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Collective cell migration in 3D extracellular matrix (ECM) is crucial to many physiological and
pathological processes. Migrating cells can generate active pulling forces via actin filament contrac-
tion, which are transmitted to the ECM fibers and lead to a dynamically evolving force network in
the system. Here, we elucidate the role of such force network in regulating collective cell behaviors
using a minimal active-particle-on-network (APN) model, in which active particles can pull the fibers
and hop between neighboring nodes of the network following local durotaxis. Our model reveals a
dynamic transition as the particle number density approaches a critical value, from an “absorbing”
state containing isolated stationary small particle clusters, to an “active” state containing a single
large cluster undergone constant dynamic reorganization. This reorganization is dominated by a
subset of highly dynamic “radical” particles in the cluster, whose number also exhibits a transition
at the same critical density. The transition is underlaid by the percolation of “influence spheres”
due to the particle pulling forces. Our results suggest a robust mechanism based on ECM-mediated
mechanical coupling for collective cell behaviors in 3D ECM.

I. INTRODUCTION

Collective cell migration is crucial to many physiolog-
ical and pathological processes such as tissue regenera-
tion, immune response and cancer progression [1–4]. Cell
migration in 3D extracellular matrix (ECM) is a com-
plex dynamic process involving a series of intra-cellular
and extra-cellular activities [5, 6], and can be regulated
by a variety of cell-ECM interactions via chemotaxis [7],
durotaxis [8–10], haptotaxis [11], and contact guidance
[12–14]. A migrating cell also generates active pulling
forces, which are transmitted to the ECM fibers via fo-
cal adhesion complexes [15, 16] and consistently remodel
the local ECM (e.g., by re-orienting the collagen fibers,
forming fiber bundles and increasing the local stiffness of
ECM) [17–24]. In a multi-cell system, the pulling forces
generated by individual cells can give rise to a dynami-
cally evolving force network (carried by the ECM fibers)
[25, 29]. The force network can further influence the mi-
gration of the cells, which in turn alters the ECM and
the force network [26–33]. This feedback loop between
the force network and cell migration could lead to a rich
spectrum of collective migratory behaviors.

The cell-ECM system is an example of complex many-
body systems in which the individuals (e.g., migrat-
ing cells) communicate and interact with one another

∗Electronic address: sunb@onid.orst.edu(B.S.);xwxfat@gmail.

com(W.X.);yang.jiao.2@asu.edu(Y.J.)

through their environment (e.g., ECM), while simulta-
neously re-shaping the environment, altering the means
(e.g., the force network) to pass information among them-
selves. Other examples of such complex systems include
flocks of birds, schools of fish, and active swimmers in
crowded environment [34, 35]. In these systems, al-
though there are no physical force networks as
in the cell-ECM system, the communications be-
tween the near neighbors effectively establish cer-
tain “information network”, which passes impor-
tant signals among the individual in the system
and regulates their collective behaviors. For ex-
ample, it is recently shown that chemotactic in-
teraction networks in active suspensions can lead
to novel collective behaviors (from clustering to
moving in stable ordered groups) [36].

In this paper, we investigate the collective cellular dy-
namics and self-organizing multi-cellular patterns in 3D
ECM resulted from the dynamically evolving force net-
work, using a minimal active-particle-on-network (APN)
model. Although focusing on the cell-ECM system,
the physical insights obtained here are also valuable
to understanding active-particle systems dominated by
environment-mediated particle-particle interactions.
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FIG. 1: (a) Schematic illustration of the active-particle-on-
network (APN) model. Left: Particles on a stress-free net-
work. Middle: Particle contraction leads to a “force network”
composed of high-stress fibers (illustrated using red). Right:
Particles migration on the ECM network along fibers carrying
the largest forces. (b) 3D visualization of a random network
derived from a random jammed packing of hard spheres. (c)
Force network (carried by the high-stress fibers highlighted
using red color) generated by contractile particles (shown as
red spheres) on the network. For better visualization, only a
small sub-network is shown here.

