/3� 1 in
three dimensions or φA = 4πa2n∞

A � 1 in two-dimensions, where
n∞ is the constant volumetric number density of swimmers and n∞

A
is a constant areal number density of swimmers for d = 2) only
the pair-wise interactions between the probe and a single swim-
mer matter. Thus, one can write a Smoluchowski equation for the
pair-level probability distribution, P2(xxxP,xxxs,qqqP,qqqsss; t), where the
position and orientation of both the probe (xxxP,qqqP) and swimmer
(xxxs,qqqs) are in the laboratory frame. Fluctuations in the probe’s po-
sition do not affect its average speed due to translational invari-
ance29,30 and the orientation of the probe is irrelevant because it
is a passive particle. Thus we can average over the phase space
of the probe and write the Smoluchowski equation in a relative
coordinate frame

∂P1/1(rrr,qqq; t)
∂ t

+∇r · ( jjjTTTsss −−− jjjTTTPPP)+∇q · jjjRs = 0, (2)

where P2(xxxP,xxxs,qqqP,qqqsss; t) = P1/1(rrr,qqq; t)P1(zzz,qqqP; t) and we have de-
fined zzz = xxxP, rrr = xxxsss−−− xxxPPP, and qqq = qqqs. jjjPPPsss is the translational flux
of the probe, and jjjTTTsss and jjjRRRsss are the translational and rotational
fluxes of the swimmer, respectively. The probability distribution
for the probe particle P1 is not explicitly needed to compute the
average probe velocity or diffusivity29. In the absence of hydro-
dynamic interactions (which we neglect in this study), the trans-
lational and rotational flux of the swimmer relative to the probe,
respectively, are:

jjjTTT ≡ jjjTTTsss −−− jjjTTTPPP = (U0qqq−UUU probe)P1/1−Drel
∇rP1/1, (3)

jjjRs =− 1
τR

∇qqqP1/1, (4)

where Drel = DP +DT for a fixed external force and Drel = DT

when the velocity of the probe is fixed. The probe and swimmer
interact via excluded volume interactions and thus the particles
may not pass through one another upon a collision: nnn ··· jjjTTT = 0, at
|rrr| = Rc ≡ R+ a, where nnn is the outward pointing unit normal of
the probe.

We solve the Smoluchowski equation using the familiar method
popularized by Saintillan and Shelley28 and expand the pair-
distribution function in terms of orthogonal tensor harmonics in
qqq:

P1/1(rrr,qqq; t) =
1

4π

(
n(rrr; t)+qqq ·mmm(rrr; t)+(qqqqqq− III/d) : QQQ(rrr; t)

+(qqqqqqqqq−ααα ···qqq/(d +2))�BBB+ ...

)
, (5)

where d is the spatial dimension and ααα is the fourth-order
isotropic tensor. The operation : is the double dot product and
� is the triple dot product. The zeroth moment, n is the concen-
tration field, mmm is the polar order, QQQ is the nematic order, and so
on28,31. We make the closure BBB = 0, or 〈qqqqqqqqq〉= ααα · 〈qqq〉/(d +2).
Note that the third moment 〈qqqqqqqqq〉 is not zero; it’s “traceless” part
BBB, however, is.

Applying the moments-averaging procedure to the governing

Fig. 2 Schematic of the model system: a Brownian probe particle of size
R immersed in a suspension of active Brownian particles (ABPs) with size
a at number density n∞—the center-to-center separation distance upon
a collision is denoted by Rc = R+ a. The ABPs swim in a direction qqq at
speed U0; qqq changes randomly on a time scale characterized by τR. The
probe translates under the action of some external force FFFext = 〈ζ 〉UUU probe,
which may be constant or specified such that the resulting probe velocity
UUU probe is constant. The force and velocity are related by the effective drag
coefficient 〈ζ 〉.

equation and boundary conditions for P1/1 yields a system of cou-
pled PDEs governing the steady microstructure:

∇r · [U0mmm−Drel
∇n−UUU proben] = 0 (6)

∇r · [U0(IIIn/d +QQQ)−Drel
∇mmm−UUU probemmm]+ (d−1)DRmmm = 0, (7)

∇r · [U0(ααα ···mmm/(d +2)− IIImmm/d)−Drel
∇QQQ−UUU probeQQQ]+2dDRQQQ = 0.

(8)

At the probe surface there can be no translational flux (i.e. the
particles are hard-spheres), and far from the probe the suspension
can exhibit no order:

nnn · 〈 jjjTTT 〉qqq = nnn · 〈qqq jjjTTT 〉qqq = nnn · 〈(qqqqqq−−− III/d) jjjTTT 〉qqq = 0, (9)

at r = Rc

n∼ n∞, mmm∼ 000, QQQ∼ 000, r→ ∞. (10)

In the absence of probe motion P1/1 is isotropic, so there will be
no net force on the probe. Thus, we write the concentration, polar
order, and nematic order as the sum of the fields for a stationary
probe, plus a perturbation due to the external force: n = n0 +

n′,mmm = mmm000 +++mmm′′′,QQQ = QQQ000 +++QQQ′′′. The non-dimensionalized, coupled
PDEs for the disturbance fields are:

