
Novel Elastic Response in Twist-Bend Nematic Models

Journal: Soft Matter

Manuscript ID SM-ART-07-2019-001395.R1

Article Type: Paper

Date Submitted by the 
Author: 16-Aug-2019

Complete List of Authors: Shi, Jiale; University of Notre Dame, Chemical and Biomolecular 
Engineering
Sidky, Hythem; University of Notre Dame, Chemical and Biomolecular 
Engineering
Whitmer, Jonathan; University of Notre Dame, Chemical and 
Biomolecular Engineering

 

Soft Matter



Novel Elastic Response in Twist-Bend Nematic Models

Jiale Shi,1 Hythem Sidky,1 and Jonathan K. Whitmer1, ∗

1Department of Chemical and Biomolecular Engineering,

University of Notre Dame, Notre Dame, IN 46556

Abstract

Bent-shaped liquid crystals have attracted significant attention recently due to their novel

mesostructure and the intriguing behavior of their elastic constants, which are strongly anisotropic

and have an unusual temperature dependence. Though theories explain the onset of the twist-bend

nematic phase (NTB) through spontaneous symmetry breaking concomitant with transition to a

negative bend (K3) elastic constant, this has not been observed as yet in experiments. There, the

small bend elastic constant has a strongly non-monotonic temperature dependence, which first

increases after crossing the isotropic (I)–nematic (N) transition, then dips near the nematic (N)–

twist-bend (NTB) transition before it increases again as the transition is crossed. The molecular

mechanisms responsible for this exotic behavior are unclear. Here, we utilize density of states

algorithms in Monte Carlo simulation applied to a variant of the Lebwohl–Lasher model which in-

cludes bent-shaped-like interactions to analyze the mechanism behind elastic response in this novel

mesostructure and understand the temperature dependence of its Frank–Oseen elastic constants.

∗ Author to whom correspondence should be addressed: jwhitme1@nd.edu
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I. INTRODUCTION

Liquid crystals (LCs) are an intermediate phase between liquids and crystalline solids,

having liquid-like positional order and solid-like orientational order. Since their discovery by

Friedrich Reinitzer in 1888 [1], the innate responsiveness and anisotropic properties of LCs

have found applications in many fields, including visual displays [2, 3], molecular machines [4],

nanoscale templating for self-assembly [5], organic electronics [6], chemical and biological

sensing [7–9]. Perhaps the most well-known types of LCs are the nematic-phase (N) forming

molecules that comprise the calamitic class. These are elongated, rod-like objects whose

tendency to orientationally order has entropic origins [10], though it is often reinforced by

energetic concerns. However, these are not the only types of order [11–14]. As molecular

species are nearly limitless, so too is the list of partially-ordered mesophases. Bent-shaped

LCs [11, 14], sometimes descriptively called banana-shaped molecules [15], can form one

of these exotic phases, the twist-bend modulated nematic phase (NTB) [16–20], and have

demonstrated important responsive properties beyond the capabilities of simple nematics. A

prototypical NTB-former, CB7CB, is depicted in Fig. 1(a). The NTB phase has microsecond

linear optical response [21, 22], which has potential applications in fast optical response

LCDs. NTB phases have also been used as templates for photopolymerisation to form nano-

heliconical structures with special electro-optical properties [23].

Within NTB phases, the elastic constants exhibit very intriguing behavior. First, they

exhibit strongly anisotropic properties [18, 19, 24]. To be specific, the splay elastic constant

K1 is much larger than the bend elastic constant K3. Second, the temperature dependence

of K3 is very unusual. With temperature decreasing, K3 first increases after crossing the

I–N transition, then dips near the N–NTB transition, reversing and increasing again as the

transition is crossed [18, 19, 25–27]. The origins of this peculiar effect have not yet been

explained; indeed the behavior is at odds with the prevailing theoretical expectations [28].