II. RESULTS

A. Active-particle-on-network model

We now describe our active-particle-on-network (APN)
model: The 3D ECM is modeled as a discrete network
with a “graph” (i.e., node-bond) representation in a cubic
simulation domain with linear size L, which is composed
of Mn nodes and Mb bonds. The average coordination
number Z, i.e., the average number of bonds connected
to each node, is given by Z = 2Mb/Mn. We have used
both the periodic boundary (PB) conditions and fixed
boundary (FB) conditions (i.e., the nodes within a cer-
tain distance δL from the boundaries of the simulation
domain are fixed) in our simulations, and find that even
for a moderate system size (e.g., Mn ∼ 5000) the bound-
ary conditions do not affect the results. In the subsequent
discussions, we will mainly present the results obtained
using the fixed boundary conditions, under which Mn

denotes the number of free (non-fixed) nodes.
Next, Np active particles (e.g., congruent spheres) are

introduced in the network such that each particle oc-
cupies a randomly selected un-occupied node (i.e., each
node can be occupied by only one particle). The number
density ρ of the particles is defined as ρ = Np/Mn, i.e.,
the fraction of nodes occupied by the active particles.
Each particle can generate a contraction, which pulls all
of the bonds connected to the node it occupies towards
the particle center (i.e., the node) by a fixed amount δl,

leading to different pulling forces in the bonds and thus,
a force network in the system. We consider the particles
can “migrate” from its original node to an un-occupied
neighboring node following local durotaxis, i.e., along the
bond with the highest stiffness, which is also the bond
that carries the largest pulling force among all neighbor-
ing bonds (see Fig. 1a for illustration). The diameter of
the particles is not essential in our model and thus, is not
explicitly considered here.

The bonds of the network are modeled as elastic el-
ements with only non-zero stretching modulus Es and
free to rotate at the nodes. An active particle can gener-
ate pulling forces in the bonds connected to the node it
occupies by contraction, i.e., δl. This contraction leads
to a strain εi = δl/li in the bond i with original length
li, and thus, a pulling force fs = EsAδl/li, where A
is an effective cross-sectional area of the bonds. These
pulling forces impose force boundary conditions for the
ECM network, and the force-balance network configura-
tion is obtained using an iterative force-based relaxation
approach [32].

We note that many factors can affect the interac-
tions between the dynamic force network and the collec-
tive dynamics of the active particles in our APN model.
These may include the geometry/topology and mechani-
cal properties of the network, as well as the number den-
sity, spatial distribution and the contractibility (i.e., δl)
of the active particles. In this work, we mainly focus on
disordered isostatic networks (i.e., Z = 6) derived from
maximally random jammed packings of congruent hard
spheres [37, 38], see Fig. 1b. It is straightforward to
generalize this study to random network models derived
from confocal images of collagen gels [39, 40] or ordered
networks, which we will investigate later. In addition,
we use simple linear elastic network models. This allows
us to investigate the system in the elastic regime [41],
in which the force network is mainly determined by the
number density and spatial distribution of the active par-
ticles, and largely independent of particle contractibility.
Our model can readily incorporate more realistic mechan-
ical models for the ECM, taking into account non-linear
responses of the fibers [42, 43] and plasticity [22]. More-
over, in an actual cell-ECM system, the cell mi-
gration might not be sensitive to individual stiffer
fibers, but determined by certain meso-scale stiff
structures emerged due to cell remodeling, such
as bundles of high-stress fibers. Nonetheless, we
believe that the general organizational principles
of active particles on random networks obtained
here are relevant to and can provide insights on
the actual cell-ECM systems.

