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Phase Separation and State Oscillation of Active Inertial Particles

Chengyu Dai,a Isaac R. Bruss,b and Sharon C. Glotzer∗abcd

Active matter systems are of great interest for their novel out-of-equilibrium collective behavior.
Active Brownian particles (ABPs) are known to exhibit clustering and motility-induced phase sep-
aration, and there have been many studies revealing this rich behavior in the overdamped limit of
Brownian motion, where inertial effects are insignificant. Here we simulate an Active Inertial Par-
ticle (AIP) model where we focus on the underdamped, rather than overdamped limit, to study
the interplay between particle inertia and collective behavior, such as phase separation. We show
that inertia reduces particle motility due to collisions and a longer time delay for particles to regain
speed, thereby suppressing phase separation relative to that observed in the overdamped limit. Ad-
ditionally, we observe interesting oscillatory behavior between a phase separated steady-state and a
homogeneous fluid state that results from inertia-induced collective motion within active clusters due
to momentum transfer. Such oscillatory behavior has been reported for ABP systems with particle
shape anisotropy, where collective motion is mediated by particle shape anisotropy. Furthermore,
we confirm that there is no single characteristic frequency for the oscillatory behavior. The power
spectral density is a power law in the high frequency domain, with an exponent close to −2.5.

1 Introduction
Active matter systems are intrinsically out of equilibrium, dissi-
pating energy via irreversible dynamics1–4. These systems exhibit
rich and and at times exotic collective behavior, such as swarm-
ing5–7, giant number fluctuations8,9 and phase separation9,10.
Active matter systems abound in biology (for example swimming
bacteria or cell suspensions)11,12, and experiments have demon-
strated artificial swimmers made by chemically propelled colloids
or Janus particles13–15. A particularly successful minimal model
for investigating active matter systems is the Active Brownian Par-
ticles (ABP) model9,10,16, composed of self-propelled isotropic
particles subjected to Brownian dynamics, with isotropic pair-
wise interactions that account for volume exclusion via short-
ranged repulsion. Motility-induced phase separation, in which
nonequilibrium phase separation of the system into coexisting gas
and cluster phases occurs if the particle density exceeds a criti-
cal threshold, is observed in simulations of ABP9,10,17. Theories
explaining motility-induced phase separation in the ABP model
employ either a coarse-grained model that reflects the interplay
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between particle diffusion and local density4,16,17 or kinetic theo-
ries balancing the flux between the active fluid phase and cluster
phase10,18.

Most studies of ABP systems focus on the overdamped limit of
Brownian Dynamics, where particle inertia is negligible, in order
to apply the model to typical biological and colloidal systems. In
such systems, with particle sizes on the scale of nanometers to
microns, the dominant fluidic drag from the solvent dominates
any particle inertial effects, justifying simplification to the over-
damped limit. However, recent works have began to explore the
novel phase behavior for active systems with macroscopic compo-
nents where inertia can be important. One such example is that of
millimeter-sized self-propelled diodes19,20. There are also some
recent studies that explore using underdamped Brownian dynam-
ics to model and simulate active matter systems, such as21–26,
and inertia-driven flocking transition was found in extensile ac-
tive suspensions27. In a relevant work, Mandals et al. reported
that inertia can produce a self-sustained kinetic temperature gra-
dient as well as suppress phase separation28; however, the mech-
anism of why or how inertia can suppress phase separation was
not the focus of that paper and remains, to our knowledge, un-
known. Another closely related investigation is a theoretical study
of inertial self-propelled hard disks, which studied the collision
and scattering mechanism in details and observed an aligned col-
lective motion phase29, but in their model they assumed implicit
alignment (the active force director will gradually align with the
velocity) thus unable to be directly compared with ABP systems.