∇r · [(`/δ )2(Rc/`)mmm′′′−∇rn′−Peûuun′] = Pe∇r · (ûuun0), (11)

∇r · [(`/δ )2(Rc/`)(IIIn′/d +QQQ′′′)−∇rmmm′−Peûuummm′′′] (12)

+(d−1)(`/δ )2(Rc/`)
2mmm′′′ = Pe∇r · (ûuummm000),
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∇r · [(`/δ )2(Rc/`)(ααα ···mmm′′′/(d +2)− IIImmm′′′/d)−∇QQQ′−PeûuuQQQ′′′]

+2d(`/δ )2(Rc/`)
2QQQ′′′ = Pe∇r · (ûuuQQQ000), (13)

where ûuu is the unit vector in the direction of probe motion. The
scaled governing equations reveal three dimensionless groups.
The first is an external Péclet number Pe = U probeRc/Drel =

Fext/(kBT/a) = LadvRc/δ 2, where Ladv = U probeτR is the distance
the probe moves in τR and δ =

√
DrelτR is the length scale of

the thermal fluctuations of the probe and swimmer. This Pé-
clet number reflects the balance between advection and diffu-
sion, which can be expressed in terms of the ratio of the probe
speed or advection length to the relevant thermal diffusion length
and velocity scales, or in terms of the ratio of the external force
to the thermal force. There are two parameters describing the
activity of the suspension: (1) a parameter relating the length
scale of swimming to the length scale of Brownian fluctuations
`/δ = U0τR/

√
DrelτR, and (2) a parameter `/Rc = U0τR/(R+ a)

that compares the run length of the swimmers to the geomet-
ric size of the probe-swimmer pair. We will denote the compo-
nents of polar order and particle flux in the direction of motion as
m′‖ = ûuu ···mmm′′′ and j′n,‖ = (`/δ )2(Rc/`)m′‖− ûuu ···∇∇∇n′−Pen, respectively.
All fields have been scaled by n∞ such that the microstructure is
unity far from the probe.

The fundamental physical problems in microrheology are to
compute: (1) the average velocity of a particle as it is dragged
through a suspension by an external force FFFext , or (2) the average
force required to make a particle translate through the suspension
with velocity UUU probe. The former mode is referred to as fixed-force
microrheology and the latter is the fixed-velocity mode; in an ex-
perimental system the true mode of probing may lie somewhere
in between (say, if the probe is being moved by an optical trap of
finite potential depth). The differences are discussed in depth in
previous works on microrheology in passive systems, but in the
absence of hydrodynamic interactions, the two modes differ only
by a geometric factor27,32.

The average velocity of the probe as it moves through the sus-
pension is

〈UUU probe〉=UUUStokes− 1
ζP

kBT
∫

∇rrrn(rrr; t)drrr ,(14)

in the absence of any hydrodynamic interactions or long-ranged
interparticle forces21,27,33. The probe’s Stokes drag coefficient
is ζP = 6πηsR and its velocity in a Newtonian solvent is UUUStokes.
In the linear-response regime the velocity reduction due to col-
lisions with the bath particles is linear in the applied external
force: 〈UUU probe〉 ∼ FFFext〈µ〉, where 〈µ〉 is the probe mobility; for
the fixed-velocity mode 〈FFFext〉 ∼ 〈ζ 〉UUU probe. We define an effective
drag coefficient 〈ζ 〉= 6π〈η〉R, where 〈η〉 is the microviscosity of
the suspension27. In the absence of hydrodynamic interactions,
〈µ〉= 1/〈ζ 〉, but this is not true in general.

The effects of interparticle interactions (given by the integral
in Eqn. 14) may be characterized by the intrinsic microviscos-
ity ηmicro = (〈ζ 〉−ζP)/ζPφ ex, where φ ex = 2πaR2

cn∞/3 is the ex-
cluded volume fraction. (In 2d this is replaced by the excluded
area fraction φ ex

A = 2πaRcn∞
A , where n∞

A is the areal number den-
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Fig. 3 Number density at the surface of a stationary, spherical probe
n0(r = Rc), where Rc = R+ a is the sum of the probe size R and swim-
mer size a, minus the far-field number density n∞. This is scaled by
n∞(`/δ )2/6, where ` = U0τR is the run length of a swimmer, its speed
U0 times its reorientation time τR, and δ =

√
DrelτR. The relative thermal

diffusivity of a swimmer-probe pair is Drel . We plot this quantity as a func-
tion of `/Rc for a range of `/δ . Note that the accumulation of swimmers
is still large when `� Rc: n0−n∞ ∼ n∞`Rc/δ 2. It is small on the scale of
(`/δ )2.

sity of swimmers.) Even though this linear force-velocity relation
is only guaranteed near equilibrium, we use the same definition
for suspensions far from thermodynamic equilibrium27. Thus,
the effective drag 〈ζ 〉 (and mobility 〈µ〉) and intrinsic microvis-
cosity ηmicro may now be functions of the external force or probe
velocity: e.g. 〈UUU probe〉 ∼ FFFext〈µ(Fext)〉.