B. Density-induced absorbing-active transition

We now describe the observed collective dynamics of
the active particles on the random networks. In our sim-
ulations, we systematically vary the particle number den-
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FIG. 2: (a) Initial distribution of clusters formed by ran-
domly placed active particles on the network for different
number densities ρ. In these plots, a cluster is represented
by a sphere for better visualization with the center coinciding
with the center of the cluster and the radius representing the
cluster size. (b) Distribution of clusters in the final state of
the APN system. As ρ increases, the majority of particles
tend to aggregate into a single large cluster in the system.
(c) The maximal cluster size nc (see definition in the text)
as a function of ρ. A transition behavior is apparent as ρ
approaches ρc ≈ 0.114 from below (indicated by the dashed
line). The inset shows the log-scale plot of nc for ρ > ρc.
The statistics are obtained by averaging over 20 independent
simulations.

sity ρ ∈ (0.05, 0.95). For each ρ, the particles are initially
randomly introduced in the network and the system is
allowed to evolve according to the aforementioned APN
dynamics. At low densities (i.e., ρ < ρc ≈ 0.114), the
particles rapidly aggregates into multiple isolated small
clusters, which are randomly distributed within the ECM
(see Fig. 2a and 2b). Here, we consider two particles be-
long to the same “cluster” if they occupy the two nodes
connected by the same bond. As ρ approaches ρc from
below, the maximal cluster size nc (i.e., the number of
particles in the largest cluster of the system) increases
dramatically (see Fig. 2c), indicating the majority of the
particles are connected to form a single large cluster in
the system.

FIG. 3: Schematic illustration of “radical” in the system. As
ρ approaches ρc from below, a subset of highly dynamic par-
ticles (shown as red) emerge which are able to visit many
distinct nodes for a given number of steps and are referred
to as “radicals”. These radicals determine the dynamic re-
organization of the dominant cluster in the system.

In addition, we find that the isolated small clusters
associated with ρ < ρc are stationary, i.e., the particles in
the clusters either do not move at all or hop between two
adjacent nodes (typically at the boundary of a cluster).
On the other hand, the dominant large clusters formed
for ρ > ρc undergo constant dynamic reorganization. As
illustrated in Fig. 3, for ρ > ρc we observe that the
dominant cluster in the system contains a subset of highly
dynamic particles which are able to visit many distinct
nodes for a given number of steps, while the remaining
particles are in the local absorbing state, hoping between
adjacent sites. We refer to these highly dynamic particles
as “radicals”, i.e., those do not possess a periodic hopping
pattern overall a finite number nodes.

To further quantify the dynamics of the clusters, we
count the number of distinct nodes ms visited by a par-
ticle during a total of s successive steps. The collected
statistics for different particle densities are shown in Fig.
4a. We note that the ms statistics shown in Fig. 4a does
not depend on s and we have used s = 24 here. It can
be seen from Fig. 4a that for small ρ, a particle can only
visit one or two nodes, respectively indicating that the
particle does not move or can hop between two adjacent
nodes. As ρ approaches ρc from below, although the ma-
jority of particles are localized (indicated by the peak in
the ms statistics associated with small node numbers), a
subset of highly dynamic particles (i.e., the “radicals”)
emerge which are able to visit many distinct nodes for
a given number of steps (indicated by the emergence of
the second peak associated with large node numbers in
the ms statistics). These highly dynamic “radicals” do
not possess a periodic hopping pattern overall a finite
number nodes. The trajectory of a small number of ran-
domly selected radicals are shown in Fig. 4b for different
ρ values. Fig. 4c shows the number of radicals Nr as
a function of ρ. It can be seen that Nr exhibits a clear
transition as ρ increases towards ρc. This is consistent
with the transition observed in the maximal cluster size
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FIG. 4: (a) Statistics of the number of distinct nodes ms

visited by a particle for s = 24 successive steps for different
number densities ρ. The emergence of “radicals” is indicated
by the emergence of the second peak associated with large
node numbers in the ms statistics. (b) Representative trajec-
tories for 10 randomly selected radicals (i.e., highly dynamic
particles) for different ρ. (c) The number of radicals Nr as a
function of ρ, which exhibits a clear transition at ρc ≈ 0.114
(indicated by the dashed line). This is consistent with the
transition observed in the maximal cluster size nc as ρ in-
creases (see Fig. 2c). The inset shows the log-scale plot of Nr

for ρ > ρc.

