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Stress relaxation in F-actin solutions by severing†

Sadjad Arzash,ab Patrick M. McCall,cde f g Jingchen Feng,b Margaret L. Gardelcdh and
Fred C. MacKintosh∗abi j

Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells.
These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that
control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent
rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoret-
ical model that describes stress relaxation behavior of these solutions in the presence of severing
proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing,
one can observe both length-dependent and length-independent relaxation behavior.

1 Introduction
Networks of actin filaments (F-actin) constitute a key component
of the cytoskeleton of most animal cells. This cytoskeleton gov-
erns the organization and mechanics of cells, as well as a vari-
ety of transport properties. Actin filaments are double helical
chains of globular actin monomers (G-actin). These filaments
exhibit molecular polarity by their head-tail arrangement. Their
two ends are referred to as barbed and pointed. This polarity is
a key feature of filamentous actin in the cytoskeleton and is es-
sential for a variety of cellular processes such as cell motility1,2.
Actin filaments show dynamic association and dissociation from
both their barbed and pointed ends3. Under physiological con-
ditions, there is net polymerization of the barbed end and net
depolymerization of the pointed end, resulting in steady-state fil-
ament treadmilling4, which we assume throughout this paper.
The polymerization, cross-linking, branching and dynamics of the
actin cytoskeleton are governed by a variety of associated pro-
teins. Among these are severing proteins such as ADF/cofilin,
which play an important role in the recycling and turn-over of
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actin monomers5,6. Figure 1 shows a simplified sketch of an actin
filament with the key reactions.

Fig. 1 Sketch of an actin filament and its key molecular reactions. The
notation P and Q are used to track total filament length distribution and
hence finding the stress relaxation behavior. In our model, we assume a
constant net polymerization rate r of P filaments and a constant net de-
polymerization rate γ of Q fragments. ATP-actin is converted to ADP-actin
at the same rate r, such that only a single ATP-actin subunit is present
per filament and located at the filament barbed end. We assume a uni-
form severing rate of α along the length of the filament. Using the tube
model of entangled polymeric systems, we claim that polymerizing new
and stress-free subunits (The green section of tube) have no effect on
relaxation of initial stress. As we will show, severing reaction has a large
effect on changing the initial tube and relaxing the initial stress.

These polymerization, depolymerization and severing reactions
result in a steady-state described by a time-independent distribu-
tion of filament length or molecular weight. This steady-state is
necessarily dynamic; the length distribution is set by the steady-
state reaction rates, which are themselves tuned by the concen-
trations of different components. Interestingly, the steady-state
is also driven away from equilibrium. Conformational differences
between actin monomers in filaments F-actin and actin monomers
in solution G-actin result in a more than 104-fold increase in the
hydrolysis rate of adenosine triphosphate (ATP) bound to F-actin
vs G-actin7. ATP hydrolysis on filaments introduces chemically
distinct actin species into the system, which participate in the
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polymerization, depolymerization, and severing reactions with
distinct rate constants. Crucially, the effectively irreversible na-
ture of ATP hydrolysis breaks detailed balance, resulting in a net
flux of ATP-actin into filaments and thus non-equilibrium steady-
state dynamics. While this non-equilibrium flux, measured ex-
perimentally as the actin turnover rate, is typically very small for
purified actin in the absence of regulatory proteins, the presence
of ADF/cofilin has been shown to increase the steady-state flux
more than 20-fold8,9.

Recent experimental studies on reconstituted actin solutions
have shed light on various aspects including the mechanical
behavior of cytoskeletal systems undergoing non-equilibrium
turnover9. Specifically, rheological measurements of F-actin net-
works and solutions in the presence of various actin-associated
proteins have revealed regimes with both elasticity and stress re-
laxation. Stress relaxation in solutions of high molecular-weight
polymers typically depends on reptation, in which polymers dif-
fuse along their contour, subject to the constraints provided by
neighboring polymers10. Stress relaxation due to reptation is
typically very slow at high molecular weight or polymer length
L, with a characteristic relaxation time τr ∼ L3. Polymeriza-
tion/depolymerization reactions can also lead to stress relaxation.
Since the resulting treadmilling is directed, the corresponding re-
laxation time is expected to vary as τr ∼ L, as previously shown11.