Regarding origins of the NTB phase, Meyer [29, 30] was the first to suggest that spontaneous

flexoelectric coupling between polarization and bend deformation would result in twist-bend

heliconical structure. More recent theoretical work by Dozov [28] has posited that the twist-

bend heliconical structure can originate from an elastic instability, where the effective bend

elastic constant K3 becomes negative. The mechanism for such a sign change is briefly
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discussed by Dozov, where it is mentioned that the effect need not rely on molecular polar

ordering. While flexoelectric effects as considered by Meyer could be the origin of the NTB

phase, it could also be a more general ordering phenomenon, arising (e.g.) from packing

concerns [31]. Though an unusual bend elastic response has been observed in systems of

bent-shaped LCs, to date, no experiments have observed a negative value of K3 [18, 19,

25, 26]. Sufficiently strong electrostatic or entropic polar interactions have been discussed

as potential explanations for the reversal of the bend elastic constant near the onset of the

NTB phase [28, 32–34]. It should be emphasized that though the mechanism is unknown, the

prevailing theoretical attempts to explain this novel phase are strongly reliant on sign reversal

of bend elasticity thus shifting the ground state of the LC from the nematic to a twist-bend

phase within the Frank–Oseen (or, equivalently, the tensorial de Gennes) expression.

We seek to understand these unique elastic properties of bent-shaped molecules, and the

role of polar forces in them, through molecular simulations. Lattice models [34], coarse-

grained models [31, 35, 36] and atomistic models [17, 37] have been used to study the

formation of heliconical twist-bend structures. While important aspects of the phase behavior

and physical structure have been elucidated, these computational studies have not sought

to connect molecular order to the exotic elasticity. Here, we perform a detailed study of the

phase behavior and elastic response of bent-shaped LCs using an augmented Lebwohl–Lasher

model [34] and free energy perturbation methods [38], to connect the local orientational order

underpinning the NTB phase to its unusual elastic properties.

II. MODEL AND SIMULATION DETAILS

In the model, each bent-shaped molecule i is represented by two vectors[see Fig. 1(b)].

One defines the major axis of the molecule ûi, which aligns to form the nematic phase. The

other is a polar vector b̂i, aligned orthogonally to ûi, which is used to model local ordering

interactions arising from electronic structure or geometrical shape. The volume is fixed and

each pair of vectors is fixed in position and relative orientation, but allowed to rotate to

seek favorable interactions with its six nearest neighbors [Fig. 1(c)] as determined by the

Hamiltonian [34]:

3
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(a)

(b)

N N

(c)

Figure 1. (a) Structure of the CB7CB molecule, a prototypical bent-shaped mesogen. The two lobes
of the molecule are similar to the commonly used cyanobiphenyl mesogen series nCB with each nCB
attached at their terminal carbon. (b) An augmented Lebwohl–Lasher model [34] may be used to
model bent-shaped models via the addition of a secondary orientation vector b̂i in addition to the
standard orientation vector ûi representing the long molecular axis of the molecules. This additional
vector takes into account dipole-like signed interactions which arise from electronic structure or
simply molecular shape. For simplicity, we work with a model where b̂i and ûi are perpendicular.
(c) Snapshot of part of typical Monte Carlo simulation of these bent-shaped liquid crystals. We
utilize a cubic lattice with periodic boundary condition, where each site has six nearest neighbors
with which to interact, denoted by the red lines.

H = −ε∑〈i,j〉 { A(ûi· ûj)2 +B1(b̂i· b̂j) +B2(b̂i· b̂j)2

+C
4

{
(b̂j· ûi) · [r̂ij· (ûi + ûj(ûi· ûj))]− (b̂i· ûj) · [r̂ij· (ûj + ûi(ûi· ûj)]

}}
.

(1)

The first term (∝ A) incorporates the standard Lebwohl–Lasher interaction, and promotes

formation of a nematic phase. The second acts to align of dipoles in the same or opposing

directions, depending on the sign of B1. The third term (∝ B2) allows for a secondary

nematic order between the polar vectors. Finally, the fourth term couples the average polar

environment with local bend-deformations.

