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Inverse design of self-assembling colloidal crystals with om-
nidirectional photonic bandgaps
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Open colloidal lattices possessing omnidirectional photonic bandgaps in the visible or near-visible regime
are attractive optical materials the realization of which has remained elusive. We report the use of an in-
verse design strategy termed landscape engineering that rationally sculpts the free energy self-assembly
landscape using evolutionary algorithms to discover anisotropic patchy colloids capable of spontaneously
assembling pyrochlore and cubic diamond lattices possessing complete photonic bandgaps. We validate the
designs in computer simulations to demonstrate the defect-free formation of these lattices via a two-stage
hierarchical assembly mechanism. Our approach demonstrates a principled strategy for the inverse design
of self-assembling colloids for the bottom-up fabrication of desired crystal lattices.

1 Introduction
The self-assembly of colloidal nanoparticles provides a powerful
tool for forming many complex structures, such as colloidal ag-
gregates1–5, multi-shell clusters6, helical structures7 and crys-
tals8–16. The assembly of open colloidal lattices has drawn partic-
ular attention8–16 because particular structures posses complete
photonic bandgaps and are therefore useful as 3D photonic crys-
tals with omnidirectional bandgaps14,17–19. The optical proper-
ties of a colloidal crystal are dictated by the organization of col-
loids within the crystal lattice20. The size of the colloids, refrac-
tive index contrast between the colloids and voids, and specific
pattern of refractive index changes due to the packing of colloids
dictate the photonic properties of the crystal20. Whereas hexag-
onal close packed (hcp) and face-centered cubic (fcc) lattices are
most easily assembled from isotropic colloidal spheres, they do
not possess complete photonic bandgaps that forbid passage of
photons with particular energies in all directions. It is for this rea-
son that more exotic open lattices such as pyrochlore14,17,19 and
diamond21,22, and inverse opal20,23,24 that do possess complete
bandgaps have attracted much attention. These crystals have
desirable applications in the manipulation of photons in optical
wave guiding25 and in optical computing26.

Many techniques have been explored to synthesize colloidal
crystals by bottom-up self-assembly8–16. For example, John and
coworkers synthesized single crystalline silicon inverse opal using
close-packed silica colloidal spheres as a template24. Damman
and coworkers assembled colloidal lattices by vertical deposition
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on curved surfaces and demonstrated that the optical properties
of the resulting colloidal crystal could be manipulated by the sur-
face curvature without introducing crystal defects27. Crocker and
coworkers employed two differently-sized spherical colloids func-
tionalized with complementary DNA oligomers to fabricate “dou-
ble diamond” (B32) colloidal crystals isomorphic to the NaTl Zintl
phase28. Pine and coworkers co-assembled tetrahedral colloidal
clusters and colloidal spheres using complementary DNA bind-
ing to fabricate a colloidal MgCu2 crystal10. Grzybowski and
coworkers assembled diamond-like colloidal lattices from nearly
equally-sized oppositely-charged nanoparticles15,29. In the con-
text of the assembly of open crystal structures, patchy colloids
functionalized with anisotropic and directional surface interac-
tions have emerged as a promising means for their fabrication by
self-assembly11–13,16,20,23,30. This class of building blocks is ex-
perimentally attractive as they are based on simple spherical col-
loids that can be flexibly functionalized through anisotropic sur-
face patterning techniques31–35. For example, Chen et al.36 have
experimentally demonstrated the self-assembly of triblock patchy
colloids into metastructures by a step-wise control of ion concen-
tration in solution, and Morphew et al.11 have computationally
investigated the hierarchical self-assembly of triblock patchy col-
loids into body-centered cubic and cubic diamond crystals.

A primary challenge in patchy colloid self-assembly is the de-
sign of the anisotropic interactions to favor the assembly of the
desired crystal lattice. Of particular concern is the existence of
competing crystal structures with similar free energies that can
frustrate defect-free assembly of the target lattice. For example,
the pyrochlore lattice (also known as cubic tetrastack)19,37 can
be viewed as a tetrahedral network of corner-sharing tetrahedral
clusters17, where the tetrahedral clusters occupy the voids of a
cubic diamond lattice10,37. However, the pyrochlore lattice has
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a closely-related analogue known as hexagonal tetrastack9,37,38,
which differs from the pyrochlore lattice by the orientations of
adjacent layers but has similar free energy9,37,38. Similarly, cubic
diamond (also known as conventional diamond or c-diamond)
and hexagonal diamond (also known as h-diamond or Lons-
daleite) are structurally similar crystals with similar free energies
that differ in the stacking of subsequent layers13. In each case,
care must be taken in the patchy particle design to favor one poly-
morph over the other9,12,13,37. As such, a primary concern in our
design protocol is to engineer anisotropy into the particle inter-
action to break the degeneracy between the desired lattice struc-
tures and closely related analogues (i.e., pyrochlore vs. hexagonal
tetrastack, cubic diamond vs. hexagonal diamond).

A number of inverse design techniques have been pro-
posed for optimizing the interactions between colloidal parti-
cles8,10–12,37,39–48 to favor the formation of the desired target
crystal. For example, Truskett and coworkers used inverse de-
sign strategies to design engineered isotropic pairwise potentials
that favor the formation of various two-dimensional and three-
dimensional colloidal crystals43,45–47. Torquato and coworkers
also employed inverse statistical mechanical strategies to design
isotropic potentials that favor various colloidal lattices42,44,48, as
well as anisotropic potentials that favor the formation of vari-
ous two-dimensional colloidal lattices39. Lyubartsev and Laakso-
nen49 and Mungan et al.50 deduced interaction potentials from
structural correlation functions. Cohn and Kumar51 employed
linear programming to determine isotropic potentials leading to
the desired configuration as ground state. Dijkstra and cowork-
ers employed an isotropic repulsive pairwise potential to favor
the formation of a pyrochlore-like colloidal crystal8. Escobedo40

used anisotropic particles and potentials to form different col-
loidal compounds. Romano and Sciortino employed asymmetric
patterning to robustly assemble pyrochlore and disfavor hexago-
nal tetrastack lattice37. Morphew et al.11 used a basin-hopping
optimization method to design the potentials that favor the for-
mation of three-dimensional cubic diamond lattice and BCC lat-
tice via colloidal molecules. Glotzer and coworkers proposed the
introduction of angular potentials or charge repulsion to favor
cubic over hexagonal diamond12. Pine and coworkers designed
isotropic DNA-grafted colloidal clusters and singlet colloids to re-
alize a colloidal MgCu2 lattice10. In the absence of some means
to break the degeneracy between competing polymorphs it is typ-
ically necessary to seed the system with a fragment of the desired
crystal structure12 to robustly assemble the target crystal. Failing
to break the degeneracy through one or other of these strategies
risks the uncontrolled fabrication of hybrid lattices11.

In this work, we employ a recently developed inverse de-
sign protocol termed landscape engineering to systematically dis-
cover patchy colloid building blocks capable of spontaneous self-
assembly into a pyrochlore lattice and a cubic diamond lattice
formed from tetrahedral clusters52. The approach iteratively
sculpts the free energy surface of the self-assembling colloids us-
ing evolutionary algorithms to update the placement and strength
of the colloidal patches to stabilize the target lattice over all com-
peting polymorphs. We target pyrochlore and cubic diamond
as 3D lattices possessing complete photonic bandgaps that have

proven frustratingly elusive to fabrication via self-assembly11,13.
We show that the colloidal designs predicted by landscape en-
gineering spontaneously nucleate and grow defect-free photonic
lattices of the desired crystal polymorphs in a two-stage hierarchi-
cal assembly mechanism. Since we conduct inverse design over
the free energy surface rather than the potential energy surface,
the interaction potentials discovered by landscape engineering
are not those that would have been expected by energy minimiza-
tion or zero-temperature optimization of the target lattice. This
demonstrates the importance of incorporating many-body and en-
tropic effects into the particle design.

The anisotropic potentials employed in this work are relatively
simple and generic, but may be considered as simplified and
idealized models of inter-particle interactions that may be ex-
perimentally realized through advanced surface-patterning tech-
niques10,30–32,35,53–57. For example, the patchy colloid model
considered in this work can be considered as a simplified rep-
resentation of nanodot-decorated nanoparticles of the sort real-
ized by Bae et al.32 and Wang et al.31 through regions of tita-
nia or propyl methacrylate whose interaction strengths depend
on the specific materials properties. In a similar vein, Zhang
et al. used colloidal masks to fabricate anisotropic nanoparticles
decorated with nanodots on opposite poles58. We might also
consider our models to be idealized representations of colloids
surface functionalized with localized patches of complementary
DNA oligomers with defined sequence and specificity10,35,55–57.
The Kern-Frenkel model59 is one of the most popular computa-
tional models employed to simulate patchy particle assembly11,37

and can be considered a simplified model for patchy particles
with surface interaction patches deposited via glancing angle de-
position53,54,60. Accordingly, our computational patchy particle
model and others like it are intended as simplified idealizations
of experimentally-realizable inter-particle interactions. It is the
primary goal of the present work to employ such potentials to ex-
pose the fundamental principles governing assembly, provide new
insight into the thermodynamic, kinetic, and morphological pro-
cesses underpinning assembly, and demonstrate a new methodol-
ogy for the rational design of patchy colloids programmed to self-
assemble into desired aggregates. In doing so, we aim to provide
new understanding and precepts for the experimental design of
self-assembling colloidal lattices. Romano and Sciortino have pre-
viously proposed the use of asymmetric Kern-Frenkel type patchy
colloids to form pyrochlore lattice37. The present work considers
a different patchy particle model with defined isotropic surface
interactions that may be considered a simplified representation
of nanodot-decorated nanoparticles31,32. Moreover we design
the anisotropic interaction potentials using a systematic and au-
tomated inverse design protocol. Accordingly, this work reports a
new automated inverse design strategy for the fabrication of de-
sired colloidal lattices, and reduces this to practice in the design
of two patchy particle building blocks capable of spontaneously
self-assembling pyrochlore and diamond lattices with omnidirec-
tional photonic bandgaps.
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2 Methods