The rapid expanse of the scope of active matter studies calls
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Fig. 1 Due to more elastic collisions, in inertial systems we observe
much less well-defined cluster boundaries. Rather, a “transition area” is
present between the homogeneous fluid and the active cluster. In the
transition area, the local density is high but the hexagonal dense-packed
order is absent. (a) A typical active cluster in an overdamped
(Brownian) system with φ = 50%, FAσ/kT = 100. (b) A typical active
cluster in an inertial system, with χ = 1, φ = 50%, FAσ/kT = 100. In (a,
b), particles are colored red if they have six neighbors in contact. (c)
Number of contacted neighbors histogram for the (a, b) systems. In the
inertial system, the higher fraction of particles with 3-5 contacted
neighbors corresponds to the particles in the transition area.

for a detailed study on the role of particle inertia in the collec-
tive phase behavior of self-propelled particles. Moreover, the
second-order equations of motion for underdamped Brownian
(i.e. Langevin) dynamics offer the flexibility of including an
additional timescale in the self-propulsion mechanism (such as
chemotaxis, gliding, or twitching), which may have similar ef-
fects on the nonequilibrium phase behavior as particle inertia30.
By using the underdamped equation of motion to model active in-
ertial particle (AIP) dynamics, we aim to contribute to the answer
to the open problem posed in31: "(Do) activity-induced clustering
transitions remain robust when inertial effects are present?" The
answer is not immediately obvious. For example, in an AIP sys-
tem without particle collisions, one might expect particle inertia
would simply increase the persistence of a particle’s path. How-
ever, with particle collisions included, collisions between particles
will be more elastic as inertia becomes more significant, and thus
after each collision event, an AIP must accelerate to recover its
speed, which in turns means a less persistent path.

Here we simulate a 2D system of AIPs interacting as in ABP
models with a short-range repulsive potential and subject to a
Brownian thermostat with tunable damping. To compare across
systems of different damping coefficients, we consider the inertia
relative to the active force magnitude. By comparing phase dia-

(a) (b) (c)

20 40 60 80 100 120 140

FAσ/kT

30

35

40

45

50

φ
(%

)

(d) χ = 0.31623

20 40 60 80 100 120 140

FAσ/kT

(e) χ = 1

20 40 60 80 100 120 140

FAσ/kT

(f) χ = 3.1623

Fig. 2 (a-c): Zoomed simulation snapshot at 300τ for underdamped
systems, taken at the statepoints with dimensionless active force
FAσ/kT = 120, φ = 0.4 and different inertia, each with an inset showing
the whole simulation box, χ = 0.31623,1,3.1623. (d-e): Cluster fraction
as a function of FAσ/kT and φ with χ = 0.31623,1,3.1623. The arrows
show the location of the statepoints of the snapshots in (a-c), while the
solid line shows the approximate phase boundary. The solid diamonds
represent phase separation and the hollow diamonds represent
homogeneous fluid phase.

grams over a range of dimensionless inertia values, we find that
inertia indeed hinders motility-induced phase separation (MIPS).
We observe rotating clusters (i.e. cluster-size vortices) as a pre-
cursor of cluster instability similar to those found in a 2D experi-
mental Janus system32 and a simulated ABP system with high Pé-
clet number33. Surprisingly, despite the absence of particle shape
anisotropy, we also observe density oscillations in AIP systems
that resemble oscillatory behavior reported for 2D systems of ac-
tive shapes, including dumbbells34, squares35 and rods36. We
show that AIP systems can oscillate between phase coexistence
and the homogeneous fluid. When examining the power spectral
density of the oscillation of the fraction of particles with six neigh-
bors (a proxy for cluster fraction), we find that its high frequency
components follow a power law distribution.

