

Soft Matter

Self-regenerating compliance and lubrication of polyacrylamide hydrogels

Journal:	Soft Matter
Manuscript ID	SM-ART-08-2019-001607.R1
Article Type:	Paper
Date Submitted by the Author:	12-Sep-2019
Complete List of Authors:	Bonyadi, Shabnam; University of Illinois at Urbana-Champaign, Mechanical Science & Engineering Atten, Michael; University of Illinois at Urbana-Champaign, Mechanical Science & Engineering Dunn, Alison; University of Illinois at Urbana-Champaign, Mechanical Science & Engineering

Self-regenerating compliance and lubrication of polyacrylamide hydrogels

Shabnam Z. Bonyadi¹, Michael Atten¹, Alison C. Dunn^{1*}

¹Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

*Corresponding Author: Alison C. Dunn MechSE @ UIUC 1206 W Green St MC 244 Urbana IL 61801 (217) 300-0349 acd@illinois.edu

Keywords: polyacrylamide hydrogels, wear, AFM, lubrication, surface elastic modulus

1 ABSTRACT

2 Pristine hydrogel surfaces typically have low friction, which is controlled by composition, 3 slip speeds, and immediate slip history. The stiffness of such samples is typically measured 4 with bulk techniques, and is assumed to be homogeneous at the surface. While the surface 5 properties of homogeneous hydrogel samples are generally controlled by composition, the 6 surface also interfaces with the open bath, which distinguishes it from the bulk. In this 7 work, we disrupt as-molded polyacrylamide surfaces with abrasive wear and connect the 8 effects on the surface stiffness and lubrication to the wear events. At both the nanoscale 9 and the microscale, quasistatic indentations reveal a stiffer surface by up to two times 10 following wear events, even considering roughness. Longitudinal experiments with a series 11 of wear episodes interposed with periods of re-equilibration show that increased stiffness 12 is reversible: more compliant surfaces regenerate within 24 hours. The timescale suggests 13 an osmotic swelling mechanism, and we postulate that abrasive wear removes a swollen 14 surface layer, revealing the stiffer bulk. The newly-revealed bulk becomes the surface, 15 which re-swells over time. We quantify the effects on the self-lubricating ability of these 16 surfaces following abrasive wear using micro-tribometry. The lubrication curve shows that 17 robust low friction is maintained, and that the friction becomes less dependent upon the sliding speed. The unique ability of these materials to regenerate swollen surfaces and 18 19 maintain robust low friction following abrasive wear is promising for designing their slip 20 behavior into aqueous soft robotics components or biomedicine applications.

21 1 INTRODUCTION

22 Slip systems in the body like the blink of the eve are created by tissues that have a layered 23 structure, wherein the outermost, softest layer holds water for excellent lubrication, and deeper elements are able to support applied loads and withstand pressure ^{1,2}. The tear film 24 25 at the outermost surface maintains the balance of hydrated mucins, glycoproteins, and 26 lipids homeostatically through continual rejuvenation, which allows the eyelid to blink 27 down 10s of thousands of times per day without perceiving pain or fatigue ^{3,4}. The 28 branched, superhydrophilic nature of the mucins and glycoproteins holds water on the 29 surface of the eve between blinks, and the swelling of the entire network is limited by entanglements and the network salt interactions ^{5,6}. In that way, the functionality of 30 maintaining hydration is determined by the combined mechanics of the fluid and polymer 31 components of the network ⁷⁻¹⁰. 32

33

34 Synthetic hydrogels, which differ from mucinous networks in their density and chemical 35 crosslinks, are being explored as biomimetic materials for sliding applications. They can hold fluid with the aim of facilitating metabolism ¹¹, and they are soft and slippery to 36 provide high-efficiency sliding ¹²⁻¹⁵. Currently, synthetic hydrogels are being explored for 37 local repair or replacement of tissues like cartilage because of their remarkably low friction 38 39 coefficients and high compressive strength ¹⁶. Work is also being done to improve other mechanical properties of hydrogels including tensile strength ¹⁷, toughness ¹⁸, and 40 extensibility ¹⁹ by crosslinking two different polymers together to create double network 41 42 hydrogels.

44 Much work has been done tuning the properties of hydrogels to better match those of cartilage, such as crosslinking, pore size, and addition of composites ²⁰. In order to leverage 45 46 load support and simultaneously provide low friction, surface layers have been implemented by a variety of groups as well ^{21,22}. Whether neat or layered surfaces, these 47 48 hydrogels under frictional loading may be susceptible to weakening and wear. In hard 49 materials, efforts are beginning to be successful in connecting the friction and wear behaviors by locating precisely where energy is dissipated within the surfaces ²³, but with 50 51 soft materials the connections are not yet as clear.

52

The authors are aware of limited studies which attempt to quantify the wear behavior ofhydrogels.

55 In an effort to improve the wear resistance of hydrogels, groups have found that wear decreases by decreasing hydrogel water content ^{24–26}, increasing thickness ²⁴, decreasing 56 preload ²⁴, decreasing load ^{25,26}, and increasing crosslink density ^{25,26}. However, studies 57 58 have found no relationship between friction coefficient and wear rate, which agrees with the concept that friction and wear are two separate phenomena ^{25,26}. Accurately 59 60 quantifying the wear rate of hydrogels is an ongoing challenge because (1) hydrogels are 61 clear, environmentally sensitive materials and (2) the wear rate changes with the number 62 of wear cycles ^{24,27}. Because wear is defined as the removal of material from a surface, it is 63 intimately related to local failure phenomena. Flexible polymeric networks like elastomers 64 and hydrogels wear by the breaking of bonds under high strains, like the sacrificial wear of 65 a pencil eraser. However, for hydrogels, the breaking of bonds necessitates a local re-66 equilibration of the network. It is this mechanism that can be locally induced by abrasive

- wear, and which we aim to leverage in understanding the effects of abrasive wear to thesurface of a hydrogel, and specifically chemically-crosslinked polyacrylamide.
- 69

70 In this work, we systematically apply abrasive wear to the surface of polyacrylamide 71 hydrogels and assess the response of the surface over time using indentation both at the 72 nanoscale and at the microscale. We use the changes in surface stiffness trends found at 73 both scales to describe the time response of the surface following abrasive wear and 74 correlate the stiffness to local changes in surface composition through polymer physics 75 scaling laws. From the complementary results found at both scales, we postulate that 76 reduced-density surface layers are an inherent feature of water-equilibrated 77 polyacrylamide surfaces. We also assess the surface in micro-friction experiments and 78 discover that robust, low friction is maintained throughout repeated, longitudinal abrasive 79 wear. Finally, we estimate the rate of abrasive wear for fully-hydrated polyacrylamide.

- 80
- 81

2 MATERIALS AND METHODS

82 **2.1 Hydrogel Preparation.** Polyacrylamide hydrogel slabs were polymerized in standard 40 83 mm diameter polystyrene Petri dishes or polystyrene Petri dish lids for all experiments. The height was limited to 1 mm for nanoscale tests and 5 mm for microscale tests. Molds 84 85 were capped with another polystyrene Petri dish such that buoyancy leveled the molded surface. Simultaneous chain extension and crosslinking was done via a chemical initiator 86 87 and radical donor: 0.05% ammonium persulfate (APS) and 0.15% 88 tetramethylethylenediamine (TEMED). Pre-polymer solutions were 7.50% acrylamide, 89 0.39% bis-acrylamide, and 91.91% water, all on a mass per mass of total solution. This

composition was used because of its classification as an 'ideal network hydrogel' ²⁰. as well 90 91 as empirical evidence that the swelling ratio does not change following synthesis (O=1). 92 Samples were optically transparent, and no swelling was observed throughout all 93 experiments. Samples were stored at 4°C for more than 12 hours before experiments and 94 intermittently during longitudinal experiments to prevent bacterial growth. Samples were 95 handled with latex laboratory gloves, and allowed to equilibrate to room temperature 96 before starting experiments. Separate samples were created for nanoindentation and 97 microindentation due to the different setups of the two instruments.