By adding cofilin, however, a length-independent relaxation
time is observed9. In order to explain this experimental observa-
tion, we develop a minimal theoretical model of the actin length
distribution depending on severing and (de)polymerization. We
then extend this to determine the time-dependent stress relax-
ation from the dynamic filament length distribution. We find that
our simple model predicts three distinct relaxation regimes, in-
cluding two regimes in which the relaxation rate is expected to
be independent of average filament length or molecular weight.
These regimes are summarized in Fig. 2. A natural characteristic
length scale in a polymeric network is the entanglement length
Le where polymer chains shorter than this length move easily
through the network without being constrained by neighboring
chains10. Another characteristic length scale arises from the com-
petition of the depolymerization reaction of Q fragments (Fig. 1)
and the severing reaction of filaments: we define this depolymer-

ization length scale Ld =
√

γ

α
, where γ is the net depolymerization

rate (in units of length per time) of Q fragments and α is the rate
of severing per length. This is a length for which the depoly-
merization time is comparable to the time between consecutive
severing events. Likewise, a characteristic polymer length can be
identified as

√ r
α

, where r is the net polymerization rate (in units
of length per time) of P filaments (Fig. 1). For this length, the
time between two consecutive severing events is comparable to
the time to polymerize the filament.

We find that the stress relaxation behavior of actin solutions
depends on the relative magnitudes of three characteristic length
scales: the depolymerization length Ld , the entanglement length
Le, and the initial average filament length 〈L〉. In the limit of
instant disassembly of fragments, the stress relaxation is length-
dependent with a characteristic timescale inversely proportional

to the initial average length (Regime I in Fig. 2). On the other
hand, for very slow rates of fragment disassembly γ, the charac-
teristic timescale during stress relaxation is inversely proportional
to Le which is shown as regime III in Fig. 2. Moreover, for inter-
mediate rates of fragment depolymerization where Le < Ld < 〈L〉,
the relaxation time behaves as τ ∼ 1/αLd (Regime II in Fig 2).
As the average filament length becomes comparable to or smaller
than the entanglement length, the actin network behaves as a
viscous fluid. This regime is denoted as a solution in Fig. 2a and
b. Moreover, for large depolymerization length Ld , i.e., for very
small severing rate α → 0, and 〈L〉 > Le, the solution’s behavior
is dominated by reptation10. This regime is better understood
by using the severing rate α directly in the phase diagram (see
Fig. 2b). We estimate the boundaries between regimes I & II and
regimes II & III by equating the relaxation time scaling relation-
ships (displayed in Fig 2a) for each regime pair, and solving for
α as a function of 〈L〉. Similarly, we estimate the boundaries be-
tween the reptation regime and each of regimes I, II, and III by
equating the relaxation time scaling relationship for each regime
with the reptation time τr = 〈L〉2/Dr where Dr = kBT/ζ 〈L〉, kB

is the Boltzmann constant, T is temperature, and ζ is the drag
coefficient per unit length.

In the following sections, we study both the steady-state length
distribution, as well as the corresponding dynamics of stress re-
laxation. In both cases, we consider two limits: (1) very rapid
fragment disassembly, corresponding to the limit γ → ∞ and (2)
finite disassembly. The steady-state length distribution of F-
actin with severing has been considered previously in Refs.12–14.
Refs.12,13 introduced a model for severing by Gelsolin, in which
the two fragments (P and Q in Fig. 1) were equivalent, corre-
sponding to γ = 0 in our model below. The limit of instantaneous
disassembly of fragments without an ATP-cap (fragment Q), cor-
responding to γ → ∞ in our model, has recently been examined
in Ref.14. In this limit, the average filament length 〈L〉 is propor-
tional to the characteristic length

√ r
α

. We extend the approach
introduced in Refs.12,13 to account for finite disassembly rates γ

of unstable fragments. The prior models, however, only consid-
ered the steady-state length distribution and not the dynamics of
stress relaxation. A simplified model for stress relaxation was re-
cently introduced in Ref.9 for the limit of no disassembly (γ = 0).
In the presence of disassembly, the two fragment species must
be considered: those with (P) and without (Q) ATP-actin at the
barbed ends.

