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Implicit-solvent coarse-grained modeling for polymer
solutions via Mori-Zwanzig formalism

Shu Wang,a Zhen Li,b and Wenxiao Pana∗

We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling
for polymers in solution, which conserves the dynamic properties of the reference microscopic
system. In particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are
coarse-grained as one CG particle, and the solvent degrees of freedom are eliminated. The
dynamics of the CG system is governed by the generalized Langevin equation (GLE) derived
via the Mori-Zwanzig formalism, by which the CG variables can be directly and rigorously linked
to the microscopic dynamics generated by molecular dynamics (MD) simulations. The solvent-
mediated dynamics of polymers is modeled by the non-Markovian stochastic dynamics in GLE,
where the memory kernel can be computed from the MD trajectories. To circumvent the difficulty in
direct evaluation of the memory term and generation of colored noise, we exploit the equivalence
between the non-Markovian dynamics and Markovian dynamics in an extended space. To this
end, the CG system is supplemented with auxiliary variables that are coupled linearly to the
momentum and among themselves, subject to uncorrelated Gaussian white noise. A high-order
time-integration scheme is used to solve the extended dynamics to further accelerate the CG
simulations. To assess, validate, and demonstrate the established implicit-solvent CG modeling,
we have applied it to study four different types of polymers in solution. The dynamic properties
of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and mean
square displacement as functions of time are evaluated in both CG and MD simulations. Results
show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG
models to reproduce dynamic properties of the reference microscopic system and to characterize
long-time dynamics of polymers in solution.

1 Introduction
For polymers or macromolecules in solution, atomistic simula-
tion techniques, such as all-atom molecular dynamics (MD), have
been well established to precisely represent molecular structures
and to accurately predict static and dynamic properties of the sys-
tem by tracking individual atoms of molecules and solvent. In
practical applications1–4, first-principles MD simulations can be
computationally prohibitive to simulate large-scale polymer so-
lution systems and/or to capture long-time effects. If only the
mesoscopic properties and collective dynamics of polymers are of
particular interest, there is no need to simulate all the atomistic
details of the system, and some degrees of freedom (DOFs) may
be eliminated appropriately for saving computational cost. To this
end, coarse-grained (CG) modeling, which represents a group of
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atoms as a single CG particle, becomes attractive5–9. Owing to
the larger characteristic length scale of the CG system, larger time
steps are permitted in CG simulations. If the solvent DOFs are fur-
ther eliminated, it leads to the so-called implicit-solvent CG mod-
eling10–13. Provided significantly reduced DOFs and larger time
steps, the implicit-solvent CG modeling can be much more effi-
cient than full atomistic simulations, and hence, grants larger ac-
cessible length scales and renders tractable simulating long-time
effects.

Numerous methods have been developed for CG modeling to
correctly capture the static properties (e.g., pressure, compress-
ibility, radial distribution function) of polymers in solution, in-
cluding iterative Boltzmann inversion14, inverse Monte Carlo15,
force matching method16, minimization of relative entropy17,18,
etc. In the present work, our focus is on the dynamic properties,
e.g., the velocity autocorrelation function (VACF) and diffusivity.
In a canonical ensemble, thermostats are required in CG modeling
to maintain a constant temperature (on average). In general, the
dynamic properties of a system relate closely to the applied ther-
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mostat, which is associated with a dissipative term and a random
term correlated by the fluctuation-dissipation theorem (FDT)19.
For polymers in solution, the dynamics of polymers not only de-
pends on the interactions between polymer molecules but also the
interactions with the solvent.

Explicitly coarse-graining solvent by clustering multiple
molecules into a CG representation can be challenging because
the solvent molecules are not interconnected and can move apart
in time, and hence, no simple mapping relates their atomistic and
CG configurations20–23. Thus, complicated dynamical clustering
methods, such as the K-means clustering algorithm24, SWINGER
algorithm25, trajectory correspondence clustering scheme26, and
position-dependent CG mapping27, have to be applied. A pop-
ular explicit-solvent CG modeling method is dissipative particle
dynamics (DPD), which has been applied for modeling polymers
or lipid/cell membranes in solution28–31. In DPD, the dissipa-
tive and random forces are not rigorously derived from the mi-
croscopic data but rather calibrated through a post-processing or
optimization procedure to match a target dynamic property32. As
a result, correctly capturing other dynamic properties beyond the
target one cannot be guaranteed32–34. Another issue of explicit-
solvent CG modeling is its computational cost. For modeling di-
lute solutions, the simulations with many solvent DOFs can be
still costly.