In an extensive study [34], the model was shown to permit nematic, polar nematic, biaxial

nematic and twist-bend phases. Following Ref. [34], we choose a set of parameters (A =

4
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2.0, B1 = 0.5, B2 = 0.4, C = 2.0) which exhibits a NTB phase at low temperatures. To

balance accuracy with speed, we examined periodic bulk systems of various sizes, and settled

on using N = 163 molecules, as the side length of the cube supports one complete helical

turn of the twist-bend model that forms. In what follows, all quantities are presented in

appropriate reduced units. Since timescales are not relevant, times and masses are not used.

Energies E of the system, corresponding to evaluations of the Hamiltonian expression for

a given microstate are defined relative to the constant energy scale ε via E∗ = E/ε and

T ∗ = kBT/ε, while lengths are defined relative to the lattice model’s unit spacing a, so that

L∗ = L/a, V ∗ = V/a3.

We implement the lattice Hamiltonian (Eq. 1) into the open-source Monte Carlo package

SAPHRON [39], and perform Monte Carlo simulations on fully periodic cubic systems with

fixed side length L∗ = 16 and thus fixed N = V ∗ = 163. The molecular vectors ûi and b̂i

attached to each lattice site are constrained to be orthogonal, and each molecule interacts

only with its six nearest neighbors (see Fig. 1(c)). We utilize two different methods to obtain

the phase behavior of this model. Initially, we perform canonical ensemble (NV T ) to obtain

equilibrated behavior starting from a random isotropic configuration at a temperature above

the nematic–isotropic transition. In each Monte Carlo move, one lattice site i is chosen

randomly, and a unit rotation matrix R is created by randomly choosing one among x, y, z

axis to serve as the rotation axis and choosing a uniformly distributed random angle θ on

the interval [−θmax, θmax] which determines the extent of rotations. θmax is optimized for

each simulation between 1.0 ∼ 3.0 radians to achieve ≈ 60% acceptance for rotations move

at different temperatures, which promotes conformational exploration in both NV T and

DOS sampling[40]. The matrix constructed from these variables is then applied to both unit

vectors at each site.

ûnewi = R · ûoldi

b̂newi = R · b̂oldi
(2)

After rotating the molecule, the total energy difference of the system ∆E = E2 − E1

is calculated, and moves are accepted according to the standard Metropolis criterion [41].

A set of sequential simulations is then carried out wherein the temperature is quenched

from T ∗ = 1.80, and quenched to T ∗ = 0.40 in steps of ∆T ∗ = −0.01, with each step
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performed using the protocol outlined above, with the final configuration of the simulation

at each temperature serving as the initial configuration for the simulation at the next lower

temperature.

Within these simulations, we monitor several thermodynamic and structural quantities,

including the internal energy per molecule 〈U∗〉, and constant volume heat capacity per

molecule 〈C∗V〉, defined by

〈U∗〉 =
〈
E∗

N

〉
(3)

〈C∗V〉 =

〈(
E∗

N

)2〉
−
(〈

E∗

N

〉)2
(T ∗)2

. (4)

where N being the amount of molecules in the model. Additional quantities derived from

the site orientation and Hamiltonian terms are also utilized to understand which types of

global and local order are most prevalent at a given temperature. A polar order parameter,

〈P 〉 =
〈∣∣∣∣∣ 1
N

N∑
i=1

b̂i

∣∣∣∣∣
〉

(5)

records the maginitude of alignment of the polar vectors within the system. The nematic

order S and director n̂ is captured through the largest eigenvalue and the corresponding

eigenvector of the nematic ordering tensor Q

Q =
1
N

N∑
i=1

(3
2
ûiûi −

1
2
Î
)
. (6)

This tensor is used in two ways in the current study, to define global ordering, and to define

regional ordering within the restriction and deformation regions used in elastic constant

simulations.

We additionally compute a few specific terms within the Hamiltonian, which are defined
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by

〈β1〉 =
〈

1
3N

∑
〈i,j〉

(
b̂i· b̂j

)〉
(7)

〈β2〉 =
〈

1
3N

∑
〈i,j〉

(
b̂i· b̂j

)2〉
(8)

〈γ〉 =
〈

1
3N

∑
〈i,j〉

{
(b̂j· ûi)[r̂ij· (ûi + ûj(ûi· ûj))]− (b̂i· ûj)[r̂ij· (ûj + ûi(ûi· ûj))]

}〉
. (9)

These are useful for elucidating the origin of new ordered phases as we explore the N–NTB

transition region.