From the detailed solutions to the PDEs derived above, we can
directly compute the intrinsic microviscosity:

η
micro =

3
4π

∫
r=Rc

(ûuu ·nnn)n′(rrr; t)dS, (15)

where dS has been scaled by R2
c . The intrinsic microviscosity will

be determined solely by the microstructure at contact because
we have neglected any long-ranged hydrodynamic or interparticle
interactions in this paper. We calculate the full number density,
polar order, and nematic order using a finite difference scheme
adapted from Khair & Brady21 and implemented in MATLAB We
also compute the number density when Pe� 1 with a boundary-
layer analysis (see Appendix A).

3 Stationary (Pe ≡ 0) and slow-moving
(Pe� 1) probe

We briefly review the results from the stationary26 and slowly-
moving4 probe problems here. In the absence of probe mo-
tion, the suspension microstructure is isotropic. Activity of
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Fig. 4 Contour plots of the 3-D (axisymmetric) microstructure for weak external forcing Pe = 0.001; the direction of the external force is indicated with
a solid black arrow. The background green colors indicates a uniform microstructure: n′,mmm′′′ ∼ 0,n0 = 1. Red (warm) colors indicate an accumulation of
particles, and blues (cold colors) indicate a depletion. For the active microstructures, `/δ = 10. For the polar order mmm′‖, concentration gradient ∇‖n′, and
flux jjjT

‖ , the color indicates how strongly the field is aligned with (reds) or against (blues) the external force.

the swimmers is balanced by thermal diffusion, resulting in a
swim-diffusive boundary layer at the probe surface of thickness
δ/
√

2((`/δ )2/6+1). In Fig. 3 we plot this number density n0

(the subscript 0 indicates a stationary probe) at the probe sur-
face (r = Rc) as a function of `/Rc, the ratio of the swimmers’
run length to the characteristic length of excluded-volume inter-
actions A plot of the spatial variations of this number density may
be found in the second-from-left column of Fig. 4.

The limit `/Rc � 1 is known as the “continuum limit.” In this
regime, the run length of the swimmers is small compared to
the probe size and the number density at the probe surface is
given by n0 = n∞(1+ 1/6(`/δ )2). When `/Rc � 1, swimming is
strong and most of the microstructural detail is confined to an
O(δ/

√
2((`/δ )2/6+1)) thin boundary-layer at the probe’s surface

(hence why it is invisible to the naked eye in the contour plots of
n0 and ∇n′ in Fig.4). This boundary layer reflects a balance be-
tween swimming and thermal diffusion. As `/Rc increases, the
surface value of n0 monotonically decreases; if one neglects ne-
matic order, QQQ === 000, this decrease goes as (1+ `/

√
3Rc)

−1. The
physical reason for this decreased number density is that the
swimmers no longer “see” the probe when `� Rc. When `� Rc,
the swimmers collide with the probe and quickly reorient and
move away, just like a Brownian particle. In contrast, when

`� Rc, the swimmers collide with the probe and slide along the
surface until they are able to continue swimming freely; they re-
orient somewhere out in the bulk. Thus, the larger ` is com-
pared to Rc, the farther away from the probe they are upon re-
orientation, and the less likely they are to collide with the probe.
As a result, the number density is reduced by a factor of `/Rc:
n0 ∼ `Rc/δ 2. This number density may still be large, but is small
on the scale of (`/δ )2.

In Figs. 5 and 6 we plot the intrinsic microviscosity as a func-
tion of `/Rc for various values of the activity level `/δ . We see that
the qualitative trend of ηmicro with respect to `/Rc is consistent
across values of `/δ—when `/Rc � 1 or `/Rc � 1, ηmicro = 1 as
in a suspension of passive Brownian particles, and there is a min-
imum at `∼ Rc that is dependent on the activity level. (The over-
shoot seen at `/δ = 50 is a result of the choice of closure; finite
element calculations in 2D4 reveal that the approach is mono-
tonic.) We note that there is nearly exact agreement between the
results in d = 2 and d = 3, as one would expect, and as is the case
in passive suspensions.

To understand these results it helps to recall the behavior in
a passive suspension. In a passive suspension the motion of the
probe results in a small accumulation of bath particles in front of
the probe and a small wake of equal magnitude behind the probe.
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Fig. 5 Intrinsic microviscosity ηmicro in d = 3 plotted as a function of
`/Rc ≡U0τR/(R+a), where U0 is the speed of the swimmers, and τR is
their reorientation time. Different colors indicate different levels of activity:
`/δ = U0τR/

√
DrelτR, where Drel is the relative thermal diffusivity. The

dashed line at 1 is the microviscosity of a passive suspension at Pe� 1,
and the dashed line at 0.5 is the microviscosity of a passive suspension
as Pe→ ∞.