Therefore, implicit-solvent CG modeling can be an attractive
alternative, which eliminates solvent DOFs and implicitly incor-
porates the solvent-mediated effects on polymers. In fact, the
interactions with solvent can lead to strong memory effects in the
dynamics of polymers. Thus, elimination of solvent DOFs results
in a non-Markovian memory in the equation of motion (EOM) of
the CG variables. However, in some efforts of implicit-solvent CG
modeling for polymer solutions, the dissipative and random terms
were assumed Markovian; i.e., no memory effect was considered
in the CG dynamics. As a result, such CG modeling can only re-
produce certain averaged dynamic properties, e.g., the average
diffusion coefficient, by fine-tuning or optimizing the parameters
in the dissipative and random terms13,35,36. With Markovian ap-
proximation in the implicit-solvent CG modeling, the VACF of
CG particles follows strictly an exponential decay, which is un-
likely able to reproduce the entire complex transition dynamics
and to characterize long-time behaviors of polymers in solution.
The non-Markovian memory in implicit-solvent CG modeling can
play an important role in producing correct long-time dynam-
ics37. To this end, the Mori-Zwanzig formalism38–40 provides
a forward path to construct implicit-solvent CG models directly
from microscopic dynamics in a bottom-up fashion. The dissi-
pative and random terms in the resulting generalized Langevin
equation (GLE) can be directly constructed and evaluated from
the microscopic dynamics by mapping the microscopic system to
the CG system using the Mori-Zwanzig projection. Therefore, we
employ the GLE derived via the Mori-Zwanzig formalism to gov-
ern the dynamics of the CG system. We note that in literature,
Lyubimov et al. derived from the GLE the analytical factor for
dynamical rescaling of the friction coefficient in CG modeling to
correctly capture the long-time diffusion of polymers, which is
applicable to melt systems41,42. The derived rescaling factor is

transferable for different polymer systems and thermodynamic
conditions, with the temperature and radius-of-gyration as the
input parameters41,42. Jung et al. employed the GLE with itera-
tively reconstructed non-Markovian memory kernels to reproduce
the VACF of nanocolloids in dilute solution43,44, where the self-
memory of a single colloid immersed in solvent was augmented
with pairwise correlations44. Davtyan et al.45 developed a dy-
namic force matching technique to study a system that consists of
a Lennard-Jones (LJ) particle dissolved in a LJ solvent. To repro-
duce the non-Markovian dynamics of the LJ particle, the implicit-
solvent CG modeling was supplemented by a set of fictitious par-
ticles with harmonic interactions among themselves and a special
coupling to the LJ particle.

The non-Markovian memory term in GLE involves a convolu-
tion of the memory kernel with the velocities of CG particles. Di-
rect evaluation of this memory term can be expensive because it
requires to record the history of the CG variables at every time
step and to numerically solve the convolution. In the meanwhile,
colored noise must be generated for the random term to satisfy
the second FDT that ensures correct equilibrium statistics in the
system. Instead of direct evaluation of the memory term and gen-
erating colored noise, an alternative approach is considered in
this work. The non-Markovian dynamics described by the GLE
is mapped to a Markovian process extended in a higher dimen-
sional space. To this end, the memory kernel is approximated
by the exponentially decaying oscillatory functions, and auxil-
iary variables are introduced and coupled to the momenta of CG
particles. With the second FDT still satisfied, only inexpensive
white-noise terms are needed in the extended dynamics. In so do-
ing, no non-Markovian memory term needs to be evaluated, and
no colored noise needs to be sampled. By such, this approach
renders tractable the practical implementations of the proposed
CG modeling for polymer solutions in real applications. We note
that this approach of mapping the non-Markovian dynamics to an
extended Markovian process using auxiliary variables has been
applied in others’ work to treat the memory term in GLE46–50.
The present work represents a different attempt to apply it for
implicit-solvent CG modeling of polymers in solution. An addi-
tional benefit of employing the extended dynamics with auxiliary
variables is that we can control the accuracy of CG modeling by
the number of auxiliary variables used and hence achieve the de-
sired tradeoff between accuracy and computational efficiency.

The extended dynamics was previously solved by the velocity-
Verlet temporal integrator50,51. In this work, we introduce a
higher-order integrator scheme for solving it, which is based on
the G-JF integrator originally derived by Grønbech-Jensen and
Farago for solving Langevin dynamics in MD simulations52,53.
By numerical experiments, we compared the performance of the
G-JF and velocity-Verlet schemes with respect to both accuracy
and efficiency. The proposed implicit-solvent CG modeling was
applied to study four types of polymer solution systems, includ-
ing homogeneous star polymers, inhomogeneous mixture of non-
monosized star polymers, and branched-chain polymers in solu-
tion and also tri-n-butyl phos-phate polymers in chloroform. In
each system, we computed the dynamic properties of polymers,
including the VACF, diffusion coefficient, and mean-square dis-
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placement (MSD) as functions of time in a wide spectrum of time
scales. The predictions by the CG simulations were compared
with the results of reference MD simulations.