2.1 Self-assembling patchy colloid model

2.1.1 Pyrochlore lattice

The pyrochlore lattice can be viewed as a tetrahedral network
of corner-sharing tetrahedra. An illustration of the pyrochlore
lattice is given in fig. 1a. Every particle (i.e. vertex of tetrahe-
dron) in the pyrochlore lattice exists in a staggered local config-
uration (fig. 1b) where its six nearest neighbors are rotated by
60° around it. A competing crystal structure with similar free en-
ergy is the hexagonal tetrastack lattice in which 75% of particles
exist in staggered local configuration and 25% of particles exist
in eclipsed local configuration37 (fig. 1c). In order to favor the
pyrochlore lattice against hexagonal tetrastack lattice, we deco-
rate three "B" patches (blue patches) forming an equilateral tri-
angle on the north pole of the central sphere ("A" particle) and
three "D" patches (purple patches) forming an equilateral trian-
gle on the south pole. The "D" patches are rotated by 60° degree
around the central axis with respect to the "B" patches. As we
shall see, the "B" patches serve as the interaction sites for direct-
ing individual patchy colloids to form tetrahedral clusters, and
"D" patches serve as the interaction sites for directing tetrahedral
clusters to form corner-sharing network of tetrahedra while main-
taining the staggered local configuration of the vertices of tetra-
hedra in this network. This model is illustrated in fig. 1d-f. The

(a) (b)

(d) (e) (f)

(c)

Fig. 1 Pyrochlore lattice. (a) A cell of the pyrochlore lattice. Wireframe
tetrahedra connecting the centers of translucent colloids serve as a guide to the
eye to illustrate the tetrahedral motif. (b) An illustration of the staggered
tetrahedral configuration that forms the fundamental motif of the lattice. The
central particle forms a regular tetrahedron with its three nearest neighbors
above and similarly with its three nearest neighbors below. The two tetrahedra
are rotated 60° relative to one another to form a staggered configuration. (c) An
illustration of the eclipsed local configuration. Schematic (d) top-down and (e)
side views of the anisotropic patchy colloid building block to be optimized by
landscape engineering. The blue "B" patches with interaction strengths εB
define the vertices of an equilateral triangle on the north pole of the patchy
colloid at a polar angle of φB . The purple "D" patches with interaction strengths
εD lie at the vertices of an analogous south pole equilateral triangle at a polar
angle φD = φB and a relative azimuthal rotation of 60°. The 60◦ azimuthal
rotation between the north and south pole patches energetically favors the
staggered tetrahedral configuration (b) over the eclipsed (c). (f) Three
dimensional rendering of the patchy colloid where the central particle is made
transparent to show the staggered orientation between "B" and "D" patches.
Landscape engineering is employed to optimize {EB, φB,ED, φD } to promote
the two-stage hierarchical self-assembly of the pyrochlore lattice.

patches and the central particle are treated as a single rigid body
building block, and the interactions within the same rigid body
are ignored. The diameters of central particle and the patches are
chosen as σA = 5σ and σB = σD = σ. The masses are chosen as
mA = 125m and mB = mD = m. The interactions between "B"-"B"
and "D"-"D" patches on different patchy colloids are modeled by
Lennard-Jones potential:

Uii
LJ(r) = 4εi

[(σi
r

)12
−

(σi
r

)6
]

for i ∈ {B,D} (1)

where εi is the well depth, or the "interaction strength", of par-
ticle i, and σi is its diameter. The interactions between "A"-"X",
where "X" ∈ {"A","B","D"}, and between "B"-"D" particles on dif-
ferent patchy colloids are modeled by Weeks-Chandler-Andersen
(WCA) potential61 to incorporate excluded-volume effects:

Ui j
WCA(r) =


4εi j

[(
σ

r−∆

)12
−

(
σ

r−∆

)6
]
+ εi j if r < 2

1
6 σ+∆i j

0 if r ≥ 2
1
6 σ+∆i j

(2)

∆i j =
σi+σj

2 −1 shifts the potential to act on the surfaces of parti-
cles i and j. εi j =

√
εiεj is given by the Lorentz-Berthelot mixing

rule. Since there are three "B" patches and three "D" patches on
each patchy colloid, we specify the total interaction strength of
each of these two species: Ei = 3εi where i ∈ {B,D}, and evenly
distribute it among all three patches of each species.

We design the particles to assemble the pyrochlore lattice via a
two-step hierarchical assembly mechanism. The "B" patches pos-
sess a stronger interaction strength and are activated during the
high temperature phase of the assembly process at Thigh to di-
rect the patchy colloids to assemble into tetrahedral clusters. The
"D" patches, which have a weaker interaction strength, are then
activated during the temperature cooling process down to Tlow
and direct the assembly of the tetrahedral clusters into the py-
rochlore lattice. The two-stage hierarchy in interaction strengths
maps to a two-stage hierarchy in structure that has previously
been exploited for the fabrication of hierarchically structured ma-
terials11,36,62,63. In the present work, the high-temperature as-
sembly process can be conceived as producing tetrahedral build-
ing blocks from spherical colloids, and the low-temperature as-
sembly process as directing the assembly of the tetrahedra into a
pyrochlore lattice. Thermal decoupling between the two levels of
the hierarchy is asserted in the relation between EB and ED as:

ED =
Tlow
Thigh

EB . (3)

Since the "B" and "D" patches both mediate the formation of tetra-
hedra, their polar angles are related as:

φD = φB . (4)

As mentioned above, their azimuthal angles are mutually rotated
by 60° to favor staggered local configurations (fig. 1d). An il-
lustration of the desired two-stage assembly process is shown in
fig. 2.

The "D" patches on the south pole act as the low-temperature
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Temperature

Time

Thigh

Tlow

Interaction through "B" patches

Interaction through "D" patches

Fig. 2 An illustration of the two-stage hierarchical assembly mechanism for the
pyrochlore lattice. During the high temperature phase at Thigh, the more strongly
interacting "B" patches direct the formation of tetrahedral clusters while the more
weakly interacting "D" patches are effectively inert. During the cooling process
to Tlow, the "B" patches lock the patchy colloids into the self-assembled
tetrahedra and the "D" patches direct the tetrahedral clusters to assemble into
the pyrochlore lattice.

counterparts of "B" patches on the north pole and the desired self-
assembled tetrahedral motif in both cases is the same. At the high
temperature Thigh we seek to optimize the interaction strength
and polar angle of the "B" patches at the north pole {EB, φB} to
favor the assembly of tetrahedral clusters relative to all competing
structures. We solve this inverse design problem using the land-
scape engineering approach described below52. We then obtain
the optimal solution for the "D" patches on the south pole through
equations 3 and 4. In doing so we assume that the optimal solu-
tion for the “D” patches at the low temperature is identical to
that for the “B” patches at the high temperature, with the interac-
tion strength just appropriately scaled by the temperature ratio.
The motivation for this equivalence is that the “B” and “D” inter-
faces are structurally identical, but we do note that the former is
formed from constituent monomers whereas the latter is formed
from constituent tetrahedra, so the multibody and entropic in-
teractions during the assembly process may differ. Nevertheless,
the assumption of this equivalence simplifies the inverse design
problem for the pyrochlore lattice by reducing it to a single opti-
mization. As we will show, the assumption proves to be a good
one as it leads to the successful assembly of defect-free crystals.
As discussed later, in the case of cubic diamond this symmetry is
absent and we must independently optimize the two poles of the
colloidal building blocks within two separate optimization proto-
cols.

Our computational model for the anisotropic interaction
patches is deliberately a simple and generic potential. Ex-
perimentally, such directional and specific patches with partic-
ular {EB, φB,ED, φD} might be realized by advanced surface-
patterning techniques10,30–32,35,53–57. For example, the central
colloidal spheres may be functionalized by DNA oligomers with
tunable interaction strengths and specificities35, or patterned
with regions of titania or propyl methacrylate whose interaction
strengths depend on the specific materials properties31,32.

We perform our simulation in reduced units, where σ = 1,
ε = εA = 1, and m = 1. Using these units, we specify σA = 5,
σi = σ = 1 for i ∈ {B,D}, mA = 125 and mi = m = 1 for i ∈ {B,D}.
We may define a mapping between our reduced units and real
units. For example, consider central particle "A" of diameter σA

= 5σ = 1 µm and density ρA = 1 g/cm3, and an energy scale
of ε = 1 kBT at T = 298 K. From these fundamental units, we
can derive the temperature in real units as T = T∗ εkB and time in

real units as t = t∗σ
√

m
ε , where T∗ and t∗ are temperature and

time in reduced units. In our two-stage assembly process, we use
T∗high = 0.8 at high temperature and T∗low = 0.3 at low temperature,
which correspond to Thigh = 238.4 K and Tlow = 89.4 K in real
units, respectively. Also, we use a step size of dt∗ = 0.005 in our
simulations, which corresponds to dt = 0.36 µs in real units.