Following the initial simulations, we additionally apply Wang-Landau (WL) DOS sam-

pling [42–44] to obtain the microcanonical partition function Ω(E, V,N) and use this as a

way to validate and refine our temperature-sweep simulations; in particular, these can ex-

plore more sharply the behavior of 〈U∗〉 and 〈C∗V〉. Each is accessible from standard statistical

mechanical formulas once Ω(N, V,E) is known. Every canonical ensemble average 〈X〉NV T
can be calculated by

〈X〉NV T =
∑
E X(E)Ω(E)e−βE∑

E Ω(E)e−βE
, (10)

which enables swift evaluation of 〈U∗〉 and 〈C∗V〉 as quoted above.

Finally, as our ultimate interest is in the elastic free energy within the nematic phase of this

model system, we perform expanded-ensemble simulations along deformation coordinates

which isolate terms of the Frank–Oseen free energy [45–47],

fFO =
1
2
K1(∇ · n̂)2 +

1
2
K2(n̂ · ∇× n̂)2 +

1
2
K3(n̂×∇× n̂)2 (11)

where K1, K2 and K3 being the splay, twist, and bend elastic constants. The method has

been utilized to explore the elasticity of lattice, coarse-grained, and atomistic models, and

extensive descriptions are available elsewhere [38, 40, 48–50]. The order parameters for bend,

twist, and splay are defined through tilting of the local nematic director as defined in [38, 48,

49] and expanded-ensemble density of states simulations [44, 51] are subsequently applied

to these variables. The resulting free energy landscape in the appropriate order parameter

ξ may then be fit to a parabolic profile, allowing the elastic constant associated with that

order parameter to be extracted from the relation F/ε = 1
2K
∗ · V · ξ2.
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III. RESULTS AND DISCUSSION

To understand the elastic properties in this model, we must first map out its phase be-

havior and intrinsic order; these are plotted in the panels of Fig. 2. As previously noted,

we can identify phase transitions through the dependence of reduced energy 〈U∗〉, and re-

duced heat capacity 〈C∗V 〉 [Fig. 2(a,b)]. Each calculation is performed in two ways: an initial

temperature sweep beginning in the isotropic phase at T ∗ = 1.80 and quenching the system

to T ∗ = 0.40 in steps of ∆T ∗ = −0.01, followed by Wang–Landau sampling applied to the

energy range observed in this sweep. The Wang–Landau portion is run until the convergence

factor reaches O(10−8), and serves to confirm and refine our understanding of the model’s

thermodynamics. Three phase transitions are identified this way, with the isotropic–nematic

(IN) transition at T ∗IN = 1.56 the most prominent. Cooling to T ∗ = 1.33, a second peak is

present, defining a transition from the nematic state N to an as-yet unknown nematic state

NX. Finally, at T ∗ = 1.20, a final transition is seen to the twist-bend nematic phase NTB

which was observed for these parameters in Ref. [34].

To elucidate the microstructural changes, we plot in Fig. 2(c-f) the set of structural order

parameters oulined in the previous section. Data for these simulations is gathered from

the constant-temperature simulations performed at each stage of the temperature sweep.

Examining first the polarization 〈P 〉 in Fig 2(c), we note that the value is relatively small

throughout the full range of temperatures, indicating none of the observed phases are globally

polar. However, polar order increases steadily until the third phase transition, after which

it decreases. This indicates polar order is likely locally present in clusters which eventually

become suppressed by the global twist-bend phase. The nematic order parameter 〈S〉 in

Fig. 2(d) likewise shows an interesting dependence on temperature, where it increases sharply

at the I–N transition until reaching the NX phase, then decreases steadily until the material

is well below the transition to the NTB phase.