Because these particles are thermal, this concentration gradient
results in a thermal force that pushes against the probe in front,
and “sucks” it from behind (in the words of Squires & Brady27)—
this retards the motion of the probe (see the top row of Fig. 4).
In the continuum limit, `/Rc � 1 (second row from the top of
Fig. 4), the swimmers are effectively Brownian particles diffusing
through the fluid with an active self-diffusivity DT (1+1/6(`/δ )2).
Due to the accumulation boundary layer at the probe surface, the
advective flux of swimmers is substantially larger than in a passive
suspension n0UUU probe ∼ n∞(1+1/6(`/δ )2)UUU probe. However, the ef-
fective diffusivity of the suspension is also increased, so there is a
corresponding “thermal” flux of the same magnitude that counter-
acts this: −Drel(1+ 1/6(`/δ )2)∇n′. The net reactive force on the
probe is thus the same as found in a passive suspension ηmicro = 1.

Curiously, ηmicro = 1 when the active motion of the bath parti-
cles is decidedly non-Brownian on the length scale of the probe,
`/Rc � 1 (see the right-hand side of Fig. 5). Physically, when
a swimmer collides with the probe, it slides along the contact
surface—this is enforced by the no-flux boundary condition—
until it is able to swim away or reorient. Because `� Rc, the
swimmer reorients infrequently, and thus slides along the surface
until it is able to continue along its trajectory with the same ori-
entation. The particles accumulate the surface of the probe as
n0 ∼ n∞`Rc/δ 2 (Fig. 4, bottom row, second column from the left).
In this limit, the effective diffusivity of the suspension that is bal-
ancing this advective disturbance scales as Drel(`Rc/δ )2. Thus,
the microviscosity is the same as found in passive suspensions.
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Fig. 6 Intrinsic microviscosity ηmicro in d = 2 plotted as a function of
`/Rc ≡U0τR/(R+a), where U0 is the speed of the swimmers, and τR is
their reorientation time. Different colors indicate different levels of activity:
`/δ = U0τR/

√
DrelτR, where Drel is the relative thermal diffusivity. The

dashed line at 1 is the microviscosity of a passive suspension at Pe� 1,
and the dashed line at 0.5 is the microviscosity of a passive suspension
as Pe→ ∞.

Experimentally, this indicates that both the microviscosity of a
suspension of “smooth” swimming bacteria (i.e. bacteria that do
not tumble) should be indistinguishable from a suspension of in-
active bacteria. The linear microrheology problem cannot differ-
entiate between the two; any difference would therefore be due
to the hydrodynamic flow generated by the motile bacteria.

The nonomonotonic dependence of ηmicro on `/Rc is somewhat
surprising initially, but this too has a simple physical interpre-
tation. When ` ∼ Rc, a swimmer collides with the probe and
slides along the surface as it does when `/Rc � 1, but it may
still be near the probe when it reorients. For example, a swimmer
approaching the front of the probe may collide and then slide
around to the back of the probe. Once there, it can either re-
orient and swim away from the probe, or it can collide with the
probe again and push it along—the latter scenario would result
in a microviscosity less than one would find in a passive suspen-
sion. The opposite would be true of a particle approaching the
rear of the swimmer—it could swim away in front or reorient and
hit the probe, thereby increasing the microviscosity. Because the
probe is in motion but the active process is isotropic, the swim-
mers are slightly more likely to push on the probe from behind
than push against it out front.The microviscosity is thus reduced
for `/Rc ∼ O(1); ηmicro ∼ 1/2 for highly active suspensions.

This is corroborated by the nested boundary-layer structure in
the third row of Fig. 4. Because the rotational and translational
motion are coupled through the polar (and nematic) order, there
are two distinct boundary-layers that arise from activity: one that
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Fig. 7 Nonlinear intrinsic microviscosity (d = 3) ηmicro plotted as a function of U probe/U0 for various `/Rc =U0τR/(R+a). The probe’s speed is U probe, R
is the probe size, a is the swimmer size, U0 is the speed of the swimmers, and τR is their reorientation time. Different colors indicate different levels of

activity: `/δ =
√

U2
0 τR/Drel , where Drel is the relative thermal diffusivity of a probe-swimmer pair.

is a distance δ/
√

2(1/6(`/δ )2 +1) away from the probe surface
(in 3-D), and another that is a distance δ from the probe sur-
face, where δ =

√
DrelτR and ` = U0τR. The number density n′

is screened by δ/
√

2(1/6(`/δ )2 +1), and the polar order mmm′ is
screened by both δ/

√
2(1/6(`/δ )2 +1) and 1/δ ,34, which is no-

ticeable when ` ∼ Rc. The concentration disturbance n′ is non-
monotonic with distance from the probe surface. Closest to the
probe r−Rc ∼ O(

√
2(1/6(`/δ )2 +1))/δ , there is an accumulation

of swimmers in front and a depletion in back; these swimmers are
swimming against the probe. Just outside this boundary-layer,
r−Rc ∼ O(1/δ ), there is instead an accumulation of swimmers
behind the probe and a depletion out front. The swimmers in this
outer boundary layer are swimming with the probe. Consider a
swimmer that collides with the front of the probe (in the inner
boundary layer). This swimmer opposes the motion of the probe,
but slides along the surface until it is able to reorient. Because
` ∼ Rc, it is still close to the probe—in the outer boundary layer.
It reorients and swims with the probe, again colliding with it and
sliding along the surface but ending up in the inner boundary
layer, again swimming against the probe. There is still a net drag
on the probe, but because some of the swimmers in the probe’s
wake are reorienting and swimming around the probe again, the
average concentration gradient decreases, and thus the intrinsic
microviscosity decreases.