2.1.2 Cubic diamond lattice

The fundamental motif of the cubic diamond lattice formed from
tetrahedral clusters is dimers of tetrahedra in staggered configu-
rations (fig. 3a)11,12,37. (For short, we will henceforward simply
refer to this lattice as cubic diamond except when it is unclear
to do so.) These staggered tetrahedral dimers come together to
form chair-like rings (fig. 3b) within the cubic diamond crystal. A
competing structure that shares similar free energy is the hexago-
nal diamond lattice that contains tetrahedral dimers in both stag-
gered and eclipsed (fig. 3c) configurations. The hexagonal di-
amond lattice consists of 25% chair-like rings and 75% boat-like
rings (fig. 3d)13. To favor cubic over hexagonal diamond, we em-
ploy a similar patchy colloid design to that for pyrochlore. Three
"B" patches with interaction strength εB are placed in an equi-
lateral triangle on the north pole at a polar angle of φB to favor
the high temperature formation of tetrahedral clusters (fig. 3e-g).
The south pole must be functionalized with two kinds of patches,
"D" patches and "E" patches at a polar angle φ = φD = φE , in or-
der to preferentially stabilize the staggered dimer relative to the
eclipsed one. The "D" patches (purple) are aziumthally aligned
with the "B" patches (blue), and the "E" patches (lime) are rotated
by 60°. The "B"-"B" interaction is still modeled by Lennard-Jones
potential as in equation 1. The "D"-"E" interaction is also mod-
eled by Lennard-Jones potential with the interaction strength and
range given by the Lorentz-Berthelot mixing rules:

UDE
LJ (r) = 4εDE

[(σDE

r

)12
−

(σDE

r

)6
]

εDE =
√
εDεE

σDE =
σD +σE

2

(5)

All other interactions are given by WCA potential defined in equa-
tion 2. In this way, the "D"-"E" attractive interactions induce the
contact dimer formed by two tetrahedra to stabilize a mutual ro-
tation of 60° and favor the staggered dimer over the eclipsed one
fig. 3(h). Our use of this design with two patch types in an alter-
nating ring with attractive interactions between unlike patches is
motivated by the need to induce a 60◦ rotation between the two
tetrahedra at the dimer interface. There is no clear way to favor
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this staggered orientation (fig. 3(a)) over the eclipsed (fig. 3(c))
using only one patch type with attractive interactions regardless
of their azimuthal positioning.

The optimal parameters {EB, φB} for the "B" patches will be
the same as those for pyrochlore since in both cases the high tem-
perature assembly process into tetrahedral clusters is identical.
The remaining goal is to optimize the parameters for "D" and "E"
patches {ED,EE, φ = φD = φE } through landscape engineering.
Without loss of generality, we choose to optimize the parameters
for "D" and "E" patches at T∗high = 0.8, and then scale down the in-
teraction strengths to match the low temperature phase T∗low = 0.3
by a factor of T∗low/T

∗
high. We specify σD =σE = 1 and mD =mE = 1

in reduced units. The mapping between reduced units and real
units is defined in the same manner as section 2.1.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Cubic diamond lattice. (a) Staggered dimer of tetrahedral clusters.
Wireframe tetrahedra connecting the centers of translucent colloids serve as a
guide to the eye to illustrate the tetrahedral motif. (b) Chair-like ring of tetrahedral
clusters. (c) Eclipsed dimer of tetrahedral clusters. (d) Boat-like ring of
tetrahedral clusters. (e) Schematic side view of the anisotropic patchy colloid.
The blue "B" patches with interaction strengths εB define the vertices of an
equilateral triangle on the north pole of the patchy colloid at a polar angle of φB .
The purple "D" and "E" patches with interaction strengths εD and εE lie at the
vertices of a analogous south pole equilateral triangles at a polar angle
φ = φD = φE . The "D" patches are azimuthally aligned with the "B" patches
and the "E" patches rotated by 60°. The (f) bottom and (g) side views of a three
dimensional rendering of the patchy colloid. In (g) the central particle is made
transparent to show the relative orientations of the "B", "D", and "E" patch types.
(h) Illustration of a staggered dimer formed by two tetrahedral clusters of patchy
colloids. Landscape engineering is employed to optimize
{EB, φB,ED,EE, φ = φD = φE } to promote the two-stage hierarchical
self-assembly of the cubic diamond lattice.

2.2 Landscape engineering
We follow a previously developed optimization procedure, called
landscape engineering52, to optimize the design parameters of
patchy colloid. Hereafter we will refer to a set of design param-
eters as a "candidate". The whole procedure consists of the fol-
lowing steps: Starting from a group of initial candidates, we first
conduct Langevin dynamics simulations of the self-assembly of
each candidate and use diffusion map nonlinear dimensionality
reduction to construct a low-dimensional embedding of the vari-
ous self-assembled configurations observed over the course of the
simulation. Next, on this low-dimensional diffusion map space,
we select biasing centers and perform umbrella sampling64,65

for each candidate in order to enhance the sampling of accessi-
ble configurations. From the results of umbrella sampling, for
each candidate, we construct its self-assembly free energy surface
which contains information about the stability of all accessible

Initial generation of 
building block designs 

(candidates)

Generate composite 
diffusion map for all 

candidates 

Conduct umbrella sampling 
and construct free energy 
surface on diffusion map 

space

Evaluate fitness for each 
candidate

Check for 
convergence

Update candidates by 
evolutionary algorithm

No

Yes

Final building 
block design

Fig. 4 Flowchart of the landscape engineering inverse design procedure.

configurations. We then locate the target structure on the free
energy surface and define a fitness metric based on the relative
stability between the target structure and the nearest competitor.
Finally, we use an evolutionary algorithm, called Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES)66, to propose new
and improved candidates based on the fitness values of old can-
didates. These steps are repeated until the proposed new candi-
dates stabilize around an optimal candidate. A flowchart of this
procedure is shown in fig. 4.

As described in the previous section, the parameters being op-
timized in the patchy colloid models for assembling pyrochlore
lattice and cubic diamond lattice are {EB, φB} and {ED,EE, φ},
respectively. In case of pyrochlore lattice, our goal is to opti-
mize {EB, φB} that favor the formation of tetrahedral cluster at
T∗high = 0.8, and then the parameters for the "D" patches are ob-
tained through equations 3 and 4. In this case, we conduct land-
scape engineering on particles possessing only "B" patches on the
central sphere such that we temporarily ignore the "D" patches
during this optimization. This approach is valid if the interac-
tion strengths of the "D" patches are sufficiently weak compared
to that of the "B" patches to be considered thermally decoupled.
After the optimization is complete we place "D" patches on the
opposite pole with parameters given by equations 3 and 4.

In case of the cubic diamond lattice, our goal is to optimize
{ED,EE, φ} to favor dimer formation. During this optimization,
we only put "D" and "E" patches on the central sphere and tem-
porarily ignore the "B" patches. This assumption is a warranted
if it can be assumed that the "B" and "D","E" interactions are ther-
mally decoupled and the tetrahedra formed by the "B" interac-
tions can be considered to be rock-like building blocks at the
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low-temperature at which "D" and "E"-mediated assembly into the
cubic diamond lattice proceeds. After the optimization is com-
plete, the "B" patches are added back on the opposite pole with
{EB, φB} taken from the pyrochlore optimization, and the inter-
action strengths of "D" and "E" patches are scaled down from T∗high
= 0.8 at which the optimization was conducted to T∗low = 0.3.

We now briefly discuss each step of the landscape engineering
procedure (fig. 4).

2.2.1 Langevin dynamics

For each candidate in a group of candidates, we need to estimate
its accessible configurations. To do this, we employ Langevin
dynamics simulation using HOOMD-blue67,68. For each simu-
lation, we initialize the system with 64 randomly placed and ori-
ented patchy colloids in a cubic simulation box with side length
L = 52.52σ. Taking a patchy colloid to be a sphere with radius
corresponding to the sum of the radii of the central particle and
its surface patches, the corresponding volume fraction of patchy
colloids in the system is ϕ = 0.05. We use Langevin dynamics
integrator with T∗ = 0.8 and step size dt∗ = 0.005. We evolve the
system for 3.5× 107 steps and track the cluster formed by one
randomly-selected tagged colloid every 3500 steps. This results
in a total of 104 snapshots per simulation. We perform three in-
dependent Langevin dynamics simulations for each candidate.