2 Steady state length distribution
Assuming a constant pool of monomers, each of unit length, we
calculate the steady-state length distribution of actin filaments re-
sulting from the addition and subtraction of monomers by poly-
merization, depolymerization, and severing reactions (see Fig. 1).
Two distinct limits of depolymerization rate γ are studied here. In
the case of very large depolymerization rate, the ADP-rich frag-
ments formed by severing reactions dissolve rapidly and do not
contribute to the filament length distribution. On the other hand,
for finite γ we obtain the distributions for both P (stable fila-
ments with ATP barbed end) and Q (less stable fragments with
ADP barbed end) as shown in Fig. 1.
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(b)

(a)

Fig. 2 Phase diagram of stress relaxation in actin solutions. (a)
Schematic phase boundaries of stress relaxation behavior in terms of the
solution’s characteristic length scales, ignoring reptation. When the initial
average length 〈L〉 is less than the entanglement Le, the system is in the
solution state which is understood by hydrodynamic laws. In the case
of instant evaporation of short fragments, the stress relaxation strongly
depends on the initial average length 〈L〉(Region I). Region III shows
a length-independent relaxation behavior where entanglement length is
less than the initial average length but larger than the depolymerization
length Ld < Le < 〈L〉, i.e., very slow disassembly rate γ of fragments. In
this regime, our model predicts a relaxation time which is inversely pro-
portional to the entanglement length. By increasing the disassembly rate
γ to a point where Le < Ld < 〈L〉, we find that the relaxation time is de-
termined by Ld as sketched in region II. (b) Same phase diagram as
in (a) but accounting for reptation and now in terms of experimentally-
measurable severing rate α and initial average length 〈L〉 in dimensional
units. We used the entanglement length Le = 0.8 µm and net depolymer-
ization rate of γ = 0.1 µms−1. The regime boundaries in (b) are estimated
by equating the relaxation times for each pair of regimes and using the
scaling relationships from (a) to determine the functional dependence of
α on 〈L〉 for each boundary. The reptation timescale is estimated as
τr = ζ 〈L〉3/kBT with ζ = 3π×10−9 pN/nm2 and kBT = 4.14 pN nm.

In order to remain analytically tractable in the face of the large
number of distinct reactions, our model makes a number of sim-
plifying approximations. Specifically, actin binding proteins (e.g.
cofilin, profilin and formin) are treated implicitly via correspond-
ing reaction rates, which are treated in a mean-field manner. The
monomer pool is assumed to be exclusively ATP-bound G-actin
and to be constant in time. Filaments are assumed to be com-
posed of ADP-bound actin subunits, except for a single ATP-bound
subunit located at the barbed end of each P filament. The rate of
filament severing is assumed to be uniform along the chain and
equal for P and Q filaments. Filament annealing is neglected and
nucleation is assumed to occur in steady-state at a rate propor-
tional to the monomer concentration. Many of these approxima-
tions are motivated by the conditions of recent experiments9 con-
taining high concentrations of the proteins profilin and formin,
which regulate actin assembly at barbed ends.

2.1 Unstable Fragments: γ → ∞

By assuming rapid depolymerization of unstable fragments after
severing, we are able to write the master equation for filament
length distribution PL. One of the key assumption in our model
is a uniform rate of severing reaction along every fiber, i.e., we
assume equal probability of severing event happening on any site
between adjacent monomer units. Hence, the master equation in
presence of severing reaction is as following