2 Model and methods
Active particles were modeled as disks of diameter σ confined
to a two dimensional flat surface with periodic boundaries, with
positions {rrri}N

i=1, and self-propulsion directions {θi}N
i=1. The par-

ticles obey Langevin (i.e. completely underdamped Brownian)
dynamics via the following equations of motion:

m
∂vvvi

∂ t
= FFFex

i +FFFA
i − γvvvi, (1)

0 =−γrωi + τ
R
i , (2)

with the particle label shown as subscript i. Here m is the mass
of a particle and vvvi and ωi are the translational and angular ve-
locity, respectively, for the i-th particle. For simplicity, rotational
particle inertia was neglected, limiting inertial effects to the trans-
lational degrees of freedom. All particles were driven by an ac-
tive force with the same constant magnitude FFFA

i = FAν̂νν iii. The
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Fig. 3 (a) Mean squared displacement (MSD) versus time for multiple
systems with the same FAσ/kT = 140 and φ = 20%, but with various
values of dimensionless inertia χ, showing a crossover from ballistic to
diffusive behavior. (b) The effective dimensionless diffusion coefficient
D decreases significantly with increasing dimensionless inertia χ.

active force director is given by ν̂νν iii = (cosθi,sinθi) and follows
the equation of motion in Eq. 2. Energy is dissipated through
translational and rotational drag, with drag coefficients γ and γr,
respectively. In the low Reynolds number limit, the translational
and rotational drag coefficients are related through the Stokes-
Einstein-Debye relations, γr =

1
3 σ2γ 10. Thermal noise was mod-

eled with a Gaussian random torque τR
i =

√
2γrkT ξ with a ther-

mal energy of kT . Here ξ is normalized, zero-mean, white noise.
Because the translational noise is usually very small compared to
the magnitudes of the active force and interparticle interaction,
it was not included in Eq. 1. As in ABP models, we included
the volume exclusion force, FFFex

i , derived from the pairwise WCA
potential: V ex = 4ε[(σ

r )
12− (σ

r )
6]+ ε for r < 2(1/6)σ , and V ex = 0

otherwise37.
Simulations were performed on graphic processing units

(GPUs) using the HOOMD-blue simulation toolkit38–40, with data
management framework signac41,42 and data analysis framework
Freud43,44. N = 10,000 particles were initialized with random
nonoverlapping positions and random initial directions for the ac-
tive force. The natural length scale is the particle diameter σ and
time is measured in units of τ = σ2γ/kT . In the underdamped
(Langevin) case, we adopted a symplectic quaternion integration
scheme, NO_SQUISH, to attain better numerical stability45,46,
while for overdamped (Brownian) simulations, a stochastic Euler
scheme was applied47. In all simulations unless specified other-
wise, we used an integration timestep of 2.5×10−6τ and simula-
tions were run for 300τ.

We tracked three important quantities to characterize our sim-
ulation systems. The first is the packing fraction, φ = Nπ

σ 2

4 /Atot ,
which measures the area fraction occupied by particles. The sec-
ond is the dimensionless force, FAσ/kT , which was scaled by ad-
justing temperature kT while fixing FAσ/ε = 244. This approach
ensures that the particles’ effective radii during collisions remain
the same across a range of active force magnitudes. Note that
in the Brownian limit, the dimensionless force FAσ/kT can be
interpreted as the Péclet number, as particles accelerate to their
terminal velocity within negligible time. In the absence of transla-
tional random noise, the physical interpretation of the dimension-
less force is the ratio between the rotational persistence timescale
and the active timescale, as FAσ/kT = FAσ/(Drγr) = 3τr/(σ/FA

γ
)

where τr is the rotational persistence timescale and Dr = 1/τr is
the rotational diffusion constant. The third quantity is dimen-
sionless inertia. By comparing the momentum relaxation time
τm =m/γ with the time for a particle at its terminal speed to travel
its own diameter τA = σ

FA/γ
, the ratio of the two time scales gives

the dimensionless inertia χ = τm/τA = mFA/γ2σ . Note that in the
related work of Mandal et al.28, an alternative definition of di-
mensionless inertia was used by comparing τm to the rotational
persistence time of the active force director M = τm/(1/Dr) and
rotational inertia was considered. When holding M constant, the
inertia changes relative to the active force magnitude, which is
dominant in active matter systems.