2.2.2 Diffusion maps

Diffusion maps69,70 are a widely-used nonlinear dimensionality
reduction technique that has previously been applied to study of
time evolution of molecular systems2,71–74. In the study of self-
assembly process, it can provide a dynamically meaningful low-
dimensional representation of the assembly process2. In our case,
the diffusion map embeds the N self-assembled aggregates {xi}Ni=1
observed from the molecular simulations onto a low-dimensional
manifold. The algorithm starts from constructing the Gaussian
kernel matrix based on the pairwise distances between aggre-
gates:

Ai j = e−
d2
i j

2ε (6)

where di j is the pairwise distance between aggregate i and ag-
gregate j, and ε is a Gaussian bandwidth. The definition of di j
will be provided below. From this kernel matrix, a stochastic ma-
trix representing the random walk over the data set is defined by
row-normalizing the kernel matrix:

Mi j =
Ai j∑
j Ai j

(7)

where Mi j may be interpreted as the probability of hopping from
aggregate i to aggregate j in a time step ∆t = ε . The eigenvec-
tors { ®ψi}Ni=1 of the stochastic matrix M are the discrete approxi-
mations of the eigenfunctions of the backward Fokker-Planck op-
erator which describes a diffusion process over the data set69,70.
The eigenfunctions associated with large eigenvalues describe the
"slow" modes of the diffusion process, while the eigenfunctions
associated with small eigenvalues describe the "fast" modes. The
long-time behavior of the system is captured by top few eigen-
functions. Since the matrix M is Markovian, its top eigenvalue

is λ1 = 1 and the associated eigenvector is the trivial eigenvec-
tor ®ψ1 = ®175. The diffusion map nonlinear embedding into a d-
dimensional space is achieved by projecting each self-assembled
aggregate observed over the course of the simulations {xi}Ni=1 into
the top d nontrivial eigenvectors:

xi →
[
®ψ2(i) ®ψ3(i) . . . ®ψd+1(i)

]T
. (8)

An appropriate choice of d is defined by a gap in the eigenvalue
spectrum2,52. In all cases in the present work a gap was identi-
fied after the third eigenvalue λ3 informing two-dimensional em-
beddings into the two leading non-trivial eigenvectors { ®ψ2, ®ψ3}.
The diffusion map embedding can be accelerated by combining
landmark selection and Nyström extension to construct diffusion
maps over a subset of M << N landmark points and then pro-
jecting the remaining (N −M) points into the embedding using
an out-of-sample extension76,77. The details of this approach are
presented in ref. 77, with illustrative applications to molecular
systems demonstrating 50-fold speedups with less than 4% error
in manifold reconstruction.

The key to construct the diffusion map is to appropriately de-
fine the pairwise distance di j in equation 6. We need a way to
compare the structural similarities between aggregates formed by
the patchy colloids. To do this, we employ the graph-based ap-
proach described in ref. 52, which is a modification of the Isorank
algorithm78. This graph-based approach transforms the task of
comparing structural similarities between aggregates into the task
of comparing similarities between the graphs representing the ag-
gregates. It first represents each aggregate by a graph G whose
nodes correspond to the colloids within the aggregate and whose
edges are weighted by the Euclidean distances between those col-
loids. In case of two aggregates with different number of colloids
(i.e. two graphs with different number of nodes), the algorithm
augments the smaller graph with |Ni −Nj | ghost nodes. The algo-
rithm then employs a greedy approach to find the pseudo-optimal
alignment between two graphs by seeking an alignment Hmin that
minimizes the L1 distance between two graphs Gi and G j :

Hmin = argmin
∑

m,n |(HTGiH)(m,n)−G j (m,n)|
|Nj |(|Nj | −1)

(9)

and the "distance" (i.e. structural similarity) between aggregate i
and aggregate j is:

di j =

∑
m,n |(HT

minGiHmin)(m,n)−G j (m,n)|

|Nj |(|Nj | −1)
. (10)

Importantly, this graph-based distance measure is invariant to ro-
tation, translation, and particle permutation (i.e., particle relabel-
ing) of the self-assembled aggregates.

During each Langevin dynamics simulation conducted for each
candidate in a generation, we record the aggregates comprising
a single tagged colloid. Then, we collect together the aggregates
sampled from all such simulations for all candidates within a gen-
eration. From this group of aggregates, we construct a single
composite diffusion map. By generating a composite diffusion
map for all candidates in a generation, we obtain a unified low-

6 | 1–19Journal Name, [year], [vol.],

Page 7 of 21Soft Matter



dimensional embedding within which to construct and compare
free energy surfaces.

2.2.3 Umbrella sampling – hybrid Monte Carlo

Having constructed the low-dimensional diffusion map space, we
now need to construct the free energy surface for each candi-
date in terms of the diffusion map coordinates { ®ψi}d+1

i=2 . To avoid
the possible kinetic trapping due to potentially high free en-
ergy barrier, we follow the biased sampling procedure described
in ref. 52 that combines umbrella sampling64,65,79 with hybrid
Monte Carlo80–82 to efficiently sample configurational space by
applying biasing potentials within the collective variables (i.e.,
leading eigenvectors { ®ψi}) determined by diffusion maps. We
then reweight these data to estimate the unbiased free energy
surfaces governing the self-assembly of each candidate building
block. In brief, we tile the d-dimensional diffusion map embed-
ding with harmonic biasing potentials:

W( ®ψ, ®ψ∗) =
1
2
( ®ψ− ®ψ∗)T K( ®ψ− ®ψ∗) (11)

where ®ψ∗ is the d-dimensional harmonic center and K is a d × d
dimensional diagonal matrix whose elements are the strengths
of harmonic potential along each dimension. We conduct
an independent biased simulation under each biasing poten-
tial and efficiently sample configurational space within the hy-
brid Monte Carlo (HMC) framework using a NVE integrator to
propose a trial move under the unbiased Hamiltonian. The
initial translational and angular momenta are drawn from the
Maxwell-Boltzmann distribution. The acceptance probability of
the trial move from the old state {{q}old, {p}old, ®ψold} to the new
{{q}new, {p}new, ®ψnew} is dictated by the Metropolis-Hasting cri-
terion:

Pacc(old→ new) =min

(
1,

e−β(U({q }
new)+K({p}new)+W ( ®ψnew, ®ψ∗))

e−β(U({q }old)+K({p}old)+W ( ®ψold, ®ψ∗))

)
(12)

where β = (kBT)−1, U({q}) is the potential energy associated with
the particle positions {q}, K({p}) is the kinetic energy associated
with the particle velocities {p}, and W( ®ψ, ®ψ∗) is the artificial bi-
asing potential defined by equation 11. Importantly, the HMC
NVE trial move proposal does not require the calculation of bias-
ing forces on the particles due to the artificial biasing potentials.
The diffusion map does not provide an explicit differentiable ex-
pression for the collective variables as a function of the particle
positions, meaning that analytical expressions for these biasing
forces are unavailable. Should these forces be desired to per-
form, for example, biased molecular dynamics, techniques such
as SandCV exist to estimate these forces by approximate interpo-
lation and basis function expansions within the low-dimensional
embedding83, or the CVs themselves could be estimated using ar-
tificial neural network approaches such as MESA that provide the
necessary derivatives through automatic differentiation84–86.

We perform umbrella sampling simulations for each candidate
around each harmonic biasing potential. In each case the sys-
tem is initialized from the snapshot that is closest to the center of
the harmonic biasing potential in the diffusion map embedding.

Next, the aggregate formed by the tagged colloid is frozen, and
the system is relaxed using the Fast Inertial Relaxation Engine87

(FIRE) algorithm until the energy of the system converges within
a tolerance of 0.1ε. During the relaxation, only WCA potential
is enabled. After the relaxation, the aggregate formed by the
tagged colloid is unfrozen and the full Hamiltonian comprising all
Lennard-Jones and WCA potentials are enabled. During the first
three generations of optimization for tetrahedron, we set the har-
monic constant of the biasing potentials to be 2500ε. In later iter-
ations we relax this to 25ε. Each hybrid Monte Carlo loop is con-
ducted at T∗ = 0.8 and comprises 3500 steps of NVE integration
with step size dt∗ = 0.005. We perform 16000 Monte Carlo loops
by equilibrating the system for the first 7000 loops and collect-
ing data for the remaining 9000 loops. All molecular dynamics
calculations are performed using HOOMD-blue67,68. After con-
ducting umbrella sampling on the diffusion map space, we use
BayesWHAM88 algorithm to reconstruct the maximum a posteri-
ori (MAP) estimate of the unbiased free energy surface for each
candidate supported in the basis of the diffusion map collective
variables by reweighting the biased umbrella sampling data.

2.2.4 Covariance matrix adaptation – evolution strategy

Having constructed the free energy surface for each candidate in
a generation, we then employ an objective function to define their
relative fitnesses. The free energy surface is first coarse-grained
by its inherent structures89 by partitioning it into the basins of
attraction for local free energy minima detected by steepest de-
scent. The free energy of the inherent structure associated with
the target self-assembled aggregate βFtarget is compared with the
lowest free energy inherent structure of a competitor aggregate
βFcompetitor. The fitness of each candidate colloidal building block
is defined as the free energy gap:

∆βF = βFtarget − βFcompetitor. (13)

Minimization of this objective function seeks to make the target
structure the global free energy minimum on the self-assembly
free energy surface and also open up a free energy gap be-
tween the nearest metastable competing structure. Although it is
a purely thermodynamic objective function, we have previously
demonstrated that its optimization can lead to a funneled topog-
raphy of the free energy landscape centered on the desired aggre-
gate52. This topography can carry kinetic benefits in mitigating
kinetically-trapped configurations and increasing both the yield
and the rate of assembly of the target aggregate52.