To further understand the impact of specific interactions and orderings on low-temperature

phase transitions, we analyze the average contributions of individual terms in the Hamil-

tonian (1) in Fig. 2(e,f). Importantly, we see an increase in local polar interaction 〈β1〉

at the second phase transition, to the point where its contributions outweigh those of the

biaxial-nematic term 〈β2〉 at the third phase transition. This hints that local polar ordering
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Figure 2. Phase behavior of the augmented LL model system, examined using Wang–Landau density
of states (DOS) and canonical ensemble simulations (NV T ). The thermodynamics and order within
the system are plotted as a function of reduced temperature T ∗ for (a) internal energy 〈U∗〉, (b)
heat capacity 〈C∗V 〉, (c) global polar order parameter 〈P 〉 , (d) global nematic order parameter 〈S〉,
and energetic contributions from polar (e) and twist-bend (f) interactions in the Hamiltonian, which
serve as additional order parameters 〈β1〉 , 〈β2〉 , 〈γ〉. The model exhibits three phase transitions,
which are indicated by vertical dashed lines on each panel; the isotropic–nematic transition occurs
at at T ∗IN = 1.56 (orange), while a nematic–modulated nematic transition occurs T ∗NNX = 1.33
(brown) and finally a transition to a twist-bend phase occurs at T ∗NXNTB = 1.20 (green). The heat
capacity plotted in (b) most dramatically demonstrates three peaks corresponding to orientational
ordering transitions.

is important in these transitions, with local clustering eventually dominated by the fully
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modulated phase upon cooling [28, 32–34]. Due to its sharp increase after transition from N

to NX , 〈β1〉 appears to act as a stabilising factor to NTB, where polar interactions have been

hypothesized to be important in the onset of the phase[28, 32, 33]. The biaxial nematic-like

term, 〈β2〉 (Figure 2(e)), increases linearly in N , NX and NTB while T ∗ decreases. Impor-

tantly, when proper scaling is taken into account, it is seen that the value increases from a

disordered-like state, to one where there is a measure of local nematic order for the polar

vectors, though it never becomes perfectly aligned. This is expected, since the chiral pitch

engendered by the NTB phase will prevent global biaxial ordering. Finally, we also plot 〈γ〉

which enforces parallel alignment of polar order and local bend (Figure 2(f)), and find that it

displays an exotic temperature dependence. To be specific, it decreases slightly after crossing

the I–N transition then starts to increase again before the N–NX transition, where it once

again begins to increase dramatically at temperatures below the N–NX transition. Intrigu-

ingly, we find no sharp changes of order parameters at T ∗NXNTB , leading us to hypothesize

that the NX phase is a twist-bend phase where the nematic axis tilt angle is growing [52]

and is frustrated by the rigid boundaries of our finite sized system, with the angle ultimately

stabilizing at the low-temperature transition point T ∗NXNTB = 1.20.

Data supporting this perspective is presented in Figs. 3– 5. We plot the local order of

both n̂ [panels (a,c,e,g)] and b̂ [panels (b,d,f,h)] of each layer for specific temperatures within

each phase. Directors are assumed to be oriented in the upper half-plane to remove head-

tail effects; no restrictions are placed on b̂ vectors. This confirms that at the onset of the

NX phase, modulated order is present in both n̂ and b̂, as is expected for the twist-bend

phase [28, 30]. The pitch in both cases matches the box size, though the amplitude of

modulations is much larger at low temperatures when fluctuations are damped. Indeed, in

both low-temperature phases heliconical structure [18, 19, 28] is observed. From the images

in Figs. 4 and 5 it is clear that the modulation in the NX phase is not as strong, with the

average local director deviating only slightly from the presumed heliconical axis z. This is

commensurate with an increased tilt angle, which permits formation of a periodic heliconical

phase. Experimental results [52] have shown existence of a continuously increasing tilt angle

after crossing TNNTB which eventually saturates. Because of this, we anticipate that the

transition taking place at T ∗ = 1.33 is representative of the N–NTB transition.