ṖL =−α(L−1)PL +α

∞

∑
m=1

PL+m− rPL + rPL−1, (1)

where PL represents the number of filaments of length L and α

and r are severing and polymerization rates, respectively. Here,
for L = 1 the final term in Eq. (1) is absent. The number PL of fila-
ments of length L decreases by severing, which can occur at any of
L−1 sites along these filaments, or by polymerization to form fil-
aments of length L+1. This number can also increase by severing
of longer filaments, or by the addition of single monomers to a
filament of length L− 1. This master equation has been solved
for the steady state condition (each ṖL = 0) using a recursive
method14. Here, we solve this using a continuous approach simi-
lar to Ref.12. In addition to the steady-state solution, this method
enables us to find the dynamic solution needed for the relaxation
behavior in the subsequent section. The continuous form of Eq.
(1) using F(`, t) as the continuous probability distribution is given
by

∂F(`, t)
∂ t

=−α`F(`, t)+α

∫
∞

`
F(s, t)ds− r

∂F(`, t)
∂`

(2)

By defining a new variable, V (`, t) =
∫

∞

` F(s, t)ds, Eq. (2) becomes

− ∂ 2V (`, t)
∂ t∂`

= α`
∂V (`, t)

∂`
+αV (`, t)+ r

∂ 2V (`, t)
∂`2 (3)

The steady state solution of this equation is obtained using the
normalization condition for the probabilities V (` = 0, t) = 1 and
also using the fact that the probability distribution is a bounded
function

V (`) = exp
(
− α`2

2r

)
(4)
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Thus, the continuous distribution is

F(`) =
α

r
` exp

(
− α`2

2r

)
(5)

This is indeed a Rayleigh distribution with the scale parameter
as
√ r

α
. Therefore, the average steady-state filament length is

calculated as

〈L〉=
∫

∞

0
`F(`)d`=

√
π

2
r
α

(6)

Higher polymerization rates or smaller severing rates results in a
larger average length. This natural length scale is a key parameter
for determining the overall stress relaxation behavior, as shown
below.

2.2 Role of fragments: finite γ

At finite depolymerization rate, the fragments Q contribute to the
overall length distribution, which affects both steady state and
dynamic length distributions. Although previous models have ig-
nored these fragments12–14, we show that including these frag-
ments can strongly affect both steady state distributions and stress
relaxation. In order to find the total length distribution of actin
filaments, we track filaments P and fragments Q separately. In
addition to Eq. (1), which is unchanged, we also consider the
master equation for QL:

Q̇L = −α(L−1)QL +α

∞

∑
m=1

(2QL+m +PL+m) (7)

−γQL + γQL+1

In contrast to PL, the distribution QL is affected by disassembly
(γ), rather than assembly (r). Moreover, although stable filaments
P can only come from severing of stable filaments, fragments (Q)
can arise from the severing of either stable filaments or fragments.
The factor of 2 in the severing term in Eq. (7) is due to the fact
that, unlike stable filaments, there are two sites on a fragment
longer than L which result in a fragment of length L after sever-
ing. The two sets of coupled master equations are needed for a
complete model. By subtracting two consecutive terms of P in Eq.
(1) and also Q in Eq. (7), we are able to establish the following
recursive relations

PL+1 =

(
α(L−1)+2r
α(L+1)+ r

)
PL

−
(

r
α(L+1)+ r

)
PL−1 (8)

QL+2 =

(
α(L+2)+2γ

γ

)
QL+1

−
(

α(L−1)+ γ

γ

)
QL +

(
α

γ

)
PL+1 (9)

These recursion relations provide the steady-state length distri-
bution of filaments. Each recursion relation requires two bound-
ary conditions to fully specify the distributions. We generate the
P filament distribution by forward recursion of Eq. (8), and thus

(a) (b)

Fig. 3 Steady state distributions of both filaments P and fragments Q.
(a) Comparing the corresponding distributions for finite depolymerization
rate γ = 1.0 monomer/s (thin black curve) and instant depolymerization
limit (thick black curve). The dashed curve corresponds to the fragment
distribution QL for the same γ and decreases rapidly for large lengths. (b)
The total length distribution for different γ values are shown. By increas-
ing the depolymerization rate, we clearly see that the total distribution
shifts to the instant depolymerization limit shown by thick black curve.
We used a polymerization rate of r = 1.0 monomer/s and a severing rate
of α = 10−4 event/monomer/s.