3 Results and Discussion

To gain intuition about inertia’s impact on the phase behavior, we
first compare two phase separated systems with the ABP and AIP
model, in Fig. 1. Due to more elastic collisions, in inertial systems
we observe much less well-defined cluster boundaries. Rather,
a large “transition area” is present in the AIP systems between
the homogeneous fluid and the active cluster. In the transition
area, the local density is high but the hexagonal dense-packed
order is absent. To avoid confusion, a system is classified as being
phase separated if the active clusters can have hexagonal packing
persisting over the entire simulation trajectory after its formation.

In Fig. 2(a-c), we show simulation snapshots at the same pa-
rameters FAσ/kT = 120, φ = 0.4, but with several different val-
ues of dimensionless inertia χ. To explore the phase separation
behavior, we manually examined each simulation trajectory. Our
principle finding is that as inertia increases, the system requires
higher FAσ/kT and φ to exhibit the same phase separation be-
havior as shown in Fig. 2(d-f).

To explain the change of the phase behavior, we first investi-
gated how inertia affects particle motility. In the kinetic theory
developed by Redner et al.10, the incoming particle flux from the
active fluid to the cluster phase is proportional to the average
swimming speed. In AIP systems, inertia reduces a particle’s av-
erage swimming speed 〈v〉 from the maximal terminal speed FA/γ

of an overdamped Brownian particle. To isolate the effects of in-
ertia and particle collisions before clustering dominates the dy-
namics, we focus our attention to the "state points" described by
a homogeneous active fluid without phase separation. We eval-
uate the average mean squared displacement MSD = 〈∆r(t)2〉 of
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Fig. 4 Snapshots and local density histograms of the same AIP system exhibiting oscillatory behavior at different times. The AIP system is
parametrized by φ = 40% and χ = 3.162 at the effectively infinite active force limit. In (a-c), simulation snapshots and local density histograms of
different timestamps are shown across a cluster disintegration and re-clustering cycle. Note that in (a) and (c) two distinct peaks in local density
environments can be observed, with one of the peak corresponding to the dense-packed cluster interior. In (b), the system is in the homogeneous
fluid state where only one peak in the local density histogram is observed.

all particles as shown in Fig. 3(a) at a low packing fraction of
φ = 0.2 and a constant propulsion force fixed at FAσ/kT = 140.
On short time scales (t � τ), particles behave ballistically with
MSD∼ (v0t)2, while at long time scales the behavior crosses over
to the diffusive regime with MSD∼ t, due to the rotational diffu-
sion of the active force director.

At all time scales, systems with larger particle inertia χ have
strictly smaller MSD and thus less motility due to collisions, which
prevents particles from reaching their maximal terminal speed.
This is in contrast to the single particle MSD expression reported
in26, which has no explicit dependence on the particle mass (but
has dependence on the moment of inertia of the particle). The
interplay between particle collision and inertia is responsible for
how inertia changes the MSD reported in Fig. 3. Similarly, for the
long time behavior, we observe the generic trend that increasing
particle inertia reduces the effective particle diffusion coefficient
D. Assuming that a collision event resets a particle’s speed to
zero, it requires approximately τm time to return to its terminal
speed. As inertia increases, the time required to accelerate back to
terminal speed will increase beyond the free travel time of an ac-
tive particle, which results in an average speed that may be much
lower than the maximal terminal speed. The analytical curve in
Fig. 3(b) is D(χ) = D0

1+2.5φ χ
= D0

1+2.5φτm/τA
, where D0 is the diffu-

sion constant observed in a system without inertia, i.e. an ABP
system. This decrease in D with increasing inertia is consistent
with the reduced phase separation shown in Fig. 2.