Interestingly, though the polar order (and thus the gradient in
number density) are non-monotonic in r, the flux of swimmers
relative to the probe is monotonic (third row of Fig. 4), and ex-
hibits precisely the same qualitative behavior as in the absence of
activity. Overall, Brownian motion is still trying to compensate for
the wake left by the advective motion, and the swimmers assist
Brownian motion because they are attracted to the probe surface.

Our findings are in qualitative agreement with the simulations
of Reichhardt & Reichhardt24 which compute a decreased mobility
in an active bath without hydrodynamic interactions. Curiously,
the authors find that the mobility monotonically decreases with
`/Rc at fixed (`/δ )2/(`/Rc) = U0Rc/Drel (the strength of activity

relative to thermal diffusion is fixed)24, while our calculations
indicate that the mobility should reach a maximum as `/Rc → ∞

at fixed (`/δ )2/(`/Rc). The simulations are primarily focused on
studying tracer mobility as a way to probe the phase behavior of
active matter; their most dilute calculations are at an area fraction
of 18.85%. In this regime, the suspension is concentrated enough
that the active run-and-tumble of the swimmers is hindered by
steric interactions between swimmers themselves35,36.

Both in the simulations24 and our findings, the microviscos-
ity is always greater than the viscosity of the embedding solvent
〈η〉 > ηs. These findings stand in contrast to many theoretical
predictions and measurements of reduced shear viscosity in bac-
terial suspensions12,37,38 and reduced microviscosity in an active
nematic23,25, which would require a negative intrinsic microvis-
cosity; from a structural perspective, this would require us to have
particles accumulate behind the probe and deplete in front of it.
This indicates that hydrodynamic interactions may play an im-
portant qualitative role in the microrheology problem, either in
the context of the swimmers’ fluid velocity disturbance, or the in-
teraction between the active random walk and the fluid velocity
disturbance created by the probe.

4 Swiftly moving probe (Pe & 1)

In a passive colloidal suspension the balance between advection
and diffusion is confined to a boundary layer of thickness RcPe−1

at the probe surface when Pe & O(1). The number density of bath
particles in the boundary layer in front of the probe scales as Pe,
ensuring that ηmicro remains order one, even as the number of
particles in the probe’s path becomes orders of magnitude larger
than the bulk number density. In the wake behind the probe, how-
ever, the concentration of particles cannot decrease below zero.
Thus, the probe is no longer being sucked from behind by the
thermal restoring force, it is only being slowed by the accumula-
tion of particles in front. Hence, the suspension force-thins (anal-
ogous to shear-thinning; see top row of Fig. 8), and approaches
ηmicro = 1/2 as Pe→ ∞ (for both d = 2 and d = 3).
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We previously found that activity lowers the intrinsic microvis-
cosity in the linear-response regime, and indeed ηmicro asymp-
totes to a value slightly less than 1/2 as `/δ → ∞ for `/Rc ∼ O(1)
when Pe� 14. The low-shear plateau is always lower than that
found in a passive suspension (ηmicro = 1), and indeed might even
be lower than the large Pe plateau found in passive suspensions
(ηmicro = 1/2). When Pe→∞ and `/δ , `/Rc are finite, we expect to
recover the passive suspension high-Pe plateau because the swim-
ming will be obscured by advection. This indicates there must
be a region where a highly active suspension is force-thickening
even in the absence of any interparticle hydrodynamic interac-
tions (HI), contact frictional forces, or fluid disturbances arising
from self-propulsion.

When solving the microrheology problem for small Pe and ar-
bitrary `/δ and `/Rc, we implicitly assumed that the distance
moved by the probe during a time τR was less than the charac-
teristic distance moved by the swimmers Ladv =U probeτR� `. In-
deed, in Fig. 7, we see that the non-Newtonian microrheology
is dictated by the ratio Ladv/`—whether or not the swimmers
can outrun the probe between reorientations.∗ The results for
Ladv � ` are given in the previous section, and it is clear from
Fig. 7 that ηmicro→ ηmicro(Pe→ 0) in this limit. Correspondingly,
in Fig. 8 we see that the advective disturbance to the microstruc-
ture is almost imperceptible for `/Rc . O(1) and Pe & O(1) (i.e.
Ladv . O(1)) because the bath particles can keep up with the
probe.

When Pe� 1 swimmers accumulate in the advective-diffusive
boundary layer at the probe surface (see the right-hand column
of Fig. 8), and when Ladv� `, the swimmers cannot move farther
than the probe does in a time τR. Thus, a swimmer behind the
probe is unable to swim or diffuse into the probe’s wake and has
no chance of pushing the probe along from behind. Simultane-
ously, a swimmer in the boundary layer at the probe front sur-
face cannot escape—it will remain in the probe’s path even if it
swims out of the advective-diffusive layer. As a result, the micro-
viscosity (and as seen in the right-hand column of Fig. 8, the mi-
crostructure) is the same as found in passive suspensions at large
Pe, ηmicro = 1/2. In Fig. 7, this means that ηmicro/ηmicro(Pe→ 0)
will approach some value between ∼ 1 and 1/2 as U probe/U0→∞,
depending on `/Rc and `/δ .