Having evaluated the fitness values for all candidates in a gen-
eration, we then propose new candidates by Covariance Ma-
trix Adaptation Evolutionary Strategy66(CMA-ES), which is a
derivative-free algorithm for non-convex optimization problem.
By stochastically seeding multiple walkers to probe the local to-
pography based on running estimates of the local covariance ma-
trix, CMA-ES has demonstrated good robustness and convergence
rates on a variety of optimization problems and rugged land-
scapes66,90. Based on the fitness values of candidates in gener-
ation g, the algorithm first selects top µ candidates. Next, based
on these top µ candidates, the algorithm updates the estimate of
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covariance matrix C and step size σ. Then, it proposes a new
generation (g+1) of P candidates by:

x(g+1) = 〈xg〉µ +σgN(0,Cg) (14)

where x is the vector of design parameters characterizing a candi-
date, and 〈xg〉µ is the mean value of the top µ candidates in gener-
ation g. We set µ = 3, so CMA-ES will select top three candidates
to propose the next generation. The optimization for the self-
assembly of tetrahedral clusters for pyrochlore and cubic diamond
proceeds in the two-dimensional design space x = [EB, φB]

T , and
for the self-assembly of the tetrahedral clusters into dimers re-
quired by the cubic diamond lattice in the three-dimensional
space x = [ED, EE, φ = φD = φE ]

T . N(0,Cg) is a k dimensional
multivariate Gaussian random vector with mean 0 and covariance
matrix Cg, where k is the dimensionality of the design space. If
the standard deviation of each parameter in x dips lower than 1
kBT at T = 298 K in the interaction strengths and 1° in the polar
angle, we declare the CMA-ES to have converged and terminate
the optimization. Otherwise, a new generation of candidates is
proposed, and we repeat the whole optimization procedure for
the new generation: conducting Langevin dynamics simulations
for each new candidate, generating composite diffusion map for
the new candidates, performing umbrella sampling on the com-
posite diffusion map space, constructing the free energy surfaces
and evaluating fitness values for each new candidate.

3 Results
We now proceed to describe our results for the inverse design of
patchy colloids by landscape engineering to spontaneously nucle-
ate and grow defect-free photonic lattices by a two-stage hierar-
chical assembly mechanism.

3.1 Inverse design of self-assembling pyrochlore lattice

3.1.1 Optimization of tetrahedral aggregate formation

We first apply landscape engineering to perform inverse design
of patchy colloids to assemble pyrochlore lattice. As described
in section 2.1.1, the pyrochlore lattice may be viewed as a tetra-
hedral network of corner-sharing tetrahedra. The optimization
of the anisotropic patchy colloid design in fig. 1 proceeds in the
four-dimensional design space {EB, φB,ED, φD} defining the po-
lar angle and interaction strength of the more strongly interacting
"B" patches on the north pole that mediate high-temperature as-
sembly of monomers into tetrahedra at T∗high = 0.8 and the more
weakly interacting "D" patches on the south pole that direct as-
sembly of the pre-assembled tetrahedra into the pyrochlore lattice
at T∗low = 0.3. By the symmetry of the design, we may first opti-
mize "B" patches at a reduced temperature of T∗ = 0.8 and then
obtain the corresponding parameters for "D" patches by equations
3 and 4. Thus, we optimize {EB, φB} at T∗ = 0.8 and the target
structure is the tetrahedron.

To initialize the optimization, we generate 10 initial candi-
dates from a multivariate Gaussian distribution centered around
(15.41ε, 30.0◦) with an initial covariance matrix of C0 = diag(5,5)
(i.e., a diagonal matrix with main diagonal vector (5,5)) and ini-

tial step size 1. This relatively large choice of initial covariance
matrix and step size was made to favor early exploration of the
design space. As detailed in section 2.2, for each candidate in
each generation we perform unbiased Langevin dynamics simu-
lations of assembly, construct composite diffusion maps, perform
biased umbrella sampling – hybrid Monte Carlo simulations, esti-
mate self-assembly free energy landscapes, and evaluate the rela-
tive fitness of each candidate. The evolution of fitness values ∆βF
and parameters {EB, φB} as a function of generation is shown
in fig. 5. In the 16th generation, the parameters converge to
EB = 15.44ε and φB = 30.44° within standard deviations of 1 kBT
at T = 298 K and 1°.

To see how the free energy surfaces change across generations,
we select the best candidate from each generation and generate
a composite diffusion map for all such candidates to provide a
common set of collective variables that we can use to compare
their free energy surfaces. The result is shown in fig. 6. Here we
compare the free energy surfaces of the best candidates in gener-
ations 1, 7 and 15. In particular, fig. 6 (d)-(f) show the free en-
ergy surfaces of these candidates in the composite diffusion map
space, and fig. 6 (a)-(c) show the partition of design space into
the Voronoi cells around the candidates in each of these genera-
tions. Panels (a)-(c) show that CMA-ES draws the initial distribu-
tion of candidates down into the optimum of the fitness landscape
in ∆βF over the course of the 16-generation optimization course.
Panels (d)-(f) show that the free energy surface is sculpted such
that the tetrahedron is preferentially stabilized with respect to all
competitors. In the 1st generation the tetrahedron is the most
stable aggregate but the monomer and dimer are also very stable,
lying, respectively, just +1 kBT and +2 kBT higher in free energy.
The trimer lies at +4 kBT . In the 7th generation, the stability of
the monomer relative to the tetrahedron is decreased to nearly
+3 kBT , but that of the dimer and trimer now lie at +2 kBT .
Finally in the 15th generation, the relative stabilities of the dimer
and trimer are decreased to +2.6 kBT and +4 kBT , respectively,
and the monomer lies at +2.5 kBT , making the tetrahedron at
least 2.5 kBT more stable than all of its competitors. The net ef-
fect of the landscape engineering approach can be seen to have
maximized the free energy gap (relative stability) between tetra-
hedron and all competing aggregates.

3.1.2 High-temperature assembly of tetrahedra and compar-
ison with empirical geometric design

Landscape engineering discovers the optimized parameters for
the "B" patches of EB = 15.44ε and φB = 30.44°. We now proceed
to verify that this design leads to the self-assembly of tetrahedral
aggregates in high yield. We perform four independent unbiased
Langevin dynamics simulations at T∗ = 0.8 for 2×106 reduced time
units for patchy colloids decorated with "B" patches employing the
optimal design parameters. All simulations are initialized with
512 randomly placed and oriented particles in a cubic box of side
length L = 105.54σ, corresponding to a volume fraction of ϕ =
0.05. The solid colored lines in fig. 7 show the temporal yield of
tetrahedral aggregates as a function of time. Assuming monomers
are depleted according to simple first-order kinetics, we can fit
an expression for the tetrahedral yield of form y(t) = b

(
1− e−kt

)
,
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Fig. 5 Landscape engineering of the pyrochlore patchy colloid. (a) The fitness values ∆βF for all candidates in each generation. Error bars are estimated from the
standard deviation of the fitness value of each candidate. The blue points correspond to the µ = 3 best candidates selected by CMA-ES in each generation, and the
red points to those less fit candidates that are discarded. The black dashed line corresponds to the boundary between them. Evolution of (b) interaction strength EB

and (c) polar angle φB of the "B" patches as a function of generation. The solid line corresponds to the mean value among all candidates in each generation, and the
dashed line corresponds to the mean value of the µ = 3 best candidates in each generation. The optimization converges after 16 generations to EB = 15.44ε and
φB = 30.44°.

where y(t) is the fraction of colloids residing within tetrahedra,
t is time, b = (96.2± 0.3)% is the equilibrium fraction of colloids
forming tetrahedral clusters, and k = (63.4±6.7) s−1 is the best-fit
first-order rate constant.

It is also instructive to compare the assembly kinetics to that for
a patchy colloid design employing the same interaction strength
but an empirical patch angle based on the tetrahedral geometry.
A polar angle of φB = 35.26° corresponds to the case where the at-
tractive patches point directly towards the neighboring particles
within an ideal tetrahedral aggregate. This can be considered the
patch angle arising from zero-temperature energy minimization
of an isolated tetrahedral cluster3,91. (We note that direct ap-
plication of the landscape engineering approach at T = 0 K may
present challenges in sampling the configurational energy land-
scape at absolute zero and would require the use of an alternative
sampling technique to molecular dynamics such as simulated an-
nealing or basin hopping.) The dashed lines in fig. 7 present the
tetrahedral yield for particles with "B" patches of EB = 15.44ε and
φB = 35.26°. Fitting of the first-order kinetic model yields values
of b = (87.2±2.3)% and k = (38.6±6.0) s−1, demonstrating that
the optimal design discovered by landscape engineering exhibits
both higher asymptotic yield and faster assembly kinetics. Anal-
ysis of the simulation trajectories shows that the ∼5° larger polar
angle for the empirical geometric design results in the formation
of many clusters larger than tetrahedra. This can be understood
as the larger polar angle of the patches enabling promiscuous in-
teractions between the particles comprising a tetrahedral cluster
and outsider particles, whereas the smaller polar angle optimized
through landscape engineering disfavors the formation of these
large aggregates to improve assembly rate and yield.

The landscape engineering optimization was conducted at a
volume fraction ϕ = 0.05, but it is of interest to assess the robust-
ness of this design in mediating high-yield tetrahedral assembly
at other volume fractions. Langevin dynamics simulations con-
ducted at volume fractions over the range ϕ = 0.025-0.1 reveal
the tetrahedral yield to remain at 95% or better for up to two-
fold increases and decreases in the volume fraction away from
that at which the optimization was conducted. Very high volume

fractions risk trapping within kinetically arrested glassy states,
whereas very low volume fractions introduce strong entropic driv-
ing forces disfavoring assembly. At either of these extremes we
anticipate that re-optimization at the volume fraction of interest
would be required to maintain high tetrahedral yields.

3.1.3 Two-stage hierarchical assembly of pyrochlore lattice

After obtaining {EB = 15.54ε, φB = 30.44◦} as the optimal design
parameters for "B" patches, we obtain the optimal design for the
"D" patches according to equations 3 and 4:

φD = φB = 30.44°

ED =
T∗low
T∗high

EB =
0.3
0.8
×15.54ε = 5.83ε.