nc as ρ increases (see Fig. 2c).
The above analysis suggests that the system possesses

a phase-transition-like behavior, as the particle number
density ρ increases, from an “absorbing” state in which
the particles segregate into small isolated stationary clus-
ters, to an “active” state, in which the majority of parti-
cles join in a single large dynamic cluster. This transition
is also quantitatively manifested in the maximal cluster
size nc(ρ) (Fig. 2c) and radial number Nr(ρ) (Fig. 4c) as
ρ increases towards ρc ≈ 0.114. In particular, our scal-
ing analysis shows that as ρc is approached from above,
nc ∼ (ρ−ρc)α, where the critical exponent α ≈ 6.6±0.1.
In addition, we find that Nr ∼ (ρ−ρc)β , where the criti-
cal exponent β ≈ 1.63±0.04. The numerical values of α,
β and ρc are obtained by fitting the simulation data. We
also note that the ρc value is much lower than the site

percolation threshold for the network (≈ 0.310) [44]. The
absorbing-to-active transition has also been observed in a
wide spectrum of “random-organizing” physical systems,
such periodically driven colloids [45–47], granular materi-
als and amorphous solids [48–50], vortices [51], skyrmion
systems [52] and hyperuniform fluids [53]. We will fur-
ther elaborate the connections between the APN system
and other random organizing systems in the Discussion
section.

C. Mean field theory: Percolation of influence
sphere

We now investigate the mechanisms for the observed
transition. Once a particle pulls the fibers, a stress gra-
dient is built up surrounding this particle. When an-
other particle “senses” the pulling force [31], it will tend
to move up the stress gradient towards the contracting
particle due to local durotaxis. This would lead to an
effective mutual pulling between the particles.

It is reasonable to assume that the pulling forces gen-
erated by a specific particle can only influence other par-
ticles within a certain distance RI . Due to the intrinsic
network heterogeneity, RI may vary for different parti-
cles. Here, we take a “mean-field” approach and assign
the same effective RI to all the particles in the system
and introduce the concept of the influence sphere, which
is a spherical region with radius RI centered at a con-
tractile particle (see the inset of Fig. 5).

FIG. 5: Percolation probability analysis indicates a percola-
tion transition of overlapping influence spheres with radius
RI = 0.104L at ρ∗ ≈ 0.109, which agrees well with the criti-
cal density ρc ≈ 0.114 for the dynamic phase transition in the
APN system. Inset: Schematic illustration of the concept of
the influence region (yellow circles), characterizing the range
of the pulling forces (red) due to particle (red) contraction.

The influence-sphere radius RI is estimated from the
cluster statistics of the APN systems at low ρ, i.e., those
containing multiple small isolated stationary clusters in
the final state. This is based on the assumption at low
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ρ, only particles which are within the influence region
of one another would eventually aggregate. In particu-
lar, we first identify the particles within the same clus-
ter in the final state of the system. Then the system
is “re-winded” to the initial state, and the intra-cluster
nearest-neighbor distances dn are computed for all clus-
ters. We then use the mean nearest-neighbor distance d̄n

to estimate RI ≈ 0.104L (where L is the linear system
size), which is roughly twice of the average fiber length
(see SI for fiber length distributions).

We now investigate the percolation of the influence
spheres as ρ increases. For a given ρ, we randomly place
particles on the ECM network. Instead of allowing the
particles to move according to the APN dynamics, we
place a virtual sphere with radius RI = 0.104L at each
particle, representing the influence spheres. We sub-
sequently identify the clusters formed by the influence
spheres , based on which the percolation of the system
can be determined.