The rest of the paper is organized as follows. In Section 2,
we first describe the formulation of GLE derived from the Mori-
Zwanzig formalism in Section 2.1, next give the equation of the
extended dynamics in Section 2.2, and then provide in Section 2.3
the schemes of two temporal integrators, the velocity-Verlet and
G-JF, for solving the extended dynamics. Section 3 presents the
results of simulating four different types of polymer solution sys-
tems employing the proposed implicit-solvent CG modeling. The
dynamic properties of polymers predicted by the CG modeling are
compared with the reference MD simulations. The accuracy and
efficiency of the two temporal integrators are compared in Sec-
tion 3.1. Finally, we conclude and summarize our main findings
and contributions in Section 4.

2 Formulation

2.1 GLE via Mori-Zwanzig formalism

Mori-Zwanzig projection can extract reduced-dimension variables
from a full-dimension system38,40. Here, the full-dimension sys-
tem corresponds to the (all-atom) microscopic system, which is
the MD system in this work; the reduced-dimension system cor-
responds to the CG system. Consider a MD system that contains
n atoms with coordinates ri and momenta pi, i = 1,2, . . . ,n. In its
corresponding CG system, these n atoms are coarse-grained as N
clusters (referred to as CG particles), in which each cluster con-
tains nc atoms. The variables associated in the CG setting include
the position R and momentum P of the center-of-mass (COM) of
each CG particle, which can be defined as:

RI =
1

MI

nc

∑
i=1

mIirIi

PI =
nc

∑
i=1

pIi ,

(1)

with MI =
nc

∑
i=1

mIi the mass of the I-th CG particle and mIi the mass

of the i-th atom in the I-th CG particle. To be consistent in no-
tation, we use the lowercase m, r, and p to represent the mass,
position, and momentum of an atom, while the uppercase M, R,
and P denote the mass, position, and momentum of a CG particle.

Following the Mori-Zwanzig formalism39,40, the EOM of CG
particles can be derived in the form of GLE as:

ṖI = 〈FI〉−β

N

∑
J=1

∫ t

0
dt ′〈[δFQ

I (t− t ′)][δFQ
J (0)]

T 〉PJ(t ′)
MJ

+δFQ
I (t) ,

(2)
with the inverse temperature β = 1/(kBT ), Boltzmann constant
kB, and thermodynamic temperature T. On the right-hand side
of Eq. (2), the first term represents the ensemble average
force on the I-th CG particle: 〈FI〉 = 1

β

∂

∂RI
lnω(R), where R =

{R1,R2, ...,RN} is a point in the CG phase space, and ω(R) denotes
a normalized partition function of all the microscopic configura-
tions at phase point R. As the present work concerns the dynamic
properties and diffusion process and does not consider the struc-

tural properties or free energy, 〈FI〉 is regarded as the average for
CG particles over all phase points. Thus, without external force
fields, the mean force exerted on a CG particle is approximated to
be zero; i.e., 〈FI〉= 0. The other two terms on the right-hand side
of Eq. (2) correspond to the dissipative and random forces, re-
spectively, which compensate for the lost DOFs as a consequence
of coarse-graining39,40. The random force δFQ

I (t) = e−iQLtδFI ,
where δFI = FI −〈FI〉 with FI = ṖI; Q is the orthogonal operator
in Mori-Zwanzig projection, and L the Liouville operator54.

In Eq. (2), the dissipative force is determined by time convo-
lution of the memory kernel and momenta of CG particles. The
memory kernel is defined as the autocorrelation function of ran-
dom forces; i.e., KIJ(t) = β 〈[δFQ

I (t)][δFQ
J (0)]

T 〉. This definition
ensures the second FDT is satisfied19. Direct evaluation of the
dissipative force is challenging since it depends on the random
forces and momenta of all CG particles. Assume there is no cor-
relation between the random forces on different CG particles50;
i.e., β 〈[δFQ

I (t)][δFQ
J (0)]

T 〉= δIJK(t). Eq. (2) can then be simplified
to:

ṖI =−
∫ t

0
K(t− t ′)VI(t ′)dt ′+δFQ

I (t) , (3)

where VI(t ′) =
PI(t ′)