Surprisingly, our AIP systems also display robust regions of

(a) Displacement (b) Active Force (c)

Fig. 5 In the same AIP system as in Fig. 3, at t = 3.25τ, a cluster-size
vortex forms in the cluster’s dense-packed region. In (a) the blue arrows
in the snapshots indicate the orientation and relative magnitude of the
displacement field sampled at random positions inside the cluster, while
in (b) the active force directors are shown. Despite the isotropic
particles and disordered active force directors, particle inertia allows the
particles inside clusters to move collectively when experiencing non-zero
net forces. (c) To understand why collective motion can form in
clusters in AIP systems, consider this constructed active cluster with
two halves. The left half have aligned active force directors while the
right half is random. With inertia’s presence, the cluster would gain net
momentum to the right, while in the overdamped (Brownian) limit the
cluster would stay still as long as the particles on the edge all have
active forces pointing towards the cluster interior to keep it stable. In
real AIP systems, the active force directors are not actually aligned but
the imbalance of net forces is enough to create cluster-wide collective
motion.
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(a) t = t0 = 206.60τ (b) t = t0 +0.15τ (c) t = t0 +0.3τ (d) t = t0 +0.6τ

Fig. 6 An example of a (partial) cluster disintegration event in the AIP system’s oscillatory state. The AIP system is the same as in Fig. 3. The blue
arrows in the snapshots indicate the orientation and relative magnitude of the displacement field, sampled at random positions inside the cluster. The
sequence of snapshots demonstrates how collective flow of the cluster’s upper section into the low density region causes the cluster to dissolve into a
homogeneous fluid phase. The particles that are in the upper section of the cluster at t0 are colored red in all snapshots. (a) A cluster-size vortex is
rotating. (b) The cluster morphed into two parts due to two different directions of collective motion. (c) As the cluster domains flow into a low
density region, their density decreases, making the boundary between cluster and homogeneous fluid phase fuzzy. The original cluster domains quickly
lose particles and dissolve. (d) After the disintegration event, the particles originally in the upper section are now distributed evenly inside the system.

steady-state oscillation between a homogeneous fluid state and
a phase coexistence state. In such oscillatory systems, clusters
form from the active fluid and then disintegrate and dissolve back
into the active fluid, a phenomenon that is not observed in (over-
damped) active Brownian systems. The oscillatory behavior can
be easily seen from the two qualitatively different types of lo-
cal density histograms at different times, shown in Fig. 4. The
local density histogram is a unimodal bell-shaped curve in a ho-
mogeneous fluid state shown in Fig. 4(b), and has two distinct
peaks in phase coexistence shown in Fig. 4(a, c), correspond-
ing to close-packed density inside clusters and lower density in
the homogeneous fluid. Note that local packing density can be
slightly over 1 due to the internal stress inside the clusters (that
is, the non-infinite repulsion force between two particles).

The oscillatory behavior of these AIP systems shows many qual-
itative similarities with systems of active Brownian squares, in
which all of the oscillations observed can also persist over for a
very long time (> 300τ) without signs of stopping35. Like the
Brownian active squares, AIP systems also display cluster-sized
vortices that rotate clusters or parts of clusters as a whole, see
Fig. 5. The rotating clusters can also be found in experiments of
a 2D induced-charge electrophoretic self-propelled Janus colloids
system, which sees “interrupted phase separation” due to the ro-
tational collective motion within the largest cluster32. In the ex-
perimental Janus system, alignment occurs in both the particle
displacements and active directors, while in AIP systems only the
displacement field is aligned as demonstrated in Fig. 5. Instead
of melting from the surface, the collective movements of particles
in these vortices induce the cluster disintegration events. Clusters
disintegrate and dissolve by large domains collectively flowing
into a low density region. However, such disintegration usually
happens to parts of the cluster in a multi-step fashion rather than
dissolving an entire cluster at once. We occasionally observed
very complex flow fields inside dense clusters when multiple clus-
ter domains flow into different regions and dissolve at the same
time. An example of such a disintegration event is shown in Fig.
6. To intuitively understand the distinction between clusters in
AIP and ABP system, consider an active cluster with two halves,
each with different active force directors (Fig. 5(c)), the left half

aligned and the right in random directions. In the overdamped
limit, such a cluster would stay still, while in AIP systems, such a
cluster will gain net momentum. Inertia enables the cluster-wide
collective motion.