(15)

We then decorate the patchy colloids with the optimal north pole
"B" patches and south pole "D" patches to arrive at the final land-
scape engineering design of the patchy colloids. We validate the
capacity of the design to achieve two-stage hierarchical assem-
bly of pyrochlore lattice by locating 512 randomly placed and
oriented patchy colloids in a cubic simulation box of side length
L = 105.04σ, corresponding to a volume fraction of ϕ = 0.05. The
first stage of assembly proceeds by a high-temperature hold at
which the system is evolved at T∗high = 0.8 for 2×106 reduced time
units to allow for the formation of tetrahedral clusters from the
colloidal monomers. The second stage of assembly is effected by
a two-stage cooling protocol to favor nucleation of the pyrochlore
lattice whereby the system is rapidly cooled from T∗high = 0.8 to

T∗intermediate = 0.5 for 5× 105 reduced time units and then slowly
cooled from T∗intermediate = 0.5 to T∗low = 0.3 for 1× 107 reduced
time units. Finally, the system is subjected to a low-temperature
hold at T∗low = 0.3 for another 5×104 reduced time units to gather
statistics on the terminal crystal. The evolution of system poten-
tial energy and temperature is presented in fig. 8. Nucleation
of the pyrochlore lattice occurs during the second slow cooling
phase at around T∗ = 0.45 as indicated by the sudden drop in po-
tential energy corresponding to the latent heat of crystallization.
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Fig. 6 Landscape engineering sculpting of the self-assembly free energy
landscape for tetrahedral cluster formation. (a)-(c) Distribution of candidates
within the {EB, φB } design space in generations 1, 7 and 15. The candidates
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covariance matrix from which the candidates in the current generation are
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update the covariance matrix. For visualization purposes, we partition design
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fitness ∆βF of the corresponding candidate. (d)-(f) Free energy surfaces of the
best candidates in generations 1, 7 and 15 in the composite diffusion map space
spanned by the leading two diffusion map collective variables {ψ2, ψ3 }. The
particular values of {EB, φB } pertaining to each candidate are listed above
each panel. Representative aggregates from the local free energy minima are
projected onto the low-dimensional embedding. The values of the local free
energy minima associated with each aggregate are displayed next to the
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colloids decorated with "B" patches of the optimal design
{EB = 15.54ε, φB = 30.44◦ } deduced by landscape engineering. The four
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{EB = 15.54ε, φB = 35.26◦ } employing the same interaction strength but a
polar angle corresponding to the zero-temperature energy minimum of an
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corresponding data to first-order kinetics. Landscape engineering discovers an
improved particle design exhibiting better yield and assembly rate beyond that
derived from purely geometric considerations.
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Fig. 9 Radial distribution function between the geometric centers of tetrahedral
clusters at the end of the high-temperature assembly stage of pyrochlore lattice.

At the end of the T∗high = 0.8 high-temperature assembly stage
the yield of tetrahedral clusters is 97.7% corresponding to the for-
mation of 125 tetrahedral clusters mediated by interactions be-
tween the north pole "B" patches. The radial distribution func-
tion g(r) between the geometric centers of the tetrahedral clus-
ters demonstrates that they behave effectively as an ideal gas
(fig. 9). The small correlation peak at r∗ ≈ 12 indicating the pres-
ence of very weak structural correlations between the tetrahe-
dra is largely attributable to the weak interactions between the
south pole "D" patches, but numerical simulations in which the
"D"-"D" interactions are turned off show that ∼20% of the correla-
tion peak can be attributed to effective entropic attractions driven
by excluded volume interactions. This validates the design expec-
tation that interactions between "D" patches should be thermally
decoupled from that of the "B" patches.

During the slow cooling process we observe nucleation and sub-
sequent growth of a pyrochlore lattice (fig. 10a). We note that suf-
ficiently slow cooling rates are necessary to assure a single nucle-
ation event and production of defect-free crystal. In experimental
realizations employing orders of magnitude more colloids than
our simulations it can be quite challenging to achieve defect-free
crystals. We anticipate that very slow cooling rates, possibly cou-
pled with programmed temperature oscillations to heal defects,
may be required to obtain high-fidelity periodic crystal lattices. At
the end of the T∗low = 0.3 low-temperature hold, we perform struc-
tural characterization of the crystal. To do so we compute the
radial distribution function g(r) between the patchy colloid cen-
ters of mass (fig. 10b) and Steinhardt bond order parameters92,93

®q∗4(i) · ®q4( j) (fig. 10c) and q4(i) (fig. 10d), where "∗" denotes the
complex conjugate. The vector ®ql(i) is a (2l +1) dimensional vec-
tor whose non-normalized elements are:

qlm(i) =
1

Nb(i)

Nb (i)∑
k=1

Ylm(r̂ik ) =
1

Nb(i)

Nb (i)∑
k=1

Ylm(θik, φik ) (16)

where Nb(i) is the number of nearest neighbors of particle i, k

loops over all such nearest neighbors, r̂ik is the unit displacement
vector from particle i to particle k, {θik, φik } are the polar and az-
imuthal angles that r̂ik makes with respect to a specific coordinate
system, and Ylm are the spherical harmonics. A nearest neighbor
is defined as a particle lying within a cutoff distance dcut = 6.0σ,
where this threshold is calibrated to cover the first peak in the
radial distribution function at rpeak,1 ≈ 5.25σ (fig. 10b). When

computing the inner product ®q∗4(i) · ®q4( j), we normalize each vec-
tor to have unit 2-norm. It can be shown that the inner product,
®q∗
l
(i) · ®ql( j), between two particles i and j is real and independent

of the coordinate system92,94. The parameter q4(i) is defined us-
ing the relation93:

ql(i) =

√√√
4π

2l +1

l∑
m=−l

|qlm(i)|2 (17)

The parameter ®q∗4(i) · ®q4( j) defined between nearest neighbor pairs
{i, j} has been shown to be able to distinguish between pyrochlore
lattice and hexagonal tetrastack lattice37 by aggregating bond
angle information between pairs of particles separated by up to
three bonds. The parameter q4(i) provides a more localized struc-
tural characterization by averaging over only the nearest neigh-
bors of particle i and providing a way to tell whether a particle
exists in a locally staggered or eclipsed configuration. Taken to-
gether g(r), ®q∗4(i) · ®q4( j), and q4(i) allow us to determine whether
the system adopts the radial and angular order expected for a
pure pyrochlore lattice, and whether it contains crystal defects
or is a mixture of the pyrochlore and hexagonal tetrastack poly-
morphs.

The radial distribution function computed over the final snap-
shot of the simulation at T∗low = 0.3 possesses exactly the char-
acteristic peaks indicative of a pyrochlore lattice (fig. 10b). The
distributions of ®q∗4(i) · ®q4( j) (fig. 10c) and q4(i) (fig. 10d) also both
possess peaks at the positions expected for the ideal pyrochlore
lattice, and lack those expected for the hexagonal tetrastack.
Specifically, the pyrochlore lattice will possess only one peak at
0.0123 in ®q∗4(i) · ®q4( j) and one peak at 0.375 in q4(i)37. In con-
trast, the hexagonal tetrastack will show two peaks at 0.0123 and
−0.5 in ®q∗4(i) · ®q4( j) and two peaks at 0.375 and 0.181 in q4(i)37.

The gray bars in fig. 10c show the distribution of ®q∗4(i) · ®q4( j) for
all nearest neighbor pairs of patchy colloids. Due to finite-size
effects, in some nearest neighbor pairs the constituent colloids
lie on the boundary of the crystal structure and do not have ex-
actly six bonded nearest neighbors. These finite-size effects cause
the second small peak at ®q∗4(i) · ®q4( j) ≈ 0.5 to emerge. The blue

transparent bars show the distribution ®q∗4(i) · ®q4( j) among near-
est neighbor pairs in which both colloids are constrained to have
six bonded nearest neighbors (i.e., crystalline colloids). Here we
see that the blue transparent bars are indeed centered around
the characteristic peak in ideal infinite pyrochlore lattice and the
small shoulder disappears. Similarly, the distribution of q4(i) in
fig. 10d restricted to six-neighbor crystalline colloids possesses a
single peak centered on the pyrochlore result. Taken together,
fig. 10 demonstrates that the colloids do spontaneously form a
defect-free pyrochlore lattice, and not a mixture of the pyrochlore
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and hexagonal tetrastack polymorphs.
Having characterized the final structure, we then proceed to

compute the band structure of the corresponding periodic crystal
using the MIT Photonic Bands (MPB) software95. We create an
infinite periodic pyrochlore lattice from the primitive lattice vec-
tors ®R1 = (0, a2 ,

a
2 ),
®R2 = (

a
2 ,0,

a
2 ),
®R3 = (

a
2 ,

a
2 ,0) where a is the lattice

constant. The positions of the four basis particles reported in the
basis of the primitive lattice vectors (i.e., (l,m,n) denotes a posi-
tion vector l ®R1 +m ®R2 +n ®R3) are given in table 1. The lattice con-

Basis particle index Position

1
(

1
2,

1
2,

1
2

)
2

(
0, 1

2,
1
2

)
3

(
1
2,0,

1
2

)
4

(
1
2,

1
2,0

)
Table 1 Positions of basis particles of the pyrochlore lattice in the basis of
primitive lattice vectors ®R1 = (0, a2 ,

a
2 ),
®R2 = (

a
2 , 0,

a
2 ),
®R3 = (

a
2 ,

a
2 , 0) where a

is the lattice constant. The tuple (l,m,n) denotes a particle position vector
l ®R1 +m ®R2 +n ®R3.

stant a is related to the first peak in radial distribution function
(nearest-neighbor distance) rpeak,1 by a = 4√

2
rpeak,1. We estimate

the nearest-neighbor distance from the radial distribution func-
tion of final configuration (fig. 10b) to be rpeak,1 ≈ 5.25σ. The
radius of the colloidal particles is that of "A" spheres σA/2 = 2.5σ
and the dielectric constant is set to εr = 12.0 corresponding to
the value for silicon. The medium is taken to be air. We use a
16×16×16 grid to discretize the primitive unit cell to compute the
band structure along the high-symmetry lines in the first Brillouin
zone. We verify that our results are converged with respect to the
grid spacing. The resulting photonic band structure is shown in
Figure 11. The band structure shows the opening of an indirect
bandgap between the second and third bands with a width-to-
midgap ratio (ratio between the bandgap width and the midgap
frequency) of 4.63%.