MI
. To determine the memory kernel K(t), we

rely on the property that the velocity V and random force δFQ

come from two orthogonal subspaces and hence are not corre-
lated to each other; i.e., 〈δFQVT 〉 = 0. Thus, multiplying both
sides of Eq. (3) by V(0)T leads to:

〈F(t)V(0)T 〉=−
∫ t

0
K(t− t ′)〈V(t ′)V(0)T 〉dt ′ , (4)

where 〈F(t)V(0)T 〉 defines the force-velocity correlation function
(FVCF); the VACF is defined as 〈V(t)V(0)T 〉. These two correlation
functions can be directly evaluated in the reference MD system. In
turn, the memory kernel K(t) can be computed via deconvolution
of Eq. (4). In practice, the deconvolution was done numerically.
By discretizing the integral in Eq. (4) using the midpoint quadra-
ture rule, the discrete form of Eq. (4) in matrix notation reads:

FVCF1

FVCF2

...
FVCFn

=−∆t


VACF

1
2 0 . . . 0

VACF1+ 1
2 VACF

1
2 . . . 0

...
...

. . .
...

VACFn− 1
2 VACFn−1− 1

2 . . . VACF
1
2




K
1
2

K1+ 1
2

...
Kn− 1

2

 , (5)

where superscripts denote the values at different discrete times,
e.g., FVCFn = FVCF(n∆t). By solving this linear system, we ob-
tained K at discrete times. K(t) at t = 0 and other integer time
steps can be determined by linear or second-order extrapolation
or interpolation. If the data of VACF and FVCF are noisy, regu-
larization can be employed, e.g., via truncated SVD or Tikhonov
regularization55. However, in this work, we took sufficient en-
semble averages for the VACF and FVCF until they were smooth
enough, and hence, no regularization was employed.

Given the memory kernel K(t) determined, the GLE defined
by Eq. (3) is closed. Directly solving this equation requires to
evaluate the time convolution of the memory kernel and velocity
and to generate color noise for the random force, which needs to
store the historical information and can be prohibitively expen-
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sive. One way to reduce the computational cost is to truncate the
memory kernel to a much shorter time scale. However, this trun-
cation strategy may not be effective for the systems studied herein
because the solvent-mediated kinetics could result in long-tailed
memory kernels.

2.2 Extended dynamics

To circumvent the difficulty of directly solving Eq. (3), we
followed the literature46,50 and introduced auxiliary variables
s = {sl1,sl2,sl3,sl4,sl5,sl6}l=1,...,N to replace the GLE (with non-
Markovian terms) in the form of Eq. (3) with equivalent Marko-
vian Langevin equations extended in higher dimensions as given
by: (

Ṗ
ṡ

)
=−

(
0 Aps

Asp Ass

)(
P
s

)
+

(
0 0
0 Bs

)(
0
ξξξ

)
. (6)

In Eq. (6), Aps = −AT
sp; ξξξ is a vector of uncorrelated Gaussian

random variables with 〈ξξξ (t)〉= 0 and 〈ξI,µ (t)ξJ,ν (0)〉= δIJδµν δ (t),
where ξν and ξµ denote the different elements of ξξξ . The param-
eter matrices A = [0, Aps; Asp, Ass] and B = diag(0,Bs).

From Eq. (6), we can get:

Ṗ = Apss

s =
∫ t

−∞

e−(t−t ′)Ass [−AspP(t ′)+Bsξξξ (t ′)]dt ′ .
(7)

Comparing Eq. (7) with Eq. (3), the memory kernel K(t) and
random force δFQ(t) can be expressed as:

K(t) =−MApsetAss Asp , (8)

δFQ(t) =−
∫ t

−∞

Apse−(t−t ′)Ass Bsξξξ (t ′)dt ′ . (9)

To satisfy the second FDT , Bs is given by

BsBs
T = kBT (Ass +AT

ss)M . (10)

In Eq. (10), Bs is a real matrix only if (Ass +AT
ss) is positive-

semidefinite and can be determined via Cholesky factorization. A
general, reasonable approximation for the memory kernel may be
an expansion of exponentially damped oscillators; i.e.,

K(t)≈
N

∑
l=1

exp(−al

2
t)[bl cos(wlt)+ cl sin(wlt)] . (11)

Thus, the drift matrix A in Eq. (8) must be a real matrix that
has complex eigenvalues with positive real parts. In Eq. (11), N

is the total number of oscillators truncated to approximate K(t).
Correspondingly, the dimension of s is 6N . Using more terms of
exponentially damped oscillators, K(t) can be approximated more
accurately, leading to a higher dimensional extended dynamics.
In Eq. (11), al , bl , cl , and wl are the parameters in each oscillator
and comprise the elements of A. Assembling these parameters

determines the matrix A as50:

Al =



0
√

bl
2 −

ωl cl
al

√
bl
2 + ωl cl

al

−
√

bl
2 −

ωl cl
al

al
1
2

√
4ω2

l +a2
l

−
√

bl
2 + ωl cl

al
− 1

2

√
4ω2

l +a2
l 0


. (12)

In Eq. (12), the top right block corresponds to Aps; the bottom
left is Asp; and, Ass is on the bottom right. We note that Eq. (12)
can be regarded as a specification of the drift matrix A used in the
work of Ceriotti et al.46, which reduces the total number of un-
known parameters used to approximate the memory kernel and
accelerates the optimization process to determine the unknown
parameters.

2.3 Temporal Integrators

Given Eq. (6) determined, we numerically solved it to generate
trajectories of the CG system. To this end, two temporal integra-
tors were considered and compared.

The first one is the so-called velocity-Verlet scheme, which has
previously been used for solving the extended dynamics50,51. By
denoting discrete times with the integer time step superscript,
such as Rn =R(tn), the velocity-Verlet scheme modified for solving
Eq. (6) reads:

Un+ 1
2 = Un +M−1(−AMUn +Bξξξ

n)
∆t
2

Rn+1 = Rn +Vn+ 1
2 ∆t

Un+1 = Un+ 1
2 +M−1(−AMUn+ 1

2 +Bξξξ
n+1)

∆t
2

.

(13)

Here, the vector R denotes the position of a CG particle; the vector
U combines the velocity and auxiliary variables: U = [V,s]T ; the
matrix M consists of the CG particle’s mass and can be written as:
M = diag{M,1, ...,1}; A and B are the parameter matrices in Eq.
(6); ξξξ n is a vector of uncorrelated Gaussian random numbers with
〈ξξξ n〉= 0 and 〈ξξξ nξξξ n+1〉= δδδ n,n+1∆t. The velocity-Verlet scheme ap-
proximates the delta-function correlated noise ξξξ (t) with a set of
rectangular pulses of mean-squared size

√
1/∆t, each of which

acting over the time interval (tn−∆t/2, tn +∆t/2)52. Employing
this discretized approximation for ξξξ (t) yields O(∆t) error in the
simulated statistical quantities, such as temperature52. Thus, to
ensure accuracy and stability, the velocity-Verlet scheme requires
small timestep size ∆t.

The second temporal integrator is the G-JF scheme, derived
by Grønbech-Jensen and Farago(G-JF) originally for Langevin dy-
namics simulations52,53. We adapted the G-JF scheme for solving
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the extended dynamics in Eq. (6) as below:

U
1
2 = bU0 +

1
2

bM−1Bξξξ
1

Un+ 1
2 = aUn− 1

2 +
1
2

bM−1B(ξξξ n +ξξξ
n+1)

Rn+1 = Rn +Vn+ 1
2 ∆t

Un =
1
2

b−1(Un+ 1
2 +aUn− 1

2 )+
1
4

M−1B(ξξξ n−ξξξ
n+1) ,

(14)

where a and b are two constant matrices defined as:

b =
[
I+

1
2

M−1AM∆t
]−1

a = I−M−1AMb∆t .

(15)

The G-JF scheme implies ξξξ n+1 ≡
∫ tn+1

tn ξξξ (t ′)dt ′, which does not
introduce discretized approximation for the random variable
ξξξ (t)52. The only approximation made in Eq. (14) is employing
the trapezoidal quadrature rule to approximate:∫ tn+1

tn
Ṙdt ′ = Rn+1−Rn =

∫ tn+1

tn
Vdt ′ , (16)

with
Rn+1−Rn ≈ (Vn+1 +Vn)

∆t
2

, (17)

which introduces an error of O(∆t3) and controls the accuracy of
the G-JF scheme. The G-JF scheme was previously shown more
stable and accurate than the velocity-Verlet scheme for solving
the GLE43,44. In this work, we compared the performance of
these two schemes for solving the extended dynamics (see Sec-
tion 3.1.2).

3 Results

We examined four different types of polymer solution systems to
demonstrate the proposed implicit-solvent CG modeling and to
assess its ability to conserve the dynamic properties of the ref-
erence atomistic systems. The systems studied include homoge-
neous or inhomogeneous star polymers and branched polymers
in solution. And both model and real polymers were considered.
For each system, we first performed MD simulations and then
constructed the CG model following the formulation described in
Section 2.1 and 2.2. The extended dynamics of GLE was solved
using the velocity-Verlet or G-JF temporal integrator described
in Section 2.3. For each system, the dynamic properties (VACF
and diffusion) of polymers predicted by the CG modeling were
compared with the results of MD simulations. In-house computer
codes were developed to implement the extended dynamics and
temporal integrators for the CG modeling in the framework of
LAMMPS56. By such, both MD and CG simulations were per-
formed using LAMMPS.