98

99 **2.2 Nanoscale experiments**

100 *2.2.1 Experimental progression*

101 The general progression was to characterize pristine surfaces, apply controlled abrasive 102 wear, and immediately re-characterize the surfaces at $\sim 25^{\circ}$ C. Characterization consisted of 103 quasistatic indentation using atomic force microscopy (AFM); schematics of the technique 104 and experimental progression is shown in Figure 1, respectively. For longitudinal 105 experiments, this cycle was repeated two more times with periods of 72 hours of 106 submersion in water a 4° C for a total of three wear tests (n=3) on the same hydrogel 107 The hydrogels were always submerged underwater during sample. surface

108 characterization and wear application to prevent the effects of dehydration in the results.

Figure 1. One experiment at the nanoscale follows this longitudinal progression. Indentation 109 110 was performed at the nanoscale using colloidal probe atomic force microscopy to characterize the pre-wear surface. Afterwards, wear was applied across the entire surface of the hydrogel 111 using sandpaper. This was followed by another nanoindentation test to characterize the post-wear 112 113 surface. Samples were submerged underwater at ~25°C during surface characterization and wear application. Finally, the samples were allowed to recover for times >24 hours at 4°C while still 114 115 submerged in water before the next experiment. For the nanoindentations, this experiment was 116 performed up to three times.

117 *2.2.2 Wear application*

118 Wear was applied using 1000 grit sandpaper with an average roughness (Ra) of 6.38 μ m 119 and root mean square roughness (RMS) of 8.54 µm (Paxcoo Direct) to cause abrasive wear 120 to the hydrogel surface. The roughness values were obtained by scanning a 5.66 mm² area 121 of the sandpaper in a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000). To 122 ensure that nanoindentations were performed on an area that was previously worn for our 123 longitudinal experiments, wear was applied across the entire hydrogel surface. The 124 samples were worn with sandpaper under a load that ranged 20-100 mN for 100 passes at 125 roughly 3 mm/s (lasting about 2 minutes). Throughout the duration of wear application, 126 the hydrogel was submerged underwater. Samples were rinsed to remove wear debris, re-127 submerged under a fresh layer of water, and tested.

128

129 2.2.3 Indentation

Local stiffness measurements of the top few micrometers were achieved by quasistatic nanoindentation through a 5 μ m diameter colloidal glass probe (Bangs Labs, IN, USA), both before and after applying wear. Standard silicon nitride cantilevers (stiffness k = 0.1 N/m, NanoAndMore, CA, USA) indented at V_{indent} ~23 μ m/s in a 10x10 array spanning an area of 90 μ m square (Figure 2) using the AFM (Asylum Research, model MFP-3D). This relatively low

stiffness was chosen to achieve measurable forces during small-depth indentations of the sample ²⁸. In later experiments, colloidal probes were constructed by attaching a silica microsphere (Bangs Labs, IN, USA) on a cantilever probe (NanoAndMore, CA, USA) using a quick-dry epoxy (Bangs Labs, IN, USA). A diluted solution of colloids was dehydrated ²⁹, and an individual particle was placed on the probe tip using a micromanipulator ¹³.

140

The probe was calibrated in a standard fashion by measuring the inverse optical lever sensitivity (InvOLS) by performing a force curve on a hard surface in air and again on a hard surface in fluid. The stiffness (k = 0.1 N/m) was confirmed using the thermal method ³⁰. The outside of the petri dish sample holder was glued to a glass microscope slide and clamped down to the AFM stage to securely hold the hydrogel and prevent any motion during the lateral movements of the probe.

147

148 To locate the surface before starting indentation, the probe was lowered until reaching the 149 pre-load. The probe was then raised out of contact with the surface to avoid embedding the 150 probe and to prevent sample interference during lateral motions between indents. Given 151 the roughness of the surface and the vertical clearance required, the probe displacement 152 during indents was set to its maximum value of 12 μ m. While we collected the data for this 153 entire indentation range, we only analyzed the portion of the curve that was within the first 154 micron of indentation. Within this region, we found a $0.5 \,\mu\text{m}$ long portion that fit the Hertz 155 model to determine the surface modulus of elasticity. The confidence of the fitting and 156 fitted surface modulus of elasticity was increased through mapping of N=200 force curves 157 (two 10 x 10 maps at different locations) on each sample ³¹. Force vs. indentation depth

- data was collected on unworn hydrogel samples; the samples were then worn and rinsed to
- 159 remove wear debris. These worn samples underwent another series of indentations and
- 160 the data was analyzed in MATLAB.

Figure 2. Schematic map showing the input locations for each of 100 quasistatic nanoindentation
 measurements on the hydrogel surface over an area of 90 μm x 90 μm.

163 2.2.4 Indentation analysis

164 Indentation by an impermeable probe is well-suited for detecting changes in the 165 compliance of soft surfaces. Both nanoscale and microscale experiments were analyzed 166 similarly by fitting the force vs. indentation depth curves to a power law with exponent 167 n=1.5, i.e. the Hertz model. A discussion of the limits of this technique can be found 168 following the results. The fitting was done using a linear least-squares regression scheme 169 over a range of indentation depths for which the Hertz model applies, only up to a fraction 170 of the indenter radius. While small-strain theory states that the ratio of indentation depth 171 to probe radius needs to be less than or equal to 0.1 for the model to apply, recent work has 172 shown that this ratio is overly strict, particularly for soft materials with high Poisson ratios $(v \ge 0.4)^{32,33}$. In fact, Yoffe found that the Hertz model is valid (within 1% error) to 173 174 indentation depths at least up to 0.64*r*, where *r* is the radius of the probe. For our analysis

175 of the nanoindentations, we fit the Hertz model to a $0.5 \,\mu m$ long region of the curve within 176 the first micron of indentation, which is less than 0.64r (1.6 µm), where r is 2.5 µm. A 177 typical nanoindentation curve and corresponding fitting regime is shown in the bottom 178 graph of Figure 3. The modulus of elasticity as measured at the surface, which we denote as 179 the *surface modulus of elasticity*, is estimated using the Hertz model coefficient (Equation 180 1). This model requires the use of a Poisson ratio, which ranges from 0.3 to nearly 0.5 in 181 the literature, depending upon assumptions of the material character as an elastic solid ^{34,35}, viscoelastic solid ³⁶, or poroelastic solid ^{37–39}. For the sake of consistency and ability to 182 183 compare results, $\nu=0.45$ was used for all fits. Thus, the only free parameter was E, a 184 representative stiffness at the surface.

185
$$F = \frac{4}{3} R^{0.5} \frac{E}{1 - v^2} d^{1.5}$$
 (Equation 1)

In this work, we more specifically used a modification of the Hertz model, which eliminated the need to know the point of contact ⁴⁰. By using the derivative of Equation 1 with respect to displacement, the variable of indentation depth is removed. A plot of dF vs F that illustrates the fitting method is shown in the top graph of Figure 3. We use the modulus value derived from the top graph to draw the red Hertz line in the bottom graph. This confirms that this innovative method of applying the Hertz model produces appropriate stiffness values.

Figure 3. Quastistatic indentations at the nanoscale were fit over a 0.5 μ m region using the derivative Hertz model to characterize the elastic response. The black circles are the raw data points and the blue circles indicate the data points used for fitting to the Hertz model. The top graph resembles those shown in the reference paper ⁴⁰. The bottom graph shows the portion of the curve used for analysis and how well the stiffness value obtained fits the curve, which is represented by the red-dashed line.

199 **2.3 Microscale experiments**

200 2.3.1 Experimental progression

Similar to the nanoscale experiments, the general experimental progression was to characterize pristine surfaces, apply controlled abrasive wear, and immediately recharacterize the surfaces at ~25°C. An instrumented microindenter with a lateral force transducer was used to characterize the surface through both microindentations and microfriction tests. Schematics of the experimental progression and characterization techniques are illustrated in Figure 4. For longitudinal experiments, this cycle was repeated five more times with periods of at least 48 hours of submersion in water a 4°C for a total of 208 six wear tests (n=6) on the same hydrogel sample. The results of additional hydrogels with

209 n=7 and n=3 wear tests are provided in the Supplementary Materials Figure S7. The

210 hydrogels were always submerged underwater during surface characterization and wear

application to prevent the effects of dehydration in the results.