require boundary conditions on PL for two sequential and small
values L. Rather than finding conditions on P1 and P2, we take
advantage of the fact that P0 is not physically meaningful and use
P0 = 0 as one boundary condition in Eq. (8). The second bound-
ary condition is on P1, which we specify below. We note that the
steady-state length distribution of P filaments is a function of P1.
To solve the equation for Q, we use backward recursion since we
know that the tail of the Q distribution goes to zero. As with
similar recursion relations arising from second order linear dif-
ferential equations, we can expect two solutions. Since only the
growing solution under backward recursion (i.e., the decaying so-
lution under forward recursion) is physical, the result should be
insensitive to the initial choice apart from an overall prefactor,
provided that the recursion is started sufficiently far into the tail.
In particular, we use the two boundary conditions QN = 0 and
QN−1 = 0 for large N = 5000. Since the Q distribution is coupled
to the P distribution through to the presence of the PL+1 term in
Eq. (9), and since the P distribution is a function of P1 as men-
tioned above, the steady state length distribution of Q filaments is
therefore a function of P1 as well. Finally, P1 is obtained by using
the fact that the number of filaments and monomers is constant
at steady-state, i.e., ∑

∞
L=1(PL +QL) = constant. We note that the

normalization constant has no effect on the stress relaxation be-
havior due to the fact that the stress is measured relative to its
initial value.

The steady state distributions are shown in Fig. 3 for both infi-
nite and finite values of depolymerization rate γ. Figure 3 a shows
that the fragment distribution QL decays rapidly with the length,
since long fragments are subjected to both severing and disas-
sembly. The effect of fragments on the total length distribution
(PL +QL) can be clearly seen by comparing both limits of infinite
and finite depolymerization rates (see Fig. 3 a). Fig. 3 b illustrates
that by increasing γ, the total length distribution converges to the
limit of immediate disassembly.
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3 Stress relaxation

In order to characterize the relaxation of stress, we use the well-
established model of entangled solutions of semiflexible poly-
mers15–18, based on the tube concept of topological entangle-
ments that constrain the lateral motion of a polymer chain10,19.
This model predicts a linear plateau modulus given by

G0 ∼ ρkT/Le, (10)

where ρ is the total length of (entangled) polymer per volume
in the solution and Le is the characteristic length between en-
tanglement points along a polymer that is assumed to be longer
than this length. We consider the time evolution of stress for
such a solution that is subject to a step-strain experiment. In gen-
eral, this stress can relax by three mechanisms: (1) reptation or
longitudinal diffusion of chains along their confining tube10 (2)
treadmilling by combined polymerization at the barbed end and
depolymerization at the pointed end and (3) the combination of
severing and fragment dissolution. The first of these is known to
lead to a relaxation time τr that grows approximately with the
third power of the molecular weight or filament length 〈L〉17,18.
Rheology in the presence of motile polar polymers, e.g., due to
motors or active treadmilling, has been studied before and the
resulting relaxation time is expected to grow linear in 〈L〉, as pre-
viously shown11. In both of these cases, the residual stress is
determined by the total polymer length, ρ, per volume remaining
in the original tube, since the polymer in newly explored regions,
either by the diffusing or actively driven ends, can be expected to
be stress-free on average. In particular, newly added monomer
by polymerization will not contribute to the stress. Thus, for sev-
ering (3), we consider the time evolution of the original poly-
mer at the instant of the applied step strain. As sketched in Fig.
1, severing and depolymerization reactions have large effects on
changing the original tube and enhancing relaxation of the ini-
tial stress. Therefore, to find the dynamic length distribution of
load-bearing filaments, we remove the assembly reaction from
the dynamic master equation. Using our derived steady state so-
lutions in the previous section as the initial condition, we are able
to solve the dynamic equations and relate the remaining initial
stress to the amount of load-bearing filaments. As above, we dis-
cuss the dynamics for both infinite and finite γ.