3.2 Inverse design of self-assembling cubic diamond lattice

3.2.1 Optimization of staggered dimer formation

Following the success in pyrochlore assembly, we then apply our
landscape engineering approach to design a new patchy colloid
to assemble cubic diamond lattice via tetrahedral clusters. As
described in section 2.1.2 and illustrated in fig. 3, the cubic dia-
mond lattice comprises tetrahedral clusters arranged in staggered
dimers. The high-temperature assembly of patchy colloids into
tetrahedra proceeds in exactly the same fashion as for pyrochlore,
and we adopt EB = 15.44ε and φB = 30.44° as the optimal design
solution for the "B" patches. The design problem then reduces to
optimization of the interaction strengths and polar angles of the
south pole "D" and "E" patches to mediate the low-temperature
assembly of the pre-assembled tetrahedral aggregates into cubic
diamond lattice. We choose to optimize the parameters for "D"
and "E" patches at T∗high = 0.8, and then scale down the interac-
tion strengths to match the low temperature phase T∗low = 0.3 by

a factor of T∗low/T
∗
high. Thus, we optimize {ED,EE, φ = φD = φE }

at T∗ = 0.8 and the target structure is a staggered dimer.

We initialize the optimization by generating 10 initial candi-
dates from a multivariate Gaussian distribution centered around
(6.67ε,6.67ε,26.60°) with an initial covariance matrix of C0 =

diag(5,5,5) and an initial step size 1. The evolution of {ED,EE, φ}

and the fitness ∆βF over the landscape engineering generations
are shown in fig. 12. In the 18th generation, all parameters have
converged to ED = 10.02ε, EE = 11.64ε and φ = 26.68° within
standard deviations of 1 kBT at T = 298 K and 1°.

The distribution of candidates within the design space and free
energy surfaces for the best candidates in generations 1, 9 and
17 are presented in fig. 13 to show how landscape engineering
changes the design and assembly properties of the building block
over the course of the optimization. In fig. 13a-i we partition the
design spaces {φ,EE }, {φ,ED} and {EE,ED} by the Voronoi cells
around the candidates in generations 1, 9 and 17, and we color
each Voronoi cell by the fitness value of the corresponding can-
didate. Here we observe that despite the relatively poor initial
guesses for ED and EE , CMA-ES was able to efficiently move the
mean and shrink the variance of subsequent generations of can-
didates to converge to the optimum of the ∆βF fitness landscape.
In fig. 13j-l we show that the self-assembly free energy surfaces
are driven towards a topography in which the staggered dimer
is preferentially stabilized relative to all competing aggregates.
In the 1st generation, the monomer is the most stable aggregate
lying (-1) kBT lower in free energy than the dimer. The trimer
and tetrahedron are each less stable than the dimer, lying, re-
spectively, +4 kBT and +8 kBT higher in free energy. In the 9th

generation, the landscape engineering protocol has successfully
rendered the dimer the most stable aggregate on the landscape,
with the monomer, trimer, and tetrahedron lying, respectively, +5
kBT , +5 kBT , and +6 kBT higher in free energy. In the 17th

generation, the dimer has been even further stabilized, with the
trimer and tetrahedron each lying +6 kBT higher in free energy,
and the monomer rendered completely unstable within the sam-
pling resolution of our calculations.

3.2.2 High-temperature assembly of dimers

We verify the optimal landscape engineering design of ED =

10.02ε, EE = 11.64ε and φ = 26.68° by performing four unbiased
Langevin dynamics simulations at T∗ = 0.8 for 2×106 reduced time
units for patchy colloids decorated with "D" and "E" patches. Sim-
ulations are initialized with 512 colloidal monomers with ran-
dom positions and orientations in a cubic simulation box with
side length L = 105.04σ corresponding to a volume fraction of ϕ
= 0.05. The yield of staggered dimers as a function of time for
the four runs is presented in fig. 14. Fitting the first-order kinetic
model for the dimer yield y(t) = b

(
1− e−kt

)
results in best-fit con-

stants of k = (459.9±29.1)s−1 and b= (99.1±0.1)%, demonstrating
that this design produces staggered dimers with nearly quantita-
tive yield.
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(a) (b) (c) (d)

Fig. 10 Structural characterization of the self-assembled pyrochlore lattice. (a) Snapshot of terminal crystal lattice structure. (b) Radial distribution function g(r)

between the patchy colloid centers of mass. (c) The distribution of ®q∗4 (i) · ®q4(j) computed between all patchy colloid nearest-neighbor pairs (gray) and restricted to
crystalline colloid pairs (blue) defined as those in which each partner possesses six bonded nearest neighbors. (d) The distribution of q4(i) for crystalline colloids. In
all panels the orange dashed lines represent the expected peak positions for an ideal pyrochlore lattice and the green dashed lines represent those for an ideal
hexagonal tetrastack lattice.
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Fig. 11 Photonic band structure of the self-assembled pyrochlore lattice. The
y-axis reports the dimensionless frequency f a

c , where f is the frequency, a is
lattice constant, and c is the speed of light in vacuum. The x-axis labels the
corners of the irreducible region of first Brillouin zone in canonical order. For a
lattice constant of a = 2.97 µm corresponding to our choice of length scale, the
bandgap lies within the frequency range of 3.74 < f < 3.94 THz and
wavelength range of 76.2 < λ < 80.3 µm, placing the bandgap in the infrared
regime of electromagnetic spectrum. For a lattice constant of a = 27.0 nm the
bandgap lies within the frequency range of 411 < f < 433 THz and wavelength
range of 692 < λ < 729 nm, placing the bandgap in the visible regime.

3.2.3 Two-stage hierarchical assembly of cubic diamond lat-
tice

Landscape engineering furnished {ED = 10.02ε,EE = 11.64ε, φ =
26.68°} as the optimal values of design parameters for "D" and
"E" patches at T∗high = 0.8. We proportionally scale these inter-
action strengths by a factor of T∗low/T

∗
high = 0.3/0.8 in order to

thermally decouple the "D" and "E" interactions from the "B" in-
teractions such that they direct assembly of tetrahedral clusters
into cubic diamond lattice at the second, low-temperature stage
of assembly. This results in optimal "D" and "E" patch designs
of {ED =

Tlow
Thigh

10.02ε = 3.76ε, EE =
Tlow
Thigh

11.64ε = 4.36ε, φ = 26.68°}.
We test our design in simulations of 512 randomly placed and ori-
ented colloids in a cubic simulation box with side length L = 132σ,
corresponding to a volume fraction of ϕ = 0.025. We first evolve
the system at high temperature T∗high = 0.8 for 2 × 106 reduced
time units, then quickly cool the system to T∗intermediate = 0.6 for

5× 105 reduced time units, then slowly cool the system down to
T∗low = 0.3 for 1.5×107 reduced time units, and finally equilibrate
the system at T∗low = 0.3 for 5× 104 reduced time units to gather
statistics. The evolution of system potential energy and tempera-
ture versus simulation time is shown in fig. 15. Nucleation of the
cubic diamond lattice occurs at around T∗ = 0.48 as indicated by
the sudden drop in potential energy.

At the termination of the T∗high = 0.8 high-temperature hold the
yield of tetrahedral clusters is 95%. The radial distribution func-
tion between the geometric centers of tetrahedral cluster demon-
strates that they behave as an effective ideal gas with only a
small correlation peak due to weak "D" and "E" patch interactions
(fig. 16). A snapshot of the structure formed at the end of the
T∗low = 0.3 low-temperature hold is presented in fig. 17a. The ra-

dial distribution function (fig. 17b), the distribution of ®q∗3(i) · ®q3( j)
(fig. 17c), and distribution of ®q3(i) (fig. 17d) between the geomet-
ric centers of tetrahedral clusters all show peaks at precisely the
expected locations for cubic diamond lattice, and no peaks at the
locations for hexagonal diamond lattice. In calculating the Stein-
hardt bond order parameters, a pair of tetrahedral clusters are
defined as nearest neighbors if their geometric centers lie within
a cutoff distance dcut = 13.0σ calibrated to cover the first peak
in the radial distribution function at rpeak,1 ≈ 12.05σ (fig. 17b).
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Fig. 12 Landscape engineering of the cubic diamond patchy colloid. (a) The fitness values ∆βF for all candidates in each generation. Error bars are estimated from
the standard deviations in the fitness values corresponding to each candidate. The blue points correspond to the µ = 3 best candidates selected by CMA-ES in each
generation, and the red points to those less fit candidates that are discarded. The black dashed line corresponds to the boundary between them. Evolution of (b)
interaction strengths ED (blue) and EE (red) and (c) polar angle φ = φD = φE as a function of generation. The solid line corresponds to the mean value among all
candidates in each generation, and the dashed line corresponds to the mean value of the µ = 3 best candidates in each generation. The optimization converges after
18 generations to ED = 10.02ε,EE = 11.64ε and φ = 26.68°.