212 Figure 4. Indentation and friction tests were performed at the microscale using a flexure-based tribometer to characterize the pre-wear surface. Wear was applied using a semi-cylinder probe 213 covered with sandpaper and attached to the microtribometer that reciprocated under a defined set 214 215 of parameters. The probe was changed back to the steel ball to measure the post-wear stiffness and friction. All characterization was done within the worn area, and repeated multiple times to 216 217 assess repeatability. During surface characterization and wear application, the samples were 218 submerged in a water bath at ~25°C. Finally, the samples were stored at 4°C for times >24 hours while still submerged in water before the next experiment. 219

220 2.3.2 Wear application

221 For the microscale indentation and friction tests, a wear probe was fabricated from a semi-222 cylinder with a radius of 3.75 mm and length of 3.5 mm covered in the sandpaper paper. 223 The probe reciprocated perpendicularly to its longitudinal axis at a load of 10 mN and 224 speed of 3,000 µm/s for 5,000 cycles (lasting about 2 hours); this load was selected due to 225 its ability to induce wear without extreme effects such as compression cracking, and the 226 speed was chosen for expediency of experiments without being so fast as to cause 227 dynamics effects. There was always a layer of water on the hydrogel while the probe wore 228 the surface. After wear application, hydrogels were rinsed to remove wear debris, 229 submerged under a fresh layer of water, tested, and returned to storage at 4°C. Because the

wear scar is not visible to the naked eye while the hydrogel is underwater, the elastic repositioning method was implemented, in which multiple cavity engagements of the petri dish and microtribometer stage ensured that wear was applied to the same location for every test ⁴¹. Wear was confined to an area of ~5.25 mm² in the center of the hydrogel (Figure 4).

235

236 *2.3.3 Indentation*

237 Local stiffness measurements of the top 10s of micrometers were achieved by 238 microindentation through a 2 mm diameter spherical steel probe, both before and after 239 applying wear systematically using a custom swiping probe surfaced with 1000 grit 240 sandpaper. Custom four-bar cantilevers (stiffness k = 538.83 N/m) indented at $V_{indent} \sim 8-17$ 241 µm/s; while non-uniform rates, all indentation durations were far shorter than timescales of 242 poroelastic relaxation ³⁷. The normal load for all indentations was less than or equal to 1 mN. 243 The microtribometer measured the force with respect to indentation depth across a total of 244 *N*=10 indents on the same location.

²⁴⁶ *2.3.4 Indentation analysis*

247 The microindentations were analyzed using the same method as described for the

248 nanoindentations, in which the indentation curves were fit to a modified Hertz model. A

Poisson ratio of ν =0.45 was also used for fitting. For our analysis of the microindentations,

250 we fit a 50 μ m region to the Hertz model, which is less than 0.64*r* (0.64 mm), where *r* is 1

251 mm; therefore, it fell within the small-strain range. A typical curve and fitting regime is

shown in Figure 5.

Figure 5. Quastistatic indentations at the microscale were fit over a 50 μ m region using the derivative Hertz model to characterize the elastic response. The black circles are the raw data points and the blue circles indicate the data points used for fitting to the Hertz model. The top graph resembles those shown in the reference paper ⁴⁰. The bottom graph shows the portion of the curve used for analysis and how well the stiffness value obtained fits the curve, which is represented by the red-dashed line.

259 2.3.5 Friction

260 Microscale friction measurements were done on the pre-wear and post-wear surfaces in

261 conjunction with the indentation experiments, using the same spherical steel probe. A

custom microtribometer that utilizes piezoelectric stages and milliscale flexures for motion and load measurement performed these tests 42,43 . The probe applied a 1 mN force for a stroke distance of 1.5 mm and speeds ranging from 500 µm/s to 4000 µm/s at increments of 500 µm/s. The probe reciprocated 100 times for each speed and the coefficient of friction was computed for each cycle using data from the middle 20% of the probe's path to exclude effects from directional changes; typical data is shown in Figure 6. The displacement of the probe was in the same direction as the wear application.

Figure 6. The progression of reporting the lubrication curve for pre-wear and post-wear samples.

- 270 (A) The hydrogel sample reciprocates underneath a 2 mm diameter spherical steel probe,
- resulting in a friction force in forward and reverse directions. Only the boxed region is analyzed
- to avoid speed effects at the reversals. The direction-averaged "cycle" friction coefficient is

273 calculated for each of the 100 cycles at a constant sliding speed. (B) After a brief run-in, the

friction coefficient converges to a steady-state value for that particular set of conditions; here the representative value is $\mu_{avg} \sim 0.066$.

- 276 3 RESULTS AND DISCUSSION
- 277 **3.1 Wear effects on surface stiffness**
- 278 *3.1.1 Nanoscale indentation tests*

279 Maps of *N*=100 indentations on pristine samples showed low values of surface modulus, with median typically $E_{PRE,med} \approx 1.46 \pm 0.31$ kPa (Figure 7, top left). After 100 passes by the 280 281 abrasive paper, the median modulus increased to $E_{POST,Exp1}$ = 1.67 ± 0.26 kPa, an increase of 282 14% (Figure 7, top right). The significance of the increase in modulus due to wear was 283 confirmed through a two-sample t-test that had a p-value of 1.3·10⁻⁷. Following 72 hours in 284 a water bath at 4°C, a second pre-wear surface modulus was measured to be $E_{PRE.Exp2} \approx 1.30$ 285 \pm 0.24 kPa; a similar stiffness to the pristine sample. The same wear experiment was 286 repeated twice more, and each time the surface modulus appeared to increase immediately 287 after wear. After re-equilibration in a water bath, the compliance of the surface recovered. 288 To emphasize the statistical significance, box-and-whisker plots of all N=200 results for 289 each condition are shown in Figure 8. The magnitude of the surface moduli is lower than 290 expected for a 7.5% w/w polyacrylamide hydrogel, but the repeatability of the 291 measurements and the effect of wear suggest that they are accurate. This is supported by 292 the finding that during synthesis of poly(N,N-dimethylacrylamide) hydrogels, a surface-293 drive monomer compositional gradient develops, and the thickness of this gradient 294 depends on the properties of the mold ⁴⁴. The group found that the polymer density of the 295 surface in the first 500 nm of compression remains below the polymer density of the bulk. 296 For our AFM stiffness measurements, we analyzed the first 500 nm of indentation depth,

297 which explains the lower surface moduli values we found for the unworn hydrogels. Wear 298 removes this less dense layer, and exposes the higher polymer density bulk. Swelling 299 experiments on poly(N-isopropyl acrylamide) (PNIPAAm), showed that hydrogels with 300 varying polymer concentrations achieve equilibrium swelling ratios after about 24 hours 301 underwater ⁴⁵. Therefore, although the hydrogels are submerged underwater during wear, 302 they do not have enough time to re-equilibrate their surface before surface testing 303 immediately after wear; however, they do have enough time to achieve their desired 304 swelling ratio before the next set of experiments 3 days later.

Figure 7. Contour maps showing the fitted surface modulus of elasticity distributions over the 90 μ m x 90 μ m area on a representative hydrogel surface as measured by quasistatic nanoindentation. The wear was applied between pre-wear (left) contour maps and the post-wear

308 (right) maps. The arrows indicate the progression of n=3 serial experiments with ~72 hours 309 recovery time in between experiments. Generally, the average elastic modulus appeared to 310 increase immediately after the application of abrasive wear, shown by a lightening of the color 311 on the blue-green spectrum. As an example, the average and standard deviation of the surface 312 modulus for Experiment 3 was $E_{PRE}=1.35 \pm 0.35$ kPa; it increased to $E_{POST}=3.25 \pm 0.98$ kPa. The 313 magnitude of increase appeared to increase with subsequent experiments, and the range of values 314 also increased.

Figure 8. Box-and-whisker plots of the modulus of elasticity over longitudinal experiments at the nanoscale. All measurements were identical. Each box and whisker plot represents 2 maps of 100 indentations each, in total N=200 at each condition. This quantifies the increased modulus after wear, and the increasing variability in modulus after three experiments, performed over 7 days. After recovery in a water bath for 3 days, the elastic modulus recovered to the lower value of $E \sim 1.4$ kPa both times.