3.1 Homogeneous solution of star polymers

First, we examined a system composed of homogeneous star poly-
mers in solution. In the CG modeling of this system, we compared

the accuracy and efficiency of the velocity-Verlet and G-JF tempo-
ral integrators for solving the extended dynamics.

3.1.1 Microscopic model

Each star polymer consists of 10 identical arms each with 3
monomers, as illustrated in Figure 1. In the microscopic model,
the monomers are represented as Lennard-Jones (LJ) beads con-
nected by FENE bonds; the solvent is composed of LJ beads iden-
tical to the monomers. The details of the MD force fields are
provided in Appendix A. The microscopic representation of this
polymer solution system is depicted in Figure 2 (a). Since each
star polymer has totally 31 monomers, it’s referred to as N31 star
polymer. In total, there are 1000 N31 star polymers and 5000
solvent beads filled into a periodic cubic box of length 37.188σ

with the number density of 0.7, defined as the total number of LJ
beads divided by the volume of the cubic box. The system size
was chosen large enough such that the finite size effect on the
VACF can be neglected57.

With this microscopic model, MD simulations were performed
under the canonical ensemble (NVT) using Nośe-Hoover ther-
mostat with kBT = 1.0 and the time step ∆t = 0.001τ. All val-
ues herein are referred to the reduced LJ units; i.e., the mass,
length, energy, and time units were set as: m = 1,σ = 1,ε = 1,τ =

σ(m/ε)0.5 = 1. To obtain accurate ensemble prediction from the
noisy data of MD simulations, 30 independent simulations were
conducted, and each was run for 106 time steps after the ther-
mal equilibrium state was reached, from which we computed the
ensemble-averaged quantities of interest.

Fig. 1 Microscopic model of a star polymer with 10 identical arms and 3
monomers per arm.

(a) (b)

Fig. 2 (a) Microscopic model of N31 star polymers in solvent; (b) CG
model, where each N31 star polymer is coarse-grained as a single CG
particle, and the solvent DOFs are removed.
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3.1.2 CG model

The CG model is illustrated in Figure 2 (b), where the solvent
DOFs were eliminated, and the solvent-mediated kinetic effect
was incorporated in the GLE via the non-Markovian memory;
each star polymer was coarse-grained as a single CG particle
whose dynamics is governed by Eq. (6). We note that as CG
particles do not interact with each other in the present frame-
work, the CG system may consist of only one CG particle. How-
ever, including many particles in the CG simulations provide large
samples for accurate ensemble predictions; and, keeping the CG
system the same size as the microscopic system allows for consis-
tent comparison of computational cost with the MD simulations.
Thus, in practice the CG system consists of 1000 identical CG par-
ticles in the same periodic cubic box of length 37.188σ .

Memory kernel

Using the data from the MD simulations, we first determined the
memory kernel K(t). To this end, the ensemble-averaged VACF
and FVCF of the star polymers’ COMs were computed from the
MD simulations, as depicted in Figure 3 (a). We then solved for
K(t) by numerical deconvolution of Eq. (4), whose solution is
shown in Figure 3 (b). As noted, the kinetics of polymers medi-
ated by solvent can display a slow-decay memory.

0 0.5 1 1.5 2
Time

-1

0

1

V
C

F

VACF
FVCF

0 0.2 0.4 0.6 0.8 1
Time

0

0.5

1

K
(t

)

10 -2 10 0

Time

10 -4
10 -2
10 0

K
(t

)

(a)

(b)

Fig. 3 (a) Normalized VACF and FVCF computed from MD simulations;
(b) normalized memory kernel K(t) solved from Eq. (4), where the inset
shows the global view of |K(t)| in log-log scale.

To determine the extended dynamics (Eq. (6)), we next ap-
proximated K(t) by a linear combination of exponentially damped
oscillators as in Eq. (11). With the fitting parameters al , bl , cl ,
and wl (l = 1, . . . ,N ), the matrix A can be assembled according
to Eq. (12), and B can then be determined from Eq. (10). To this
end, the memory kernel K(t) was fitted by a linear combination
of 2, 3, or 5 terms of exponentially damped oscillators, as shown
in Figure 4. Here, we only computed and fitted K(t) up to t = 20
when the magnitude of K(t)/K(0) is smaller than 10−3. It can be
seen that the approximation with 2 or 3 terms displays noticeable
discrepancy from the “exact" K(t) (obtained from the MD simula-
tions) at around t = 0.1 or t = 0.6, respectively; the approximation
with 5 terms agrees with the “exact" K(t) very well.
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Fig. 4 Approximation of the memory kernel K(t) with N = 2, 3, or 5
terms of exponentially damped oscillators in Eq. (11). The inset shows
the global view of |K(t)| in log-log scale.