Though the effects are small, one can observe a slight difference in the modulation of
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the z-component of n̂ in the higher temperature phase, indicating potential frustration of

otherwise twist-bend-like order with the finite box size in Fig. 6. Experiments have observed

in twist-bend forming LCs that the periodicity of the system can also change as temperature
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Figure 3. Average Cartesian projections of the nematic (n̂) and polar (b̂) ordering vectors within
slices of constant z at different state points: (a,b) T ∗ = 1.70, isotropic phase (I); (c,d) T ∗ = 1.45,
nematic phase (N); (e,f) T ∗ = 1.27, NX phase; (g,h) T ∗ = 0.50, twist-bend phase (NTB).
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decreases [17, 53]. Though this is not possible in our system due to the fixed lattice size, we

hypothesize that the system can partially relieve frustrations induced by the fixed lattice size

by tilting the heliconical axis away from the z direction, which would induce a modulation

of nz as well. As we observe in Fig. 6, the NX phase shows significant deviation from a

uniform director component along z, which is present in both the general nematic phase

N and the twist-bend phase NTB. Importantly, while the projected director n̂ · ẑ is very

uniform among layers in the N and NTB phases, maintaining a stable heliconical tilt in the

latter, this is not uniform within the NX phase, indicating a tilt structure is formed in NX

which is intermediate between the two, and slightly misaligned with the z axis. Therefore,

we conclude the NX phase is effectively a twist bend phase that is frustrated by the limited

size of our simulation box. This supports our hypothesis of a varying heliconical pitch, as the

nematic director exhibits modulation within the NX region of the phase diagram. The onset

of tilting is also indirectly evident in the trend of nematic order S from Fig. 2(d), as the NX

(b) (c)

(g) (h) (i)

(j) (k) (l)

(a)

nx ny nz

T
*=1.70

T
*=1.45

T
*=1.27

T
*=0.50

(d) (f)(e)

Figure 4. Snapsots from simulation corresponding to the temperatures and conditions in Fig. 3,
display the projection of the local nematic axis n̂ on x, y, and z from left to right. (a)–(c) T ∗ = 1.70,
isotropic phase (I); (d)–(f) T ∗ = 1.45, nematic phase (N); (g)–(i) T ∗ = 1.27, NX phase; (j)–(l)
T ∗ = 0.50, twist-bend phase (NTB).
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phase coincides with a drop in overall nematic ordering which is partially recovered in the

NTB phase when axis and tilt angle stabilize. We hypothesize the N to NX to NTB sequence

of phase transitions observed here will be replaced by a single N to NTB in sufficiently large

or off-lattice systems.

Having established the phase behavior, we proceed to explore the temperature depen-

dence of elastic constants Ki, The resulting temperature dependence of the reduced elastic

constants K∗1 , K
∗
2 , K

∗
3 is shown in Fig. 7. It is apparent that the reduced elastic constants in

this model are strongly anisotropic, demonstrating bend K∗3 to be much weaker than splay

K∗1 and twist K∗2 , which are approximately the same. The relative similarity of K2 and K1

may be rationalized from the lack of terms coupling the polar vector b̂ to splay and twist,

and the fact that the standard Lebwohl–Lasher model exhibits only a single elastic constant.

This similarity to the standard Lebwohl–Lasher model also extends to the temperature de-

pendence of K∗1 and K∗2 .

Such similarity does not extend to K∗3 , which in addition to its reduced value, shows

(b) (c)

(d)

(g) (h) (i)

(j) (k) (l)

(a)

bx by bz

T
*=1.70

T
*=1.45

T
*=1.27

T
*=0.50

(f)(e)

Figure 5. Snapshots from simulation corresponding to the temperatures and conditions in Fig. 3,
display the projection of the local polar axis b̂ on x, y, and z from left to right. (a)–(c) I phase,
T ∗ = 1.70, (d)–(f) is N phase, T ∗ = 1.45, (g)–(i) NX phase, T ∗ = 1.27, (j)–(l) NTB phase, T ∗ = 0.50.
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Figure 6. Projected nematic director nz within slices of constant z at different state points for three
temperatures analysed in Fig. 3. T ∗ = 1.45 (red, N phase); T ∗ = 1.27 (green, NX phase) and
T ∗ = 0.50 (blue, NTB phase)

unusual nonmonotonic behavior. Upon crossing TIN , K∗3 first rises, then falls off near zero,

only to rise again approaching the transition to the NX phase. This is reminiscent of ex-

perimental measurements of twist-bend elasticity which measured nonmonotonic behavior

approaching the twist bend phase from the nematic, with a prominent uptick in elastic con-

stant immediately preceding the transition [18, 19, 26, 54]. Importantly, both our results

and prior experiments are at odds with the prevailing theoretical picture [28, 55] where K∗3

must become negative approaching the twist-bend phase.