Despite the similarities in vortex behaviors, AIP systems are
unique in that the particles are isotropic. Oscillatory behavior is
usually found in active anisotropic particles such as dumbbells34,
squares35 and rods36. Our findings suggest that particle shape
anisotropy is not essential to either the formation of global vor-
tices inside active clusters or oscillatory behavior. Rather, what is
needed is some memory mechanism to enable the development
of collective motion inside the cluster. In active Brownian square
systems, particle shape sterically induces particles inside the clus-
ter to effectively interlock with neighboring particles, enabling
the cluster to accumulate nonzero torques, which then lead to
collective motion in the form of global vortices. In the AIP sys-
tems, instead of aligning the particle orientation within a cluster,
the momentum transfer that occurs during the collision of cluster
domains results in particles either accelerating or scattering in a
different direction, forming similar rotating vortices.

We are able to generate time series statistics covering many
cluster formation and disintegration cycles by running simula-
tions at 40% density, χ = 3.162 and FAσ/kT = 5000 (effectively
infinite) at a very high time resolution where each snapshot is
separated by ∆t = 1/2500τ for a total duration of 100τ. The time
series statistics of particle fractions with different numbers of di-
rect contact neighbors are shown in Fig. 7(a-b). In particular,
the fraction of particles with 6 neighbors p6(t), a proxy for clus-
ter fraction, is shown in Fig. 7(a), and oscillates between 0 and
0.25. The time autocorrelation function (ACF) of p6(t) is shown
in Fig. 7(c). By calculating the power spectral density of p6(t) in
Fig. 7(d), we confirm the open conjecture made by Prymidis et al
in35 that the oscillations are not associated with a single charac-
teristic frequency. Interestingly, the high frequency components
of the power spectral density (PSD) exhibit a power law distribu-
tion in frequencies with exponent between −2 and −3, which is
estimated by regression to be approximately β =−2.5. As shown
in the supplementary information, we are still able to observe the
steady-state oscillation in simulations with increased system sizes
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Fig. 7 Time series of the particle fractions with different neighbors in contact. The AIP system is in oscillatory state, with a packing fraction of 40%
and χ = 3.162. (a) shows the complete time evolution of particle fraction with 6 neighbors in contact, i.e. particles in dense-packed clusters. (b)
shows the magnified version of (a) with higher temporal resolution. The conversion between particle local environments can be clearly seen. (c)
shows the autocorrelation function (ACF) for the time series in (a), showing that the correlation time is no longer than 0.1τ in the systems we
studied. The blue shade show the 95% confidence band calculated from Bartlett’s formula for each lag48. Correlation values larger than the
magnitude of the blue shade can be considered significant. (d) shows the power spectral density (PSD) for the same time series as (a), with both
axes in log scale. The high frequency components of the oscillation between different steady-state behavior appear to follow a power law distribution
with exponent between −2 and −3. The exponent was determined by linear regression to be approximately −2.5.

of up to 99,856 particles (316× 316 as compared to 100× 100 in
Fig. 7), which proves that the observed oscillation is not a simu-
lation artifact due to finite system sizes.

4 Conclusion and Future Outlooks

In summary, we have shown that increasing particle inertia dis-
courages clustering and phase separation because particle motil-
ity is reduced by the interplay between particle inertia and colli-
sions. We showed that when particle inertia becomes comparable
to the magnitude of the active force, phase separation becomes
significantly harder. Our findings are relevant to a wide range
of self-propelled active systems where particle inertia is non-
negligible. One example is a system of mm-sized, vibrated polar
disks49, where, based on our findings, we should expect phase
separation to be a rare occurrence. Our findings also demon-
strate that coupling between active force orientation and particle
environment (mediated by shape anisotropy) is not essential to
the formation of active vortices or steady-state oscillation. The
coupling between AIP velocities and their local environment suf-
fices to generate interesting non-equilibrium collective behaviors
such as oscillations between a homogeneous fluid phase and a
phase-separated (clustered) phase and we characterized them by
standard time series analysis techniques. Our work demonstrates
the important role of particle inertia on the collective behavior of
active systems, and we hope it motivates increased attention to
the role of inertia in active matter.
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