Dynamic properties

Given the extended dynamics determined, we performed the
CG simulations by numerically solving Eq. (6) using the G-JF
or velocity-Verlet temporal integrator. The dynamic properties
characterized by the VACF, diffusion coefficient D(t), and mean
square displacement (MSD) of CG particles were evaluated from
the CG simulations and compared with those computed from
the MD simulations. D(t) is a time integral of VACF(t); i.e.,
D(t) = 1

3
∫ t

0 VACF(t ′)dt ′. The results are presented in Figure 5 and
6, where the G-JF integrator was employed with ∆t = 0.01. The
ensemble average was taken over 10 independent CG simulations
each conducted for 105 time steps after the thermal equilibrium
state was reached.

We note that the predicted VACF at t = 0 agrees with its the-
oretical value; i.e., VACF(0) = 3kBT/M = 0.0968, which confirms
that the second FDT was accurately satisfied in the CG simula-
tions. Also, all CG predictions are able to correctly reproduce the
zero slope of VACF at t = 0, as can be seen in Figure 5 (b). As time
evolved, the CG simulation using 5 terms to fit the memory kernel
is more accurate for reproducing VACF(t) and D(t) than the CG
simulation using 2 or 3 terms, as shown in Figure 5 (a) and (c). It
concludes that more accurate approximation of the memory ker-
nel leads to more accurate predictions of dynamic properties, es-
pecially for long-time dynamics. Overall, the CG simulation using
5 terms and the G-JF temporal integrator achieved good accuracy
in conserving all dynamic properties, particularly in reproducing
the entire curves of VACF, D, and MSD as functions of time up to
103. At short time scales, the star polymers experienced a supper-
diffusion regime, where MSD(t) ∝ t2, then a sub-diffusion regime
with a decreasing D(t), and finally reached a normal diffusion at
long time scales, where MSD(t) ∝ t. The CG modeling is able to
reproduce all stages of the diffusion process (across 5 orders in
time) of the star polymers in solution, as shown in Figure 6.

Velocity-Verlet vs. G-JF temporal integrator

We further compared the velocity-Verlet and G-JF schemes for
solving the extended dynamics (Eq. (6)) with respect to both
accuracy and efficiency.
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Fig. 5 (a) VACF predicted by both CG and MD simulations, where the
inset shows the diffusion coefficient D(t); (b) zoom-in view of short-time
VACF; (c) long-time |VACF| in log-log scale.
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Fig. 6 MSD predicted by both CG and MD simulations.

To examine the accuracy, we computed the VACF using both
schemes with different timestep sizes ∆t and compared with the
VACF obtained from the MD simulation.

The errors were calculated for t ≤ 20 using the normalized Eu-
clidean norm and summarized in Table 1. Note that the velocity-
Verlet scheme was not stable for larger timesteps, hence, no data
is shown for ∆t > 0.01. The G-JF scheme achieved higher-order
accuracy than the velocity-Verlet for any timestep size compared
and was stable for larger timesteps when the velocity-Verlet al-
ready failed. By further comparing the VACF at a short time scale,
as depicted in Figure 7, we find that the G-JF scheme is robust in
reproducing the VACF at t = 0, accurately satisfying the second
FDT with any ∆t. In contrast, the velocity-Verlet scheme exhibits
noticeable errors in reproducing VACF(0), which becomes more
pronounced with larger ∆t.

The efficiency of the two schemes was assessed according to the
computer time used by each scheme to achieve the same accuracy
on the prediction of VACF. From the results in Table 1, we chose
to compare the velocity-Verlet using ∆t = 0.01 with the G-JF using
∆t = 0.1, which achieved similar accuracy for the VACF. In each
case, the simulation was conducted for 105τ on a single core of
Intel i5-6500 CPU. The computer time used by each scheme was

Table 1 Errors of the VACF computed from the CG simulations using the
velocity-Verlet and G-JF schemes with different ∆t.