Fig. 5 shows the percolation probability analysis for
the system [54] (see SI for details), from which a perco-
lation transition and the associated critical density (i.e.,
percolation threshold) ρ∗ ≈ 0.109 can be clearly identi-
fied. Interestingly, the percolation transition of the influ-
ence spheres coincides with the absorbing-active transi-
tion of the active particles at ρc ≈ 0.114. This suggests
that the dynamic transition of the active particles from
the “absorbing” state to the “active” state is underlaid
by and can be understood as the percolation transition
of the influence spheres.

In the aforementioned percolation model, we
have focused on the particles and employed a
“mean-field” approximation for the force net-
work, i.e., by assigning an influence sphere to each
particle. An alternative approach is to explicitly
consider the dynamic force network. In this case,
one can consider that the high-stress bonds can
guide the migration of the particles (i.e., the par-
ticles “flow” along such bonds). Therefore, if a
connected pathway composed of such high-stress
bonds is established and spans the entire system,
the particles would be able to follow it and even-
tually aggregate into a single large cluster. This
corresponds to a dynamic bond percolation prob-
lem, which was first introduced to study diffusion
in a disordered network in which the transition
rates of the bonds of the network are dependent
on time [55].

In addition, it has been shown that in static
elastic percolation networks, when the bonds
carry only central tensile forces, the percolation
threshold is higher than the connectivity thresh-
old [56, 56]. In our APN model, the influence
spheres can possess a size that extends several
bond lengths. This effectively increases the con-
nectivity, which results in the observed lower per-
colation threshold than that for the connectivity
percolation. This is in contrast to the case of elas-

tic percolation networks, in which the stressed
bonds are a subset of all bonds.

III. DISCUSSION

A. Effects of network geometry and topology on
the absorbing-active transition

We also investigate the collective dynamics of active
particles on other network models, including the net-
works derived from the diamond lattice, as well as ran-
dom networks reconstructed based on confocal images
(see SI for details). The same linear elastic bond model
is employed for these networks, which allows us to fo-
cus on the effects of network geometry and topology on
the collective behavior of the particle and the absorbing-
active transition.

FIG. 6: The maximal cluster size nc as a function of the par-
ticle number density ρ for the image-based random networks
(IBRN) (left) and diamond-lattice networks (DLN) (right).
The critical transition densities are respectively ρIBRN

c ≈ 0.28
and ρDLN

c ≈ 0.12. The insets show 3D visualizations of the
network models.

Fig. 6 shows the evolution of the maximal cluster
size nc as the particle number density ρ increases for
the image-based random networks (IBRN) (left panel)
and diamond-lattice networks (DLN) (right panel). It
can be seen that both systems exhibit clear transition
behaviors as observed in the packing-based random net-
works. In particular, the critical densities are respec-
tively ρIBRN

c ≈ 0.28 and ρDLN
c ≈ 0.12. These values are

also consistent with the estimates based on the statistics
of number of radicals Nr as a function of ρ and mean-
field theory estimates (see SI for details). These results
indicate that the absorbing-active transition is very ro-
bust and can occur on networks with different degrees of
topological and geometrical order. This also suggests the
feedback loop between the evolving force network and
particle dynamics provides a robust mechanism for reg-
ulating collective migratory behaviors.

We note that the transition density ρc does depend on
the network features. In particular, the system based on
IBRN possesses a significantly higher ρc than the other
two systems. This is because the IBRN possesses a wide
and heterogeneous distribution of bond lengths. As the
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particles generate active contraction, the shorter bonds
carry larger tensile forces and thus, serve as local “at-
tractors” (which effectively attract particles to the nodes
they connect). Such local attractors can stabilize the iso-
lated clusters, i.e., the absorbing state, even at relatively
higher density.