In fig. 17c the gray bars correspond to ®q∗3(i) · ®q3( j) computed for
all pairs of tetrahedral clusters, and the blue bars correspond to
the values computed for pairs of crystalline tetrahedral clusters
defined as those in which each cluster has four bonded nearest
neighbors. It is clear that the finite-size effect causes the distribu-
tion of gray bars to spread out, but the blue bars are centered on
the expected peak location for ideal cubic diamond lattice. The
value of q3(i) is the same for the ideal cubic and hexagonal dia-
mond lattices, so this measure possesses no discriminatory power
between the two but does show the q3(i) distribution fot the self-
assembled lattice to be located in exactly the expected location
(fig. 17d). This structural characterization verifies that the tetra-
hedral clusters have assembled a defect-free cubic diamond lattice
and it is not a mixture of the diamond and hexagonal polymorphs.

The photonic band structure of the assembled cubic diamond
lattice is determined by defining an infinite periodic lattice with
primitive lattice vectors ®R1 = (0, a2 ,

a
2 ),
®R2 = (

a
2 ,0,

a
2 ),
®R3 = (

a
2 ,

a
2 ,0),

where a is the lattice constant. The eight basis particles within
the { ®R1, ®R2, ®R3} basis are given in table 2. The lattice constant is
related to the first peak in radial distribution function between

colloidal geometric centers rpeak,1 as a =
4rpeak,1
√

2
2

2+
√

2−2cos (109.5°)
,

where we take rpeak,1 ≈ 5.25σ as estimated for pyrochlore. Using
the same parameters as for the pyrochlore calculation we em-
ploy MPB95 to obtain the band structure in fig. 18. We observe
an indirect bandgap between the second and third bands with a
width-to-midgap ratio of 7.47%.

4 Conclusions
In this work we have demonstrated an automated data-driven
strategy for the inverse design of colloidal particles capable of
spontaneous self-assembly into periodic crystals. This approach,
termed landscape engineering, combines molecular simulation,
enhanced sampling, and nonlinear dimensionality reduction to
efficiently estimate self-assembly free energy landscapes, and the
use of evolutionary algorithms to rationally sculpt the topography
of the landscape to stabilize desired aggregates by manipulation
of the building block design parameters. We demonstrated the

Basis particle index Position
1 ( 18,

1
8,

1
8 )+

2
2+
√

2−2cos(109.5°)
(− 1

8,−
1
8,−

1
8 )

2 ( 18,
1
8,

1
8 )+

2
2+
√

2−2cos(109.5°)
( 38,−

1
8,−

1
8 )

3 ( 18,
1
8,

1
8 )+

2
2+
√

2−2cos(109.5°)
(− 1

8,
3
8,−

1
8 )

4 ( 18,
1
8,

1
8 )+

2
2+
√

2−2cos(109.5°)
(− 1

8,−
1
8,

3
8 )

5 (− 1
8,−

1
8,−

1
8 )+

2
2+
√

2−2cos(109.5°)
( 18,

1
8,

1
8 )

6 (− 1
8,−

1
8,−

1
8 )+

2
2+
√

2−2cos(109.5°)
(− 3

8,
1
8,

1
8 )

7 (− 1
8,−

1
8,−

1
8 )+

2
2+
√

2−2cos(109.5°)
( 18,−

3
8,

1
8 )

8 (− 1
8,−

1
8,−

1
8 )+

2
2+
√

2−2cos(109.5°)
( 18,

1
8,−

3
8 )

Table 2 Positions of basis particles of the cubic diamond lattice of tetrahedral
clusters in the basis of primitive lattice vectors
®R1 = (0, a2 ,

a
2 ),
®R2 = (

a
2 , 0,

a
2 ),
®R3 = (

a
2 ,

a
2 , 0) where a is the lattice constant.

A tuple (l,m,n) denotes a particle position vector l ®R1 +m ®R2 +n ®R3.

technique in the successful design of anisotropic patchy colloids
to self-assemble pyrochlore and cubic diamond lattices of tetra-
hedral clusters as highly sought-after optical materials possess-
ing omnidirectional photonic bandgaps. Our approach presents
a principled and constructive means to reverse engineer the op-
timal building block design. This systematic approach can ac-
celerate design relative to Edisonian trial-and-improvement and
avoid traps associated with flawed intuition. The approach can
be straightforwardly generalized to arbitrary particle designs and
lattice structures, including crystals formed from multiple parti-
cle types and even quasicrystals, by identifying the self-assembled
aggregates and interfaces to be stabilized and the design variables
to be manipulated.

We adopted a relatively simple and generic model of our patchy
particles that introduces anisotropy through the precise place-
ment of specific and attractive patches. The interaction potentials
we employed (Lennard-Jones and WCA) were deliberately sim-
ple in form but sufficient to capture the essential physics of as-
sembly. These patchy particle potentials3 and similar anisotropic
Kern-Frenkel models11,37 can be considered rude models of the
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Fig. 13 Landscape engineering sculpting of the self-assembly free energy landscape for the formation of staggered dimers. (a)-(i) Distribution of candidates within the
{φ,EE }, {φ,ED } and {EE,ED } design space in generations 1, 9 and 17. The candidates are represented by black dots. The red circle represents the CMA-ES
covariance matrix from which the candidates in the current generation are sampled. The top µ = 3 candidates in current generation are then used to update the
covariance matrix. For visualization purposes, we partition design space into Voronoi cells around each candidate and color each cell by the fitness ∆βF of the
corresponding candidate. (j)-(l) Free energy surfaces of the best candidates in generations 1, 9 and 17 in the composite diffusion map space spanned by the leading
two diffusion map collective variables {ψ2, ψ3 }. The particular values of {ED,EE, φ} pertaining to each candidate are listed above each panel. Representative
aggregates from the local free energy minima are projected onto the low-dimensional embedding. The values of the local free energy minima associated with each
aggregate are displayed next to the representative structures.

anisotropy introduced by current experimental fabrication tech-
niques such as glancing angle deposition30,53,54, grafting of com-
plementary DNA oligomers10,35,55–57 and contact layer lithog-
raphy32. In follow-on work it would be of interest to em-

ploy more realistic potentials designed to more closely mimic
experimentally-realizable interaction potentials and particle de-
signs10,57, and incorporate the limits of fabrication robustness
and precision by considering polydispersity in the building block
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Fig. 14 Yield of staggered tetrahedral dimers as a function of simulation time at
T ∗ = 0.8 in unbiased Langevin dynamics simulations. Each colored line
corresponds to an independent simulation at the optimal design
{ED = 10.02ε,EE = 11.64ε, φ = 26.68◦ } deduced by landscape engineering.
The solid black line is the fit to first-order kinetics.
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Fig. 15 Evolution of system potential energy and temperature for two-stage
hierarchical assembly of cubic diamond lattice. The two horizontal arrows
indicate which of the two axes – potential energy or temperature – pertain to
each curve on this double y-axis plot.

Fig. 16 Radial distribution function between the geometric centers of tetrahedral
clusters at the end of the high-temperature assembly stage of cubic diamond.

ensemble11,37. Surface charge is another valuable means of con-
trolling assembly15,29,96–99, and these effects can be modeled
through screened Coulomb interactions99–101. Also, the ratio-
nal design strategy used in the current work may be extended to
design patchy colloids decorated with nanodots that may form
helical structures7, which are fundamental building blocks for
chiral photonic crystals102. Possessing omnidirectional photonic
bandgaps and the capacity to circularly polarize light, these mate-
rials have potential applications as chiral beamsplitters and com-
ponents of photonic computers102. Finally, we envisage exten-
sion of the landscape engineering inverse design strategy beyond
anisotropic colloids to self-assembling nanoparticles, liquid crys-
tals, or molecules.
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(a) (b) (c) (d)

Fig. 17 Structural characterization of the self-assembled cubic diamond lattice. (a) Snapshot of terminal crystal lattice structure. (b) Radial distribution function g(r)

between the geometric centers of the tetrahedral cluster. (c) The distribution of ®q∗3 (i) · ®q3(j) computed between all pairs of tetrahedral clusters (gray) and restricted to
pairs of crystalline tetrahedral clusters (blue) defined as those in which each partner has four bonded nearest neighbors. (d) The distribution of q3(i) for pairs of
crystalline tetrahedral clusters. In all panels the orange dashed lines represent the expected peak positions for an ideal cubic diamond lattice and the green dashed
lines represent those for an ideal hexagonal diamond lattice. In the last panel the orange and green dashed lines are coincident.
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Fig. 18 Photonic band structure of the self-assembled cubic diamond lattice.
The y-axis reports the dimensionless frequency f a

c , where f is the frequency, a
is lattice constant, and c is the speed of light in vacuum. The x-axis labels the
corners of the irreducible region of first Brillouin zone in canonical order. For
lattice constant of a = 1.63 µm corresponding to our choice of length scale, the
bandgap lies within the frequency range of 4.95 < f < 5.32 THz and wavelength
range of 56.4 < λ < 60.6 µm, placing the bandgap to be in the infrared regime
of electromagnetic spectrum. For a lattice constant of a = 16.3 nm the bandgap
lies within the frequency range of 495 < f < 532 THz and wavelength range of
564 < λ < 605 nm, placing the bandgap in the visible regime.
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We demonstrate an inverse design strategy to engineer anisotropic patchy 
colloids to self-assemble into colloidal lattices with omnidirectional 
photonic bandgaps.
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