321 *3.1.2 Microscale indentation tests*

322 Microscale indentations complemented the information gained at the nanoscale by 323 leveraging a larger probe for \sim 24,400x larger contact areas while increasing the depth only 324 \sim 50x. At this scale a similar progression of stiffer post-wear surfaces was confirmed, 325 though with diminishing returns with subsequent wear experiments for n=6 repeated 326 cycles (Figure 9). Recovery time underwater returned these surfaces to a similar 327 compliance as that of an unworn hydrogel. As the experiment progressed, this recovery 328 was less pronounced, and the elastic modulus value on the recovered hydrogels never 329 reached the initial values seen on the unworn hydrogel. Over the span of 22 days, multiple

330 wear experiments were performed and the measured surface moduli were plotted. The

results confirmed the diminishing effect of wear, and that longer times to equilibrate

332 underwater, past 48 hours, did not result in more complete recovery (Figure 10). The

333 progression and the diminished degree of recovery suggest that up to *n*=2 or *n*=3 repeated

applications of abrasive wear, the surface retains some degree of uniformity. Subsequent

applications *n*>3 result in irrecoverable damage to the surface.

Figure 9. Box-and-whisker plots of the modulus of elasticity over multiple sets of longitudinal

experiments at the microscale. Each box and whisker plot represents the results of *N*=10

indentations on the same location of the hydrogel surface. We present one of three experimental

339 series in the manuscript, and provide the other two in the Supplementary Materials Figure S7.

The figure shows n=6 serial experiments, and the modulus of elasticity increased following wear

341 for 5 of the 6 experiments.

Figure 10. A linear time representation of the modulus changes measured at the microscale shows that the values converge around 8 days into the series. The changes between pre-wear

344 measurements and post-wear measurements become confounded with subsequent experiments.

345 The time between wear experiments was a minimum of 48 hours (2 days), and day 0 corresponds

to the day in which the samples were polymerized. This figure shows the modulus of elasticityevolution over the course of days.

348 *3.1.3 Interpretation of Stiffness Changes*

349 In general, the increased stiffness of the surfaces at both the nanoscale and microscale 350 immediately following wear events confirms a systematic effect. Although the nanoscale 351 and microscale are fundamentally different, we followed the most widely accepted 352 methods outlined in literature for indentation measurements at each scale, so the two 353 techniques proved to be complementary. Following wear, it is unlikely that the surface 354 remains compressed, or more dense, due to the migrating nature of the applied wear; there 355 is no constant applied pressure. This is confirmed by a study on the deformation of 7.5% 356 polyacrylamide hydrogels during local indentation tests and bulk compression tests ³⁴. The 357 researchers sequentially increased the load applied to the hydrogels in which each load is 358 held for 90 minutes and the amount of hydrogel compression is measured. They observed 359 no evidence of change in the thickness of the hydrogels for all loads below 10 kPa. 360 Considering that the osmotic pressure of 7.5% polyacrylamide hydrogels is about 11 kPa, 361 they concluded that hydrogels maintain Hertzian behavior at pressures below the osmotic 362 pressure of the hydrogel. By implementing the Hertz formula to describe the pressure at 363 the interface of cylinder on a flat plane (Equation 2), we calculated the highest pressure the 364 hydrogels experienced during our wear experiments. We applied a load (W) of 10 mN with 365 a probe that had a length (L) of 3.5 mm and radius (R) of 3.75 mm. To overestimate the 366 maximum pressure that occurs at the center of the contact (p_0) , we used a reduced 367 modulus value (E^*) that is on the lower end. We calculated the highest pressure to be about 368 2.2 kPa, which confirms that hydrogels were not compressed.

369
$$p_0 = \left(\frac{W}{L}\frac{E^*}{\pi R}\right)^{1/2}$$
 (Equation 2)

370 It is more likely, then, that a softer surface is worn away, revealing a stiffer bulk. This is 371 especially true because abrasive wear by sandpaper with a grit size of 1000 is expected to 372 leave the surface rougher – the resistance to compression by a number of asperities would 373 be lower than that of a flat elastic half space. The observed converse effect is thus further 374 confirmed.

375

376 The nanoscale and microscale stiffness measurements used to justify this effect of abrasive 377 wear should be considered here in the context of the applied pressures and local polymer 378 concentration of the surfaces. While the measurements at both scales show the same 379 general trend, the surface moduli from the fitting differ by a factor of 10, from a single 380 kilopascal at the nanoscale up to 10s of kilopascals at the microscale. In this work, we 381 compared the stiffness values at two depths/scales; however, to perform a thorough depth 382 dependent analysis of stiffness would require a greater range of probe sizes. Work on 383 polymers with different size and shape probes has been done, and the results showed that 384 the modulus values change based on the indentation depth ⁴⁶. Currently, the ranges and 385 sizes of probes do not allow for a continuous measurement at the nanoscale, microscale, 386 and milliscale, but such experiments have just been developed for hard materials ⁴⁷, and in 387 the future may be used on soft surfaces.

388

389 At the nanoscale, the maximum indentation depth used for fitting was limited to d<0.5 µm 390 based on the colloidal probe radius of 2.5 µm. Assuming hemispherical exclusion, the

391 maximum interaction volume was 6.8 μ m³, and the average pressure at the maximum 392 applied load of 5.5 \pm 2.2 nN was 0.70 \pm 0.27 kPa. While this number appears low, it reaches ~1/6th of the surface modulus at its stiffest, $E_{POST,Exp3}$ =3.18 ± 0.61 kPa, and 1/3rd of 393 the surface modulus at its most compliant, $E_{PRE,Exp2}$ =1.34 ± 0.24 kPa (see Figure 8). The 394 395 high pressure relative to the modulus suggests that the surface compliance is more 396 thoroughly interrogated on the local scale. Some of the surface roughness may cause 397 nonuniform contact against the colloidal probe, explaining the variability in the surface 398 modulus as shown in the modulus maps in Figure 7. However, because of the 200 399 indentations, only a few (typically 3 or fewer) outliers appear to engage the surface at an 400 unexpected location or display a nonphysical slope, the surface is flat enough to apply the 401 Hertz model. Furthermore, if the surface is not flat, and the colloidal probe vertically 402 approaches an angled surface the measured "normal force" will be reduced by the cosine of 403 the angle of tilt, and subsequent models would determine a more compliant surface than 404 reality. We find a stiffer surface, not a more compliant surface, following wear. If that is the 405 case, then our finding an increased surface stiffness is stronger confirmation of the effect. 406 We confirm that the spread of the box and whisker plots may represent the uncertainties of 407 the method itself to the values of modulus that we report, but when considering the source 408 of measurement uncertainty, the authors are unaware of more accurate techniques for 409 such a challenging surface.

410

411 At the microscale, correspondingly, the maximum indentation depth used for fitting was 412 limited to ~50 μ m on the smooth steel sphere of radius 1 mm. The interaction volume was 413 7.7·10⁶ μ m³, and the average pressure at the maximum applied load of 583 ± 67 μ N was

414 3.71 ± 0.43 kPa. In contrast to the nanoscale, this average pressure is only $1/22^{nd}$ of the 415 maximum surface modulus, and $1/14^{th}$ of the minimum surface modulus. This more 416 moderate pressure as compared to the surface modulus, along with the 24,400 times larger 417 contact area, corresponds to a more aggregate surface interrogation that is less affected by 418 surface changes in the top micrometers.