The force-dependent microrheology (i.e. Ladv ∼ ` depends on
both `/Rc and Ladv/`; the physical behavior is illustrated in Fig. 1.
First consider the continuum limit, ` � Rc (leftmost panel of
Fig. 7, top-left panel of Fig. 1, top row of Fig. 9). Because the
run length is small compared to Rc, a swimmer in the probe’s
path will always be swept up into the advective-diffusive bound-
ary layer—it can’t swim out of the way between random reorien-
tations regardless of the magnitude of Ladv. The microrheology
in the continuum limit is thus always dictated by the balance be-
tween advection and diffusion. As we discussed in Section 3, the
larger advective particle flux due to the increased concentration
of swimmers at the probe surface is balanced by a diffusive flux
of the same magnitude, because the swimmers appear to be “hot”

∗ If Pe� 1 but `� δ , the ratio Ladv/` is no longer important because activity is weak.

Brownian particles. When the probe starts to move more quickly,
the advective-diffusive boundary layer becomes thinner, but the
concentration of particles in that boundary layer increases with Pe
in front of the probe. Behind the the probe, the concentration de-
creases but cannot decrease below zero. Indeed, in Fig. 9, we see
only minor changes to the shape of the wake when Ladv ∼ `� Rc

(c.f. panels (a) and (b)).
In the opposite limit, `� Rc (rightmost panel of Fig. 7, bot-

tom panel of Fig. 1, bottom row of Fig. 9), swimmers are still
“attracted” to the probe, but are so persistent that they will typ-
ically collide with the probe, slide along the surface, and then
keep swimming in the same direction before reorienting. When
the probe is moving more quickly, swimmers in front of the probe
will collide with it sooner (it is moving toward them as they are
moving toward it), collide, and continue swimming away, just as
before. At the same time it becomes more difficult for swimmers
behind the probe to actually reach it—they may be unable to col-
lide with it, or reorient shortly after colliding with it from behind.
Some of the swimmers that do collide from behind will help push
the probe along, so we would expect a small reduction in the mi-
croviscosity. We see the structural underpinnings of this behavior
in the bottom row of Fig. 9. When U probe = U0, one can actually
see the swim-diffusive boundary layer detach from the rear of the
probe as `/Rc increases in (h). These are plots of the stationary
probability distribution, so this detached layer persists and “hov-
ers” behind the probe. This structure pinpoints the spot on the
corresponding curve in Fig. 7 where force-thinning begins. The
suspension will force-thin until Ladv� `, at which point the swim-
mers behind the probe are completely unable to keep up with it,
and there is no chance that they are able to help push the probe
along (panel (j) of Fig. 9).

When ` ∼ Rc and the probe moves slowly, swimmers are able
to remain near the probe after a collision and push on it again
after reorienting (see Fig. 4). This same mechanism explains
a non-monotonic enhancement to the probe’s effective diffusiv-
ity39. When the probe starts moving in a particular direction,
swimmers that approach it from behind aren’t as easily able to
slide along the surface to the front and push against the probe
upon reorienting. On the other hand, swimmers that collide with
the front of the probe are easily able to slide along the surface
to the back, reorient, and push the probe along. When the probe
starts to move more quickly, this mechanism is further modified
(Fig. 1, top-right panel). Consider a swimmer in front of the probe
that slides along to the back during a time τR. If the probe were
moving slowly, the swimmer would then reorient and push the
probe along. When the advection length is comparable to the run
length, however, a swimmer will get to the back of the probe, but
the probe will keep moving and it will be harder for the swimmer
to keep up and push the probe along (see panel (d) of Fig. 9).
Swimmers that collide with the back of the probe and swim along
to the front, however, will still be within striking distance of the
probe and have no trouble pushing against it. Thus, when `∼ Rc,
the suspension will actually force-thicken until the swimmers are
unable to keep up with the probe altogether (Fig. 7, center panel).
The results indicate that the degree of force-thickening increases
with `/δ . We expect that there is some maximum degree of force-
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Fig. 8 Contour plots of the number density for various values of the external Péclet number Pe = Fext/(kBT/a), where Fext is the external force moving
the probe (indicated by the black arrow) and a is the size of the bath particles, and the swim Péclet number Pes =U0Rc/Drel where U0 is the swim speed,
Rc is the center-to-center separation distance of a swimmer and the probe upon contact, and Drel is the relative translational diffusivity of the pair. The
activity level is fixed at `/δ = 10.

thickening as `/δ →∞, but are not numerically able to verify this.
Note that, for `/δ = 50 we do not show the approach to the final
plateau due to numerical limitations. (For Pe∼O(104) we require
a finer spatial resolution than possible with the desktop computer
used.) This mechanism for force thickening is quite different than
mechanisms arising from lubrication interactions or interparticle
friction.