3.1 Unstable Fragments: γ → ∞

The dynamic master equation of load-bearing filaments in the
case of infinite depolymerization of fragments is given by Eq. (1)
for r = 0. We solve this in its continuous form by using Eq. (5)
as the initial condition, i.e., we assume the actin network is in its
steady state before applying a step strain. The dynamic length
distribution of load-bearing filaments is given by

F(`, t) =
(
αt +

α`

r

)
exp
(
−α` t− α`2

2r

)
(11)

where F(`, t) is the continuous form of the discrete length distri-
bution P(L, t).

Filaments shorter than Le diffuse easily through the network

and do not contribute to the stress relaxation. Thus, we relate
the residual stress in the system to the portion of the distribution
with L > Le:

σ(t)∼
∞

∑
L=Le

LP(L, t) (12)

or in continuous form

σ(t)∼
∫

∞

`=Le

`F(`, t) (13)

Thus, we find the following relation for the stress in limit of infi-
nite γ

σ(t) = exp
(
− αLe(Le +2rt)

2r

) [
Le + (14)

erfc
(√

α

2r
(Le + rt)

)√
πr
2α

exp
(

α(Le + rt)2

2r

)]
where erfc(x) is the complementary error function, .

Fig. 4 shows the length distributions calculated from Eq. (11)
at different times scaled by severing rate (t̃ ≡ αt). As time in-
creases, the length distribution of load-bearing filaments shifts
toward shorter filaments due to severing events, which leads to
a stress relaxation as shown in the inset of Fig. 4. The initial
average filament length 〈L〉, which is obtained in Eq. (6), is a nat-
ural characteristic length scale relating polymerization to sever-
ing rate and governs the network relaxation behavior in the limit
of instant depolymerization. We find that the initial stress re-
laxation is approximately single-exponential with relaxation time
τ ∼

√
π

α〈L〉 . At longer times, however, we find an additional single-

exponential relaxation time τ ∼ 1
αLe

in this regime. The relaxation
times are derived in ESI†. This counter-intuitive, inverse length
dependence of the relaxation time can be understood in terms of
severing, the rate of which increases with length, due to the in-
creased number of potential severing sites. The rapid dissolution
of fragments means that each severing event results in an order
of unity fractional reduction of stress per polymer. Thus, this in-
stantaneous dissolution limit, as considered in Refs.12–14, cannot
account for the observed length-independent stress relaxation9.
With finite depolymerization of fragments, however, we observe
qualitatively different relaxation regimes, as described in the fol-
lowing section.

3.2 Role of fragments: finite γ

By introducing a finite rate of depolymerization, we proceed solv-
ing coupled master equations for initially-stressed filaments. As
we argued before, disassembly of actin filaments changes the hy-
pothetical tube that constrains the filament’s motion and affects
the relaxation process. Therefore, the dynamic master equation
for PL is again given by Eq. (1) with r = 0, since polymerization
results in unstressed filament segments. The equation (7) for QL

is unchanged. Using the derived steady state solution of Eq. (8)
and (9) as the initial condition, we solve these coupled systems
of linear differential equations numerically. The remaining initial
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Fig. 4 Dynamic length distribution in the limit of instant disassembly
of fragments. Using Eq. (11) in the text, length distributions of load-
bearing filaments at infinite γ and different scaled time are shown. For
longer times, filaments get shorter due to the severing process. The red
dashed line indicates the entanglement length Le = 100 which is used
to calculate stress. Also we used 〈L〉 =

√
π

2
r
α
= 1253. Inset: Showing

the residual stress calculated from Eq. (14) in the text normalized by
the initial stress for three different values of 〈L〉 which are shown in the
legend. The superposition of the curves during the first 90% of the stress
decay when time is rescaled by length indicates that the relaxation time
is length-dependent.

stress is calculated using the total length distribution as following

σ(t)∼
∞

∑
L=Le

L
(
P(L, t)+Q(L, t)

)
. (15)

As mentioned earlier, we define the depolymerization length

scale as Ld =
√

γ

α
. This length scale together with the net-

work’s entanglement length Le provides two different regimes,
〈L〉 > Ld > Le (II) and 〈L〉 > Le > Ld (III). If the entanglement
length Le is larger than 〈L〉, the system should exhibit simple vis-
cous behavior. Thus, we focus on the limit 〈L〉 > Le. It is noted
that the regime where Ld > 〈L〉 > Le (I) has been investigated in
the previous section where γ → ∞.