419

420 The character of the polyacrylamide surface was molded against polystyrene to be flat, but 421 the composition is likely to incur some gradient near the surface with the open bath at the 422 discontinuity where the swollen polymeric mesh meets the open bath. Sudre et al showed 423 measurements and using neutron reflectivity shear rheology of polv(N.N-424 dimethylacrylamide) (PDMA) hydrogels that, "unless special precautions are taken, all gels 425 synthesized by simultaneous polymerization and cross-linking from the monomer will 426 have a surface-driven compositional gradient" ⁴⁴. In these studies of abrasive wear, we 427 leverage this lower density near the surface as the starting condition that is susceptible to 428 removal by abrasive wear. While the argument about mold material and fabrication 429 environment is helpful to explain that starting condition, it does not necessarily explain the 430 lower stiffness that is recovered when the worn surfaces are allowed to re-equilibrate under an open water bath. While mold materials are important, we postulate that the 431 432 discontinuity between the osmotic balance of the swollen mesh and the negligible osmotic 433 environment of the open bath drives a local, polymer-diffusion-driven remodeling of the 434 surface over time. The hydrophilic network is inclined to swell because of the osmotic pull, 435 but the swelling is limited by the crosslinks and entanglements; breaking some of those 436 crosslinks and entanglements in the near surface will allow for very local swelling of the

437 surface. In our case, that long-time response of surface swelling and remodeling explains 438 the loss of stiffness in the newly-revealed polyacrylamide surfaces following abrasive wear. 439 Re-swelling of damaged hydrogels has only been previously observed in studies of 440 specialized hydrogels: one found that a fractured nanocomposite hydrogel surface was 441 initially stiffer than its undamaged counterpart, but the stiffness was lost over time ⁴⁸; the 442 other found lower stiffness of double network hydrogels at some time following fracture ⁴⁹. 443 These studies hypothesized that the damaged network of the hydrogels leads to excess 444 expansion during swelling, though they did not apply the concept more generally. 445 Additionally, we had performed the same series of experiments on hydrogels with a 446 smooth steel ball probe as the wear applicator instead of a cylindrical sandpaper probe. We 447 have included the results of these experiments in the Supplementary Materials (Figure S1, 448 S2, S3) to emphasize the very small thickness of the surface of the hydrogels that dictates 449 its stiffness and friction behavior. The hydrogels from these experiments had lower wear 450 volumes; however, the results of the mechanical tests resembled that of the sandpaper 451 probe experiments detailed in this manuscript. These experiments further confirm that 452 hydrogel wear with high loads causes bond breakage and deformations to the surface 453 network architecture ⁵⁰. And because single network hydrogels have low toughness, with 454 only small strains, cascades of micro-fractures can occur ⁵¹. To confirm that wear removes 455 a soft, surface layer to reveal a stiffer bulk, we performed experiments comparing the 456 surface and bulk moduli of hydrogels and included the results of these experiments in the 457 Supplementary Materials Figures S4-S5. After allowing the hydrogels to polymerize in a 458 water bath for >24 hours, we measured the surface stiffness. Within 10 minutes, we cut the 459 hydrogel in half, and measured the stiffness of the "bulk" surfaces. We found that the bulk

460 of the hydrogel is stiffer than the surface.

461

462 Horkay and Lin discuss the solvent/polymer relationship in polyvinyl alcohol (PVA) 463 hydrogels as a diffusion-driven process, which under varying solvent conditions must 464 contend with heterogeneous domains. Their conclusion is that the elastic modulus of 465 swollen gels is determined by the overall polymer concentration ⁵². In this work, we can 466 use their universal scaling to calculate the drop in polymer concentration due to re-467 equilibration of an abraded surface in the water bath (Equation 3); the storage modulus G468 has been replaced by the surface elastic modulus $E_{\mu} \varphi$ represents the polymer volume 469 concentration, and the subscript *e* indicates those quantities in water equilibrium before 470 wear.

471
$$\frac{E}{E_e} = \left(\frac{\varphi}{\varphi_e}\right)^{0.42}$$
 (Equation 3)

0 40

472 Because the ratio of the storage modulus at a given state versus its equilibrium state is 473 analogous to the ratio of the Young's modulus at a given state versus its equilibrium state, 474 this equation is used as a pseudo-quantitative descriptor of the decreased density near the 475 surface due to the wear. The most appropriate stiffness value for the reference state is the 476 highest modulus measured after the abrasion, as it best represents the bulk stiffness. For 477 the nanoscale experiments this is $E_{POST,Exp3}$ =3.18 ± 0.61 kPa, and the polymer concentration 478 is $\sim 8\%$. From that reference state, the re-equilibrated surface with a modulus of 479 $E_{PRE,Exp2}$ =1.34 ± 0.24 kPa has a polymer concentration of 1.0%, or ~8x drop in 480 concentration. The corresponding calculation for the microscale experiments using a 481 reference modulus of 36 kPa shows concentration decreases of only 2x, which makes sense

482 because deeper indentations should have stiffness that is closer to the bulk. Figure 11B 483 provides a reference for the indentation depths of the two scales; the nanoscale indents 484 travel primarily within the softer surface gradient whereas the microscale indents travel 485 through the entire surface gradient and into the bulk. Therefore, it is expected that the 486 nanoscale indents would show a greater change in stiffness due to wear; however, it has 487 been shown that softer surface layers influence the measurements of indentations into the 488 bulk ²², which is why the microscale also shows a change in stiffness due to wear. Although 489 the numbers derived using Equation 3 are the consequence of a model estimation, the 490 trends of these values confirm our description of the morphology of the hydrogel surface 491 after wear.

492

493 Overall, from these measurements, it is clear that surface compliance is recovered 494 following abrasive wear, and the surfaces spontaneously "regenerate" their surface 495 character during re-equilibration in a fluid bath (Figure 11A). This property is likely unique 496 to dilute swollen network hydrogels like polyacrylamide due to their hydrophilic nature 497 and osmotic pressure in the range of the applied pressure ³⁴.

498 Figure 11. (A) Polyacrylamide surfaces undergo time-dependent surface regeneration following 499 abrasive wear. In the pre-worn state (1), they are as smooth as the mold in which they were 500 fabricated and appear to be very compliant at the surface, as in a very thin swollen layer as shown by Sudre et al ⁴⁴. In the just-worn state (2), the surfaces are rougher, but also increase in 501 502 stiffness; this suggests that a softer layer was worn away. After long times stored in a submerged 503 water bath (3), the surface compliance was recovered, indicating that the surfaces re-swell and 504 regenerate favorable properties. (B) True to scale close-up of the region enclosed by the red-505 dashed box of the pre-wear surface with the two different sized probes. Only a part of the 506 microscale probe is shown in the schematic because the microscale probe (r=1 mm) had a radius 507 400 times greater than that of the nanoscale ($r=2.5 \mu m$). The Hertz fits for the nanoscale and 508 microscale indentations captured the top 0.5 μ m and 50 μ m of the surface, respectively. 509 Therefore, nanoindentation measurements of the pre-wear surfaces remained within the surface 510 gradient region while a greater portion of the microindentations were in the bulk. By removing 511 this surface gradient layer through wear, it is expected that the nanoindentations would show a greater percent change in stiffness due to wear than the microindentations, which our results 512 513 confirm.

514 **3.2 Wear effects on lubrication**

A surface property of hydrogels often leveraged is their lubricity, or low friction. For traditional engineering materials, wear-induced roughness or entrained third bodies can lead to higher friction and a loss of system efficiency. The original hypothesis that the surface would appear to be more "torn up" following abrasion was expected to lead to higher friction as a more compliant surface increased the contact area. The average friction

520 coefficients between the steel sphere and the polyacrylamide surfaces over eight speeds 521 $(500-4000 \ \mu m/s \text{ in } 500 \ \mu m/s \text{ increments})$ were analyzed together as lubrication curves, 522 presented in Figure 12A. The relationship between friction coefficient and slip speed in 523 traditional oil/metal contacts indicates the extent to which the viscous drag of the lubricant 524 contributes to friction ⁵³. In this case since the specific mechanisms driving hydrogel lubrication are still not completely understood ^{12,38,54–57}, we take the changes in the power 525 526 law exponent, α , of the friction versus slip speed to indicate the robustness of the 527 lubrication performance before and after wear events (Equation 4). The rate of rise of the 528 curves immediately following wear is lower than that after equilibration, indicating that 529 friction of the worn surfaces has a lower dependence on speed. However, similar to the 530 stiffness response, the time spent re-equilibrating in the water bath allowed the hydrogels 531 to recover their speed-dependent properties: the subsequent pre-wear curves have steeper 532 slopes than their post-wear counterparts.