A curious feature of the suspension microsctructure is a trian-
gular wake behind the probe when Pe = 100 and ` ∼ Rc, as op-
posed to the more parabolic wake observed at larger Pe, and in
passive suspensions27,29. The formation of this triangular wake
appears to occur at Ladv ∼ ` (see panel (e) of Fig. 9), where ad-
vection and swimming are similar in magnitude, and the shape
indicates that the swimmers are trying to fill in the advective void
left behind the probe. Adjacent to this wake we also see sym-
metric “shocks” of concentration where the advective-diffusive
boundary-layer separates from the probe and the swimmers are
actually moving away from the wake.

The other panels of Fig. 9 reveal that the triangular wake
and “shocks” of concentration arise only when the probe veloc-
ity slightly exceeds the bare swim speed—the swimmers are not
quite able to keep up with the probe, but they still distort the
shape of its wake by trying to swim into the depleted areas. In
the last column of Figs. 8 and 9 the swimmers can no longer keep
up with the probe, and we see the characteristic O(Pe) long wake
behind the probe, with the accumulation boundary-layer separat-
ing from the probe at the poles ûuu ·nnn = 0. This shape is constant
across the activity levels we depict in Figs. 8 and 9; however
the accumulation boundary-layer “tails” are shorter when `/Rc

is smaller—c.f. right-hand column in Fig. 8. This is simply an-
other physical manifestation of the activity trying to compensate
for the advective disturbance—the swimmers want to swim with
the probe so the advective wake is simply not as long.

In a typical experiment, the easiest quantity to manipulate is
U probe or Ladv, as the probe is typically controlled with magnetic
tweezers. In suspensions of synthetic swimmers, one can also
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Fig. 9 Contour plots of the 3-D (axisymmetric) microstructure at Pe = 100 for various ratios of U0/U probe where U0 is the swim speed of the bath particles
and U probe is the speed of the probe.. The rows vary the value of `/Rc. The background light blue color indicates a uniform microstructure: n = n∞,mmm = 0.
Red (warm) colors indicate an accumulation of particles, and darker blues (cold colors) indicate a depletion.

control U0 or ` by altering the concentration of fuel. The probe
size R and swimmer size a (and thus, the contact length Rc) as can
also be controlled for synthetic particles, though τR is typically
set by the swimmer size. Swimmer size, reorientation time, and
swim speed are more difficult to control for self-propelled organ-
isms. To check the predictions in Fig. 7, one could vary the probe
size to change `/Rc, and vary the probe speed to change Ladv/`,
both without having to control properties of the swimmers. One
could repeat these experiments in suspensions of different organ-
isms (e.g. smooth-swimming and tumbling E. Coli) to verify the
dependence of ηmicro on `/δ .

It is noteworthy that the weak-force Newtonian plateau is much
wider in active suspensions because the linear response regime
is characterized by Ladv � `; the probe can actually move quite
swiftly through an active suspension and remain in the linear re-
sponse regime. The weak-force plateau is notoriously difficult
to measure by either experiment or simulation; a wider plateau
would allow one to make a linear response measurement at much
higher probe speeds, where the average velocity (or force) is more
readily distinguishable from Brownian fluctuations.

5 Conclusions
Using familiar frameworks from the study of passive colloidal sus-
pensions, we investigated the nonlinear microrheology of a sus-
pension of active Brownian particles (ABPs). We found that, in
the absence of hydrodynamic interactions, the suspension swim-
thins regardless of the hydrodynamic propulsion mechanism of
the swimmer when Pe = U probeRc/Drel � 1. We found that this
low-Pe Newtonian plateau persists for a wide range of Péclet num-
bers, and that the width of the Newtonian plateau is set by the ra-
tio of the swim speed to the probe speed (Fig. 7). The persistence
of this plateau reflects the fact that the swimmers are able to fill

in the void created by the probe’s advective motion when Ladv < `

and ` & Rc. If the run length is short compared to the distance
the probe travels in τR, the swimmers will reorient before they
are able to reach the probe even when ` & Ladv; in this limit the
wake (and viscous response) resembles that of a passive suspen-
sion. When `� Ladv, the effects of activity vanish and we recover
the familiar high Pe plateau from previous work on passive sus-
pensions27. Most of these effects are predictive; there are no ex-
perimental studies to-date that measure the microviscosity of an
active suspension, though there is a computational study exam-
ining various phase behaviors in the microrheology problem24.
Reichhardt & Reichhardt compute the mobility of a probe in an
active bath (neglecting hydrodynamic interactions and Brownian
motion), and find reduced probe mobility, even at low volume
fractions. This is consistent with our findings that the intrinsic
microviscosity is positive in the absence of HI.

Hydrodynamic interactions in passive suspensions have been
shown to cause quantitative changes in the non-equilibrium me-
chanical properties of a suspension, and more importantly pro-
duce qualitatively different behaviors. The most notable exam-
ple of this is that near-field hydrodynamic interactions lead to
force-thickening of the suspension at high shear rates16,21. In
active suspensions, hydrodynamic interactions have been shown
to alter the particle-phase pressure40 and shear viscosity12,37,38,
but these effects do not alter the problem’s boundary-layer struc-
ture40. The same balances between advection, diffusion, and ac-
tivity seen here are expected to hold, but the parameters Drel , τR,
and Fext or U probe will now depend on the strength of hydrody-
namic interactions through familiar mobility formalisms in low
Reynolds number fluid-mechanics41. Incorporation of the hydro-
dynamics does not require us to say anything about the propulsive
mechanism of the bath particles, though the framework presented
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in previous works is readily modified to include specifications of
the swimmers’ gait. We will discuss the role of HI in a future
study.