Fig. 5 illustrates the effect of depolymerization length Ld on
the stress relaxation in the regime (II) where Le < Ld < 〈L〉. The
inset of Fig. 5 shows that this regime is characterized by an ap-
proximate single-exponential relaxation, in this case with relax-
ation time τ ∼ 1

αLd
. We also find that the stress relaxation in

this regime is independent of the initial average filament length
〈L〉 prior to applying a step strain (see Fig. S1, ESI†). This strik-
ing length-independent relaxation behavior can be understood by
noting that, the time for significant stress relaxation is determined
by the time at which the typical length of initial load-bearing fila-
ments is reduced by severing to Ld , since the dissolution becomes
very rapid for filaments of this length and shorter. Increasing
depolymerization rate γ (increasing Ld) shifts the length distribu-
tion QL toward monomeric units and hence the stress relaxation
becomes faster.

As the effects of fragment dissolution become less important,
Le can exceed Ld . Here, we also find that the stress relaxation
has no dependence on the initial average length 〈L〉 (see Fig. S2,
ESI†). The preceding arguments concerning Ld apply in this limit

Fig. 5 Relaxation curves for different depolymerization length. Showing
normalized stress versus time scaled by severing rate (t̃ =αt) for different
values of depolymerization length scale Ld which are specified in the leg-
end. We used entanglement length of Le = 20 and initial average length
of 〈L〉=

√
π

2
r
α
= 1253. Inset: Showing the collapse of stress curves ver-

sus t̃Ld , which indicates that the stress relaxation is determined by Ld in
this regime. The approximate straight line in this semi-log plot shows a
single-exponential behavior.

for Le. In the limit of slow or absent dissolution of fragments
(small γ), to a first approximation severing simply reduces the
average length of load-bearing filaments, while conserving the
total length of these. Only when a significant portion of the ini-
tial length distribution shifts from longer filaments to filaments
shorter than Le will the stress begin to relax significantly. This will
occur when filaments of length ∼ Le are severed with significant
probability, i.e., for times t ∼ (αLe)

−1 (see inset of Fig. 6). Both of
the regimes II and III are consistent with the recent experiments
on reconstituted actin solutions in the presence of cofilin showing
a length-independent relaxation process. Combining our results

Fig. 6 Relaxation curves for different entanglement length. Normalized
stress versus time scaled by severing rate (t̃ = αt) for three different Le
as shown in the legend for depolymerization length Ld = 20 and initial
average length of 〈L〉 =

√
π

2
r
α
= 1253. The inset shows a collapse of

the relaxation curves versus t̃Le, which implies that Le determines the
relaxation behavior in this regime. Also the approximate straight line in
this semi-log plot shows a single-exponential stress relaxation.

in different regimes of length scales, we are able to construct a
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phase diagram for stress relaxation behavior of F-actin networks
(see Fig. 2). These regimes are, in principle, experimentally ac-
cessible by varying reaction rates via actin-binding proteins such
as profilin, cofilin, and formin3,5. By increasing concentration
of profilin, as a nucleation inhibitor, the initial average length of
actin filaments 〈L〉 decreases. On the other hand, adding formin
promotes nucleation and increases 〈L〉. Cofilin concentration also
controls the rate of severing reaction9. However, one important
caveat when comparing the model with experiments is that reach-
ing a true steady state of actin solutions during the experiments
may be slow, particularly if diffusive length fluctuations are rel-
evant20, making it likely that the experimental filament length
distributions are collected in a quasi-steady state.