533 $\left(\frac{\mu}{\mu_0}\right) \propto V^{\alpha}$ (Equation 4)

535 In Equation 4, *V* is the velocity, μ is the friction coefficient at that velocity, and μ_0 is the

537 Figure 12. (A) Friction measurements were conducted at eight different speeds between V=0.5mm/s and V=4 mm/s, and the results are plotted as a lubrication curve of normalized friction 538 539 coefficient versus sliding speed. A power law relationship with exponent α was used to quantify the relative increase in friction with sliding speed; in general, the friction is more sensitive to 540 541 sliding speed before it is worn. (B) The percent decrease of α between the pre-wear and post-542 wear state of each sample was calculated to quantify the effect of wear on the lubrication curves. In the majority of experiments, wear caused the sample's friction performance to be less 543 544 sensitive to sliding speed. The time between wear experiments was a minimum of 48 hours (2 545 days), and day 0 corresponds to the day in which the samples were polymerized. This figure shows the degree of slope change over the course of days. 546

547 In order to explicitly connect the pre-wear and post-wear measurements for each 548 experiment, the change in α was analyzed as a percent change due to wear and, more

549 specifically, as a percent decrease. Over all wear experiments (*N*=16), the majority had a

550 decrease in α , shown in Figure

551 12B, which means the frictional response tended to be less dependent on slip speed 552 immediately after wear. Soft surface layers with lower polymer density than the bulk have 553 shown to exhibit robust low friction due to the load support of the bulk and the lubricity of 554 the surface layer ^{22,58}; our results also show this. While those studies describe surface 555 layers of 3 μm thickness or greater, the surface layers in this study are expected to be equal 556 or thinner; this is based on the roughness of the sandpaper used to create the abrasive 557 wear and the inability to detect vertical swelling following abrasion.

558

559 While we saw a change in slope of the lubrication curves after wear, the friction coefficient 560 values remained within the same range of 0.02 to 0.05. Graphs of the raw (not normalized) 561 friction data can be seen in the Supplementary Materials Figure S8. This indicates that 562 surface wear does not compromise the effective lubricity of polyacrylamide hydrogels. 563 When considering the complexity of synovial fluid and the surface molecules of cartilage, 564 surface wear would remove these critical molecules and could have significant 565 consequences on the lubrication within joints. In the search for the underlying cause of the 566 less efficient lubrication mechanism of osteoarthritic cartilage, Klein and colleagues have 567 been investigating hydration lubrication, in which hydrated ions are trapped between 568 charged surfaces ⁵⁹. Evidence shows that these hydration shells contribute to the incredibly 569 low ($\mu \sim 0.001$) friction coefficients observed in joints. By trapping hydrated ions between 570 surfaces ⁶⁰, coating surfaces with hydrated polymer brushes ⁶¹, and attaching hyaluronic 571 acid with phosphatidylcholines ⁶², they worked to better understand the lubrication of 572 cartilage surfaces. Hydrogels resemble the collagen network that holds the essential

573 lubricating molecules on the surface of cartilage. The work in this paper is one step 574 towards understanding the wear behavior of the collagen network. As groups continue to 575 isolate different components of cartilage, the breakdown of efficient lubrication of 576 osteoarthritic cartilage will be better understood.

577

578 **3.3 Surface Morphology**

579 In this work, we have so far detailed effects on the local composition and lubrication 580 performance of a polyacrylamide surface following a series of abrasion and recovery 581 experiments. Those results are generally encouraging for slip surfaces which may be used 582 against external or internal physiological tissues: soft surface character recovers, and 583 robust low friction is maintained. However, the traditional definition of *wear* is the gradual 584 removal of material, and particulates released from the surface may be less desirable. As a 585 final aspect of this work, we confirm the removal of material due to the abrasion and 586 estimate the wear rate of polyacrylamide under moderate abrasion.

587

After wearing the surface of the hydrogels, we did not observe wear particulates due to the 588 589 transparency of the hydrogel. However, when we completed the entire series of 590 longitudinal experiments on the hydrogels tested with the microtribometer, we removed 591 the layer of water to better observe the surface. We clearly identified an area ($\sim 2 \text{ mm x 4}$ 592 mm) in the middle of the hydrogel that was visibly scratched into the surface, which we 593 have included in our Supplementary Materials Figure S6. To complement the mechanical 594 tests done in this work, we confirm the removal of material due to the abrasion and 595 estimate the wear rate of polyacrylamide under moderate abrasion.

596

597 Upon completion of the last wear test (7th wear test) of the longitudinal series on a single 598 hydrogel worn with the microtribometer for a total of 35,000 cycles, the worn surface was 599 imaged using a confocal microscope (Nikon) to estimate the volume loss (Figure 13). To 600 reveal the surface of the transparent sample, a solution of 1% solid yellow-green 601 fluorescent microbeads with 1 µm diameter and excitation/emission values of 505 nm/515 602 nm (ThermoFisher Scientific) was deposited on the surface. After sufficient time for the 603 beads to settle among the peaks and valleys of the roughened surface (~ 1 hour), a stack of 604 images was captured using a 10x objective. The vertical stack height was 200 µm with 605 spacing every 2 µm. From two adjacent volumes spanning the unworn and worn regions, 606 the wear depth following 7 wear tests was measured to be $\sim 60 \ \mu m$ (Figure 14). The wear 607 volume was calculated within the region imaged, which is the product of wear depth (60 608 μ m) and the image area (771 μ m x 771 μ m). From this, the volume was 0.0357 mm³. One 609 simple way to quantify the progression of wear is through the Archard wear rate k, defined as the wear volume normalized by the applied normal load and the slip distance ⁵³ 610 611 (Equation 5). Because the wear volume measured only represents the volume loss in the 612 image area, we used the stroke length of 771 μ m to obtain a total sliding distance of 54 613 meters (35,000 cycles x 771 μ m x 2). Using the slip distance over the surface area in the 614 volume of interest (d=54 m) and the applied load of 10 mN, the wear rate is $k = 6.6 \cdot 10^{-2}$ 615 $mm^3/(N \cdot m)$. This wear rate should be considered approximate due to the optical distortion 616 of the spherical beads used as markers which likely blurred more than expected due to the 617 very rough surface scattering light. Even so, this wear rate falls near the same order as 618 unfilled polytetrafluoroethylene (PTFE) ⁶³. This indicates that though our application of wear was rather severe because of the sharp abrasive particles of the sandpaper, the dilute
polyacrylamide resisted surface damage to a similar extent as unfilled PTFE that was worn
with a polished steel countersurface. This preliminary calculation of the Archard wear rate
is encouraging based on recent developments in super-tough double network hydrogels
^{64,65}, which one would expect to better resist wear.

624

625 **YYFigure 13.** Hydrogel surface imaging technique using fluorescent microbeads and confocal

626 fluorescence microscope. Fluorescent microbeads in a solution were added to the surface of the

627 hydrogel. Images were taken once the beads had enough time to settle on the surface (~1 hour).

Figure 14. Microscopy confirmed that the samples experienced wear. A solution of 1 μ m fluorescent polystyrene beads was used to reveal the surface heights and estimate the wear depth. The top two figures are schematics that elucidate the bottom figure, which is the image we captured from the microscope. Two adjacent image stacks are shown as the maximum intensity projection from the side, effectively a cross-section through an edge of the wear scar, traced in the white dashed line. In this case the wear scar was quite deep, reaching up to $d\sim 60 \,\mu$ m.

634

635 4 CONCLUSION

636 Abrasive wear has measurable effects on hydrogel surface stiffness and lubrication. It 637 increases surface stiffness, widens the distribution of elastic modulus values, and decreases 638 the hydrogel frictional dependence on speed. Confocal imaging revealed thinning of the 639 hydrogel, offering a visual confirmation of the effects abrasive wear. The abrasive wear 640 removed a soft swollen surface layer to reveal the stiffer bulk; however, the bulk appears to 641 re-swell into the character of the pre-worn surface: more compliant and with the 642 corresponding higher dependence of friction on sliding speed. These results demonstrate 643 that hydrogel surfaces are self-regenerating. These conclusions have implications for the 644 use of hydrogels in load-bearing applications in the human body with unknown wear 645 behavior. This work raises questions about the effects of wear on other soft synthetic and 646 biological swollen networks.