B. Random organization in Cell-ECM systems

As briefly mentioned above, the absorbing-active tran-
sitions have been observed in a wide class of systems
characterized by random organization (RO). A canonical
example of RO system is periodically sheared colloidal
suspension [45], in which irreversible collisions can lead
to a self-organized non-fluctuating quiescent (absorbing)
state at low densities, with a dynamical phase transition
separating it from fluctuating diffusing (active) states at
high densities.

Our APN system is different from previous studied RO
systems in the sense that the absorbing-active transition
not only depends on fundamental characteristics of the
particles (e.g., number density, contractility, etc.) but
also strongly depends on the micro-environment (i.e., the
geometry and topology of the ECM networks), which pro-
vides the scaffold to host the active force network regulat-
ing the collective dynamics of the particles. As discussed
in the previous section, networks with strong attractors
can stabilize absorbing states at relatively high density.

We note that although our results suggest the
absorbing-active transition in the APN system is
continuous in nature, we could not completely ex-
clude the possibility of a weak first-order transi-
tion here. Moreover, the two critical exponents, α
and β, respectively characterize the bulk growth
of the particle aggregation and the increase of the
number of highly dynamic radicals as the density
passes the critical point, appear to be much larger
than the ones typically found in percolation stud-
ies [56, 57]. These two exponents do not have di-
rect analogs in percolation studies, which usually
focus on emergence of overall rigidity, conductiv-
ity, and diverging length scale associated with the
percolating cluster, etc. However, we can convert
the bulk exponent α to a new exponent charac-
terizing the linear size of the aggregation, i.e.,
µ = α/3 ≈ 2.2. Interestingly, the value of µ is very
close to the critical exponent f ≈ 2.1 [56], which
characterizes the emergence of the overall elas-
tic moduli of chemical gels dominated by central
forces.

To verify the model predictions, we also design in vitro
experiments to investigate the collective dynamics of in-
vasive MDA-MB-231 breast cancer cells in collagen gel
[58]. In particular, the highly motile MDA-MB-
231 cells are first co-cultured with non-metastatic
MCF-7 cells at various densities with a 1 to 1
number ratio. The 2D substrate is then cov-

ered by a layer of collagen gel with 2mg/ml con-
centration, which allows the invasive cells to mi-
grate into the collagen. This design induces a
strong polarization in the migration of the in-
vasive cells (in the vertical direction), which al-
lows us to clearly identify aggregation (cluster-
ing) of the cells in the lateral directions due to
the dynamic force network. Interestingly, a clear
density-dependent absorbing-active transition is
observed in the experiments (see SI), which sug-
gests the validity our model. The experimental de-
tails and results are reported elsewhere [58].

IV. CONCLUSIONS

In summary, we have developed a novel APN model to
investigate collective multi-cellular dynamics in 3D ECM
network, which is regulated by the dynamic force net-
works generated by active cell contraction. A novel type
of absorbing-active transition has been discovered in the
system, which depends on both the density of active par-
ticles (cells) and the topological and geometrical features
of the ECM network. The critical transition density can
be accurately estimated using a mean-field model consid-
ering the percolation of influence spheres associated with
the range of the active pulling forces generated by the
contractile particles (cells).

Finally, we emphasize again that our minimal APN
model does not take into account crucial mechanisms in
actual cell migration such as ECM remodeling (e.g., ori-
entation, bundling and degradation) and cell-cell adhe-
sion. Interestingly, our studies indicate that, at least for
the APN systems, the local durotaxis for the active par-
ticles is sufficient to induce and stabilize aggregations,
even without adhesion. Nonetheless, we expect that the
insights on the collective behaviors of active particles
regulated by the dynamically evolving force network ob-
tained here are helpful in understanding the collective
dynamics emerged in actual multi-cellular-ECM systems,
as well as in other active-particle systems dominated by
environment-mediated particle-particle interactions. In
future work, we will also explore the effects of fiber align-
ment and external mechanical cues.
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