4 Limitations of the model
Due to the multiple molecular reactions occurring in F-actin solu-
tions, it has been a challenge to model even their (dis)assembly,
let alone the consequences of this for stress relaxation. We present
above a minimal model of stress relaxation based on the tempo-
ral evolution of the length distribution of load-bearing filaments.
In order to make the model tractable, we make a number of
simplifying assumptions. In particular our model is a coarse-
grained one, appropriate for sufficiently high molecular weight.
The model considers all filaments to be composed of ADP-bound
actin subunits, with the exception of a single ATP-bound termi-
nal monomer at the barbed end of each P filament. Thus, we do
not resolve the finite size of an ATP-cap. This simple nucleotide
distribution ensures that exactly one P and one Q filament are
formed as a result of severing of P filaments, consistent with ex-
periments9,21,22. Similarly, filament nucleation is not treated in
detail in our model, although the final term in Eq. (1) for L = 2,
i.e., rP1 represents the nucleation rate, with P1 being an implicit
additional parameter to account for nucleation. Changing P1 has
a trivial multiplicative effect on the amplitude of the length dis-
tribution and does not affect the time dependence of stress relax-
ation.

Furthermore, we neglect filament annealing23, as was deemed
appropriate in recent experimental studies of actin solutions in
presence of formin and profilin9. The presence of formin at
barbed ends is sufficient to suppress annealing of elongating fil-
aments24, and the binding of profilin to ADP-bound barbed ends
of depolymerizing filaments generates a steric clash we expect to
inhibit annealing at barbed ends exposed by severing. We note
that by including filament annealing at zero depolymerization
rate γ = 0, our model becomes similar to the viscoelastic model
for worm-like micelles25.

Rather than an explicit treatment, the activities of actin bind-
ing proteins are implicitly included in the model through reac-
tion rates. Although the reaction rates depend on the concen-
trations of different components in the solution26,27, we simplify
our model by assuming constant reaction rates. In particular we
assume a uniform and equivalent severing rate along both fila-
ment types P and Q. The possible non-uniform severing reaction
in the vicinity of an ATP-cap (on filament P) should be character-
ized by a local interaction on the scale of monomers, which can
be neglected for high molecular weight. We also note that var-

ious reaction rates in actin solutions can depend on each other,
e.g., in the observed synergy effect of cofilin and Arp2/3 in actin
solutions28–30, which is not incorporated in our simplified model.
Moreover, we assume that the monomer pool consists only of ATP-
bound G-actin in complex with profilin and is constant in time.
This is indeed the major species in reconstituted actin solutions
in presence of profilin and cofilin at steady state9,31.

5 Conclusion
Considering all of these assumptions and limitations, our model
takes into account polymerization, depolymerization, and also
severing reactions with constant rates and phenomenologically
relates the magnitude of remaining stress after applying a step
strain to the amount of initially-stressed large filaments. Depend-
ing on the relative values of different reaction rates, we observe
both length-dependent and length-independent relaxation pro-
cess.

Assuming instantaneous disassembly of unstable fragments (Q
in Fig. 1) after severing events gives a Rayleigh distribution for
filament length in steady state. This peaked distribution was in-
deed investigated in previous works12–14. Moreover, using the
dynamic length distributions, we find that the stress relaxation
has a strong and surprisingly inverse dependence on the initial
average filament length 〈L〉.

By including finite disassembly of fragments in our model,
we find a significant change in both steady state and dynamic
length distributions and hence the resulting relaxation behavior.
For finite fragment disassembly rate γ, there is an enhancement
of short filaments, compared to the limit of instant disassembly
γ → ∞. This is due to the presence of fragments with ADP barbed
ends (Fig. 1). As we increase γ, this distribution tends to the
length distribution without fragments. In the limit of very slow
rate of disassembly γ where Ld < Le < 〈L〉 (regime III in Fig. 2),
stress relaxation of F-actin solutions is independent of initial fil-
aments length. Interestingly, the characteristic timescale in this
regime is inversely proportional to the entanglement length of the
network Le. For the intermediate γ values in which Ld becomes
larger than Le but still smaller than 〈L〉 (regime II in Fig. 2), we
also find a length-independent stress relaxation with a character-
istic timescale as (αLd)

−1.
Recent rheological experiments on reconstituted actin solutions

show a length-independent relaxation behavior9, consistent with
regimes II and III in the present model. Further experiments will
be needed to determine which, if either of these regimes is ob-
served. One way to explore this, for instance, would be to vary
the concentration of actin and, thereby the entanglement length
Le.
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