647

648 ACKNOWLEDGMENT

This work was carried out in part in the Frederick Seitz Materials Research Laboratory
Central Research Facilities, University of Illinois. We thank Scott Maclaren for his help and
inspiration, as well as our colleagues at the Materials Tribology Laboratory. This work was
supported by NSF Award Number 1563087.

REFERENCES

- Pitenis, A. A.; Urueña, J. M.; Hormel, T. T.; Bhattacharjee, T.; Niemi, S. R.; Marshall, S. L.; Hart, S. M.; Schulze, K. D.; Angelini, T. E.; Sawyer, W. G. Corneal Cell Friction: Survival, Lubricity, Tear Films, and Mucin Production over Extended Duration in Vitro Studies. *Biotribology* 2017, *11*, 77–83.
- (2) Braun, R. J. Dynamics of the Tear Film. *Annu. Rev. Fluid Mech.* **2012**, *44*(1), 267–297.
- (3) Dartt, D. A. *Regulation of Mucin and Fluid Secretion by Conjunctival Epithelial Cells*, 2002; Vol. 21, pp 555–576.
- (4) Rolando, M.; Zierhut, M. The Ocular Surface and Tear Film and Their Dysfunction in Dry Eye Disease. *Surv. Ophthalmol.* **2001**, *45 Suppl 2* (March), S203–S210.
- (5) Chen, H. B.; Yamabayashi, S.; Ou, B.; Tanaka, Y.; Ohno, S.; Tsukahara, S. Structure and Composition of Rat Precorneal Tear Film: A Study by an in Vivo Cryofixation. *Investig. Ophthalmol. Vis. Sci.* **1997**, *38*(2), 381–387.
- (6) Wagner, C. E.; Turner, B. S.; Rubinstein, M.; McKinley, G. H.; Ribbeck, K. A Rheological Study of the Association and Dynamics of MUC5AC Gels. *Biomacromolecules* 2017, *18*(11), 3654–3664.
- (7) Trabbic-Carlson, K.; Setton, L. A.; Chilkoti, A. Swelling and Mechanical Behaviors of Chemically Cross-Linked Hydrogels of Elastin-like Polypeptides. *Biomacromolecules* 2003, 4 (3), 572–580.
- (8) Kim, D.; Park, K. Swelling and Mechanical Properties of Superporous Hydrogels of Poly(Acrylamide-Co-Acrylic Acid)/Polyethylenimine Interpenetrating Polymer Networks. *Polymer (Guildf).* **2004**, *45* (1), 189–196.
- (9) Chang, D. P.; Abu-Lail, N. I.; Guilak, F.; Jay, G. D.; Zauscher, S. Conformational Mechanics, Adsorption, and Normal Force Interactions of Lubricin and Hyaluronic Acid on Model Surfaces. *Langmuir* **2008**, *24* (4), 1183–1193.
- (10) Weigand, W. J.; Messmore, A.; Tu, J.; Morales-Sanz, A.; Blair, D. L.; Deheyn, D. D.; Urbach, J. S.; Robertson-Anderson, R. M. Active Microrheology Determines Scaledependent Material Properties of Chaetopterus Mucus. *PLoS One* 2017, *12* (5), 1–19.
- (11) Billings, N.; Birjiniuk, A.; Samad, T. S.; Doyle, P. S.; Ribbeck, K. Material Properties of Biofilms—a Review of Methods for Understanding Permeability and Mechanics. *Reports Prog. Phys.* **2015**, *78* (3).
- (12) Gong, J. P. Friction and Lubrication of Hydrogels Its Richness and Complexity. *Soft Matter* **2006**, *2*(7), 544–552.
- (13) Shoaib, T.; Heintz, J.; Lopez-Berganza, J. A.; Muro-Barrios, R.; Egner, S. A.; Espinosa-Marzal, R. M. Stick-Slip Friction Reveals Hydrogel Lubrication Mechanisms. *Langmuir* **2018**, *34* (3), 756–765.
- (14) Urueña, J. M.; McGhee, E. O.; Angelini, T. E.; Dowson, D.; Sawyer, W. G.; Pitenis, A. A. Normal Load Scaling of Friction in Gemini Hydrogels. *Biotribology* 2018, 13 (January), 30–35.
- (15) Lee, S.; Spencer, N. D. Sweet, Hairy, Soft, and Slippery. *Science (80-.).* **2008**, *319*, 575–576.
- (16) Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. *Adv. Mater.* **2003**, *15* (14), 1155–1158.
- (17) Zhu, L.; Xiong, C.; Tang, X.; Wang, L.; Peng, K.; Yang, H. A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties. *Chinese J. Chem. Phys.*

2018, *31* (3), 350–358.

- (18) Na, Y. H. Double Network Hydrogels with Extremely High Toughness and Their Applications. *Korea Aust. Rheol. J.* **2013**, *25* (4), 185–196.
- (19) Engle, K. M.; Mei, T-S.; Wasa, M.; Yu, J.-Q. Highly Stretchable and Tough Hydrogels. *Acc. Chem. Res.* **2008**, *45* (6), 788–802.
- (20) Denisin, A. K.; Pruitt, B. L. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. ACS Appl. Mater. Interfaces 2016, 8 (34), 21893– 21902.
- (21) Blum, M. M.; Ovaert, T. C. A Novel Polyvinyl Alcohol Hydrogel Functionalized with Organic Boundary Lubricant for Use as Low-Friction Cartilage Substitute: Synthesis, Physical/Chemical, Mechanical, and Friction Characterization. *J. Biomed. Mater. Res. - Part B Appl. Biomater.* **2012**, *100 B*(7), 1755–1763.
- (22) Dunn, A. C.; Urueña, J. M.; Huo, Y.; Perry, S. S.; Angelini, T. E.; Sawyer, W. G. Lubricity of Surface Hydrogel Layers. *Tribol. Lett.* **2013**, *49*(2), 371–378.
- (23) Argibay, N.; Chandross, M.; Cheng, S.; Michael, J. R. Linking Microstructural Evolution and Macro-Scale Friction Behavior in Metals. *J. Mater. Sci.* **2017**, *52*(5), 2780–2799.
- (24) Suciu, A. N.; Iwatsubo, T.; Matsuda, M.; Nishino, T. A Study upon Durability of the Artificial Knee Joint with PVA Hydrogel Cartilage. *JSME Int. J. Ser. C* 2004, *47* (1), 199–208.
- (25) Freeman, M. E.; Furey, M. J.; Love, B. J.; Hampton, J. M. Friction, Wear, and Lubrication of Hydrogels as Synthetic Articular Cartilage. *Wear* **2000**, *241* (2), 129–135.
- (26) Katta, J. K.; Marcolongo, M.; Lowman, A.; Mansmann, K. A. Friction and Wear Behavior of Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) Hydrogels for Articular Cartilage Replacement. *J. Biomed. Mater. Res. Part A* 2007, *83A* (2), 471–479.
- (27) Kim, C. L.; Kim, D. E. Durability and Self-Healing Effects of Hydrogel Coatings with Respect to Contact Condition. *Sci. Rep.* **2017**, *7*(1), 1–11.
- (28) Nalam, P. C.; Gosvami, N. N.; Caporizzo, M. A.; Composto, R. J.; Carpick, R. W. Nano-Rheology of Hydrogels Using Direct Drive Force Modulation Atomic Force Microscopy. *Soft Matter* **2015**, *11* (41), 8165–8178.
- (29) Bangs Laboratories. Product Data Sheet 702 Silica Microspheres. Fishers, IN 2013, pp 3–4.
- (30) Asylum Research. *MFP 3D SPM User Guide*, Version 13.; 2013.
- (31) Darling, E. M.; Wilusz, R. E.; Bolognesi, M. P.; Zauscher, S.; Guilak, F. Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured in Situ via Atomic Force Microscopy. *Biophys. J.* **2010**, *98* (12), 2848–2856.
- (32) Yoffe, E. H. Modified Hertz Theory for Spherical Indentation. *Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop.* **1984**, *50* (6), 813–828.
- (33) Poon, B.; Rittel, D.; Ravichandran, G. An Analysis of Nanoindentation in Linearly Elastic Solids. *Int. J. Solids Struct.* **2008**, *45* (24), 6018–6033.
- (34) Schulze, K. D.; Hart, S. M.; Marshall, S. L.; O'Bryan, C. S.; Urueña, J. M.; Pitenis, A. A.; Sawyer, W. G.; Angelini, T. E. Polymer Osmotic Pressure in Hydrogel Contact Mechanics. *Biotribology* **2017**, *11*, 3–7.
- (35) Valero, C.; Amaveda, H.; Mora, M.; García-Aznar, J. M. Combined Experimental and Computational Characterization of Crosslinked Collagen-Based Hydrogels. *PLoS One* **2018**, *13*(4), 1–16.
- (36) Chaudhuri, O. Viscoelastic Hydrogels for 3D Cell Culture. Biomater. Sci. 2017, 5 (8),

1480-1490.