A Boundary-layer analysis, Pe� 1

When advection is strong Pe� 1, there will be a thin boundary
layer of O(Pe−1) at the surface of the probe over which diffusion
balances advection. For simplicity, we assume that, outside the
advective-diffusive boundary layer, the microstructure is uniform
n = 1 and mmm = 0 – the effects of activity are contained within the
advective-diffusive layer. We choose a boundary-layer coordinate
Y = Pe(r−1), thus amplifying all of the gradients in the governing
equations by Pe. We then expand the concentration and polar
order in powers of Pe−1: n = Pen0 + n1 + O(Pe−1) ,mmm = Pemmm000 +

mmm111+O(Pe−1). Due to the advective build-up of bath particles near
the surface, the leading order terms must scale with the Péclet
number.

In the boundary layer, the governing equations reduce to

∂n0

∂Y
+µn0 =

`

Ladv mr,0, (16)

∂ 2mr,0

∂Y 2 +µ
∂mr,0

∂Y
−2

δ 2

Ladv2 mr,0 =
1
3

`

Ladv
∂n0

∂Y
, (17)

∂mr,0

∂Y
+µmr,0 =

1
3

`

Ladv n0,Y = 0, (18)

mr,0 ∼ 0,Y → ∞, (19)

∂ 2mµ,0

∂Y 2 +µ
∂mµ,0

∂Y
−2

δ 2

Ladv2 mµ,0 = 0, (20)

∂mµ,0

∂Y
+µmµ,0 = 0,Y = 0, (21)

mmu,0 ∼ 0,Y → ∞, (22)

where µ ≡ uuu ··· nnn and mr and mµ are the radial and angular com-
ponents of the polar order. We neglect nematic order in this cal-
culation as it is unimportant when advection dominates. Because
mµ,0 is de-coupled from n0 and mr,0, we may assume that it is
unimportant at O(Pe) and derive a third-order equation for n0:

∂ 3n0

∂Y 3 +2µ
∂ 2n0

∂Y 2 +µ
2 ∂n0

∂Y
−λ

2 ∂n0

∂Y
−2

δ 2

Ladv2 µn0 = 0,

∂ 2n0

∂Y 2 +2µ
∂n0

∂Y
+µ

2n0 =
1
3

( `

Ladv

)2
n0,Y = 0,

n0 ∼ 0,
∂n0

∂Y
+µn0 ∼ 0,Y → ∞,

(23)

which has exponential solutions
f (µ,Ladv/`,δ/Ładv)eg(µ,Ladv/`,δ/Ladv)Y . Note that we have de-
fined λ =

√
1/3(`/Ladv)2 +2(δ/Ladv)2 for brevity. The function g

is given by solutions to the characteristic equation

g(g+µ)2 =
( δ

Ladv

)2
+gλ

2. (24)

This equation will have three roots, one of which leads to an un-
physical exponential growth. The other two roots are exponen-
tially screened oscillating functions of λ ,δ/Ladv and µ.

We neglect terms of O(δ/Ladv) to reduce the order of the char-
acteristic equation (using the no-flux boundary condition). In do-
ing this we assume that the distance moved by the probe in τR is
much greater than distance the pair moves by Brownian motion
in the same time, which is reasonable for a fast-moving probe that
is similar in size to or much larger than the swimmers.

We can solve the reduced characteristic equation for n0:

n0 = A(µ)e−Y (µ+λ ))+B(µ)e−Y (µ−λ )). (25)

This gives the correct result in the limit λ → 0 and decays as
e−(`/δ )(r−1) when activity dominates advection.

To find the functions A(µ) and B(µ), one must go to the next
order in Pe−1:

n0 ∼ 1+
Pe
2
(µ +λ )e−Pe(r−1)(µ+λ ), (26)

when λ > |µ|. When λ < |µ|, the concentration of bath particles
behind the probe (µ < 0) is zero, in front of the probe (µ > 0), we
find that the accumulation of particles is:

n0 = 1+
Pe
4
(µ +λ )e−Pe(r−1)(µ+λ )+

Pe
4
(µ−λ )e−Pe(r−1)(µ−λ ). (27)

This microviscosity is thus:

η
micro =

1
2

[
1+λ

3
]
, λ < 1 (28)

η
micro = 1, λ > 1. (29)

The first result indicates that the suspension must force-thin when
Pe� 1, but the thinning goes as λ 3. Activity increases the con-
centration of bath particles inside the advective-diffusive bound-
ary layer, increasing the the total drag on the probe. The second
indicates that, when external forcing is strong, but swimming
stronger, the microviscosity is equal to 1—the linear-response
value for `/Rc� 1. Even though the suspension is being strongly
driven from equilibrium by an external force, the swimmers are
fast enough to fill in the wake left by the probe, so the suspen-
sion remains Newtonian. When the external force increases, the
swimmers can no longer keep up, and we approach the result for
a passive suspension.27
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