Note that the polar interactions and bend coupling term imposed here likely play a promi-

nent role in the interesting behavior of the K∗3 elastic constant. These augmented interactions

allow a system to rearrange their polar vectors in order to absorb some of the strain from

the bend deformation. Such a perspective is supported by experimental results. Cukrov and

co-workers [26] noted that the unusual behaviors of the elastic constants show a strong

temperature dependence that can be associated with bend-induced changes in the orienta-

tional distribution function. Importantly, these interactions are not strong enough to shift

the ground state of the LC to an equilibrium deformed state until the system crosses through

TNNTB . We thus hypothesize that local order can be influenced significantly by these polar

interactions as the transition is approached, leading to the creation of clusters that stiffen

the bend response.
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Figure 7. The bulk elastic constants, splay K∗1 (red), twist K∗2 (green), and bend K∗3 (blue), for
the bent-shaped Lebwohl-Lasher model in the nematic phase. The elastic constants are strongly
anisotropic, with K∗1 and K∗2 much larger than K∗3 , as seen in experiments examining the nematic
elastic behavior of twist-bend-forming mesogens. While twist and splay exhibit similar behavior
to the standard Lebwohl–Lasher model, bend K∗3 has an unusual temperature dependence. When
T ∗ decreases, K∗3 first increases up to a point, and then decreases as TNNX is approached. Near
this transition, it begins to increase again. Both the strongly anisotropic elasticity and unusual
temperature dependence of K∗3 , when taken together are suggestive that the phase behavior has
a strong influence on the apparent elastic constants measured, dependencies in experimental sys-
tems [18, 19, 26].

Having demonstrated this behavior, it is beneficial to place it in the context of prior

theoretical results. Prior results examining the role of flexoelectricity, including Refs. 32

and 33, showed that this effect could contribute to the formation of a twist-bend phase,

and that concomitantly this results in an effective K3 which changed sign. This conflicts

with the experimental results of Refs. 18, 19, and 26, and with our observations in this

model, where the effective elastic constant remains positive, and actually begins to increase

near the N–NTB transition, even though this model explicitly includes polar interactions

and coupling terms between the polar vectors and primary mesogen axis, which defines the

nematic ordering. However, it is not clear that it necessarily supports competing theoretical

models expanding the Frank free energy[56] which do not require the value of K3 to change

sign, provided other elastic terms have values which appropriately compensate for the cost

of intrinsic elastic deformations. The key difference is that those methods regard K3 as an

intrinsic property and do not consider the effective K3 which is measured in experiments,

and in our simulations. What our results point to is an incomplete theoretical picture that

needs to be further elucidated by directed experiments and simulations.
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IV. CONCLUSION

We have studied the dependence of nematic elastic constants on the phase behavior for an

augmented Lebwohl–Lasher model modified to incorporate twist-bend ordering. While the

model is simple, the obtained elastic constants nevertheless have qualitative properties and

nontrivial temperature dependences in accord with experimental results reported in bent-

shaped LCs [18, 19, 26, 57], which have obvious anisotropic properties. More importantly, the

initially cheap bend elastic constant decreases to a very small value close to the N–NTB phase

transition. We observe that the polar and twist-bend coupling terms are the dominant effects

in novel elastic behavior near this transition. Our results unequivocally demonstrate the role

of polar ordering in decreasing the bend elastic constant, and the role of polar ordering and

polar-nematic coupling associated with shape-dipole-like terms in the onset of the eventual

twist-bend phase. This work will enable the design of bespoke materials with sensitive, large-

bend anisotropy and strong optical responses near the NTB phase transition [21, 22].
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