- (37) Chan, E. P.; Hu, Y.; Johnson, P. M.; Suo, Z.; Stafford, C. M. Spherical Indentation Testing of Poroelastic Relaxations in Thin Hydrogel Layers. *Soft Matter* **2012**, *8* (5), 1492– 1498.
- (38) Reale, E. R.; Dunn, A. C. Poroelasticity-Driven Lubrication in Hydrogel Interfaces. *Soft Matter* **2017**, *13*(2), 428–435.
- (39) Delavoipière, J.; Tran, Y.; Verneuil, E.; Heurtefeu, B.; Hui, C. Y.; Chateauminois, A. Friction of Poroelastic Contacts with Thin Hydrogel Films. *Langmuir* **2018**, *34* (33), 9617–9626.
- (40) Garcia, M.; Schulze, K. D.; O'Bryan, C. S.; Bhattacharjee, T.; Sawyer, W. G.; Angelini, T. E. Eliminating the Surface Location from Soft Matter Contact Mechanics Measurements. *Tribol. Mater. Surfaces Interfaces* 2017, *11* (4), 187–192.
- (41) Rowe, K. G.; Dickrell, D. J.; Sawyer, W. G. Interrupted Measurement Repositioning Using Elastic Averaging. *Tribol. Lett.* **2015**, *59* (July), 0–3.
- (42) Liu, H.; Bhushan, B. Adhesion and Friction Studies of Microelectromechanical Systems/Nanoelectromechanical Systems Materials Using a Novel Microtriboapparatus. *J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.* 2003, *21* (4), 1528–1538.
- (43) Rennie, A. C.; Dickrell, P. L.; Sawyer, W. G. Friction Coefficient of Soft Contact Lenses: Measurements and Modeling. *Tribol. Lett.* **2005**, *18*(4).
- (44) Sudre, G.; Hourdet, D.; Cousin, F.; Creton, C.; Tran, Y. Structure of Surfaces and Interfaces of Poly(N,N-Dimethylacrylamide) Hydrogels. *Langmuir* **2012**, *28* (33), 12282–12287.
- (45) Tang, S.; Floy, M.; Bhandari, R.; Dziubla, T.; Hilt, J. Development of Novel N-Isopropylacrylamide (NIPAAm) Based Hydrogels with Varying Content of Chrysin Multiacrylate. *Gels* **2017**, *3*(4), 40.
- (46) Dimitriadis, E. K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R. S. Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope. *Biophys. J.* **2002**, *82*(5), 2798–2810.
- (47) Garabedian, N. T.; Khare, H. S.; Carpick, R. W.; Burris, D. L. AFM at the Macroscale: Methods to Fabricate and Calibrate Probes for Millinewton Force Measurements. *Tribol. Lett.* **2019**, *67*(1), 1–10.
- (48) Lian, C.; Lin, Z.; Wang, T.; Sun, W.; Liu, X.; Tong, Z. Self-Reinforcement of PNIPAm-Laponite Nanocomposite Gels Investigated by Atom Force Microscopy Nanoindentation. *Macromolecules* **2012**, *45* (17), 7220–7227.
- (49) Tanaka, Y.; Kawauchi, Y.; Kurokawa, T.; Furukawa, H.; Okajima, T.; Gong, J. P. Localized Yielding around Crack Tips of Double-Network Gels. *Macromol. Rapid Commun.* **2008**, *29* (18), 1514–1520.
- (50) Liu, Y.; Lee, B. P. Recovery Property of Double-Network Hydrogel Containing a Mussel-Inspired Adhesive Moiety and Nano-Silicate. *J. Mater. Chem. B* **2016**, *4* (40), 6534–6540.
- (51) Zhang, J.; Daubert, C. R.; Foegeding, E. A. Polyacrylamide Gels as Elastic Models for Food Gels: Fracture Properties Affected by Dextran and Glycerol. *J. Texture Stud.* 2006, *37*(2), 200–220.
- (52) Horkay, F.; Lin, D. C. Mapping the Local Osmotic Modulus of Polymer Gels. *Langmuir* **2009**, *25* (15), 8735–8741.

- (53) Hutchings, I.; Shipway, P. *Tribology: Friction and Wear of Engineering Materials*, 2nd Editio.; Butterworth-Heinemann: London, 2017.
- (54) Pitenis, A. A.; Urueña, J. M.; Schulze, K. D.; Nixon, R. M.; Dunn, A. C.; Krick, B. A.; Sawyer, W. G.; Angelini, T. E. Polymer Fluctuation Lubrication in Hydrogel Gemini Interfaces. *Soft Matter* **2014**, *10* (44), 8955–8962.
- (55) Urueña, J. M.; Pitenis, A. A.; Nixon, R. M.; Schulze, K. D.; Angelini, T. E.; Gregory Sawyer, W. Mesh Size Control of Polymer Fluctuation Lubrication in Gemini Hydrogels. *Biotribology* **2015**, *1–2*, 24–29.
- (56) Pitenis, A. A.; Urueña, J. M.; Cooper, A. C.; Angelini, T.; Sawyer, W. G. Superlubricity in Gemini Hydrogels. *J. Tribol.* **2016**, *138* (October), 7–9.
- (57) Kim, J.; Dunn, A. C. Soft Hydrated Sliding Interfaces as Complex Fluids. *Soft Matter* **2016**, *12* (31).
- (58) Pitenis, A. A.; Urueña, J. M.; Nixon, R. M.; Bhattacharjee, T.; Krick, B. A.; Dunn, A. C.; Angelini, T. E.; Sawyer, W. G. Lubricity from Entangled Polymer Networks on Hydrogels. *J. Tribol.* **2016**, *138* (4).
- (59) Gaisinskaya, A.; Ma, L.; Silbert, G.; Sorkin, R.; Tairy, O.; Goldberg, R.; Kampf, N.; Klein, J. Hydration Lubrication: Exploring a New Paradigm. *Faraday Discuss.* **2012**, *156*, 217–233.
- (60) Ma, L.; Gaisinskaya-Kipnis, A.; Kampf, N.; Klein, J. Origins of Hydration Lubrication. *Nat. Commun.* **2015**, *6*, 1–6.
- (61) Klein, J.; Kumacheva, E.; Mahalu, D.; Perahla, D.; Fetterst, L. J. Reduction of Frictional Forces between Solid Surfaces Bearing Polymer Brushes. *Nature* **1994**, *370* (August), 634–636.
- (62) Seror, J.; Zhu, L.; Goldberg, R.; Day, A. J.; Klein, J. Supramolecular Synergy in the Boundary Lubrication of Synovial Joints. *Nat. Commun.* **2015**, *6*, 1–7.
- (63) Blanchet, T. A.; Kennedy, F. E. Sliding Wear Mechanism of Polytetrafluoroethylene (PTFE) and PTFE Composites. *Wear* **1992**, *153*(1), 229–243.
- (64) Sun, J. Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. *Nature* 2012, 489 (7414), 133–136.
- (65) Haque, M. A.; Kurokawa, T.; Gong, J. P. Super Tough Double Network Hydrogels and Their Application as Biomaterials. *Polymer (Guildf)*. **2012**, *53*(9), 1805–1822.

In this work, careful experiments reveal how abrasive wear of polyacrylamide hydrogels only temporarily alters the surface properties.