∆t (τ) Velocity-Verlet (error%) G-JF (error%)
0.005 1.24 0.82
0.01 2.10 0.79
0.05 - 0.89
0.1 - 1.84
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Fig. 7 Comparison of the short-time VACF computed from the CG simu-
lations using the (a) velocity-Verlet and (b) G-JF temporal integrators with
different ∆t.

reported in Table 2. In this comparison, the computer time spent
for constructing the CG model is not included. Compared with the
MD simulation, while both CG simulations achieved significant
speedup by one to two orders, the G-JF scheme was about one
order faster than the velocity-Verlet. It implies that the more ac-
curate G-JF scheme does not introduce significant computational
overhead compared with the velocity-Verlet scheme.

Due to the superior performance of the G-JF scheme in both
accuracy and efficiency, it was chosen as the temporal integrator
for all the CG simulations presented in the rest of this paper.
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Table 2 Comparison of computational cost of CG simulations using the
velocity-Verlet and G-JF schemes.

Simulation ∆t (τ) Cost (s) Speedup factor
MD 0.001 3.44e5 -
CG velocity-Verlet 0.01 1.76e4 19.55
CG G-JF 0.1 3.07e3 112.05

3.2 Dilute solution of homogeneous star polymers

To further examine the applicability of the proposed implicit-
solvent CG modeling to dilute solutions, we next studied a dilute
solution of homogeneous star polymers.

3.2.1 Microscopic model

In the microscopic model, 125 N31 star polymers and 125,500
solvent beads are filled into a periodic cubic box of length
56.9619σ with the number density of 0.7. The concentration of
N31 star polymers in the solution is 3%, defined as the total num-
ber of polymer beads divided by the total number of all beads
in the cubic box. The force fields and other settings of the MD
simulations were the same as described in Section 3.1.1.

3.2.2 CG model

Same as in Section 3.1.2, in the CG model, each N31 star poly-
mer is coarse-grained as a single CG particle; the solvent DOFs
are eliminated, and the solvent-mediated kinetic effect is incor-
porated in the GLE via the non-Markovian memory. Following
the same CG procedure, we employed Eq. (6) to govern the CG
particle’s dynamics. First, the memory kernel K(t) computed from
the MD simulations was approximated as in Eq. (11) with N = 4,
6, or 8 terms of exponentially damped oscillators. K(t) was com-
puted and fitted up to t = 10 when |K(t)|/K(0)< 10−3. As shown
in Figure 8, more fitting terms lead to more accurate approxi-
mation of K(t); the approximation with 8 terms agrees with the
“exact” K(t) reasonably well. Next, Eq. (6) was solved using the
G-JF integrator with ∆t = 0.01. The computed VACF and D(t) are
presented in Figure 9; and, Figure 10 shows the computed MSD
as a function of time until t = 103. In a very dilute solution, the
N31 star polymers display much longer memory in dynamics. By
comparison with the results of MD simulations, the CG simula-
tion using more terms to fit the memory kernel is more accurate
for reproducing VACF(t) and D(t). In particular, the CG simula-
tion using 8 terms accurately captured all dynamic properties of
the N31 star polymers in a dilute solution, at both short and long
time scales.

Finally, we examined the dilute solutions of N31 star polymers
at different concentrations. Up to the concentration of 15%, the
polymers’ VACF and FVCF do not exhibit significant changes, as
depicted in Figure 11. Thus, the CG model constructed at the
concentration of 3% can be transferable to other concentrations
up to 15%. More concentrate solutions, e.g., at 30%, display no-
ticeably different VACF and FVCF, for which the CG model must
be reconstructed.
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Fig. 8 Dilute solution of homogeneous star polymers: Memory kernel
K(t) computed from MD simulations and its approximations via Eq. (11)
with N = 4, 6, or 8 fitting terms. The inset shows the global view of |K(t)|
in log-log scale.
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Fig. 9 Dilute solution of homogeneous star polymers: (a) VACF predicted
by both CG and MD simulations, where the inset shows the diffusion co-
efficient D(t); (b) zoom-in view of short-time VACF; (c) long-time |VACF|
in log-log scale.
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Fig. 10 Dilute solution of homogeneous star polymers: MSD predicted
by both CG and MD simulations.

3.3 Inhomogeneous mixture of various star polymers in so-
lution

Next, we studied an inhomogeneous system with different kinds
of star polymers mixed in solution. In particular, it consists of
three kinds of star polymers: N5 (4 arms with 1 monomer per
arm), N21 (10 arms with 2 monomers per arm), and N101 (10
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Fig. 11 Dilute solution of homogeneous star polymers: VACF and FVCF
predicted by MD simulations at different concentrations. The solution
at 15% concentration consists of 626 N31 star polymers and 109,969
solvent beads; and, the solution at 30% concentration consists of 1252
N31 star polymers and 90,563 solvent beads. The inset shows the global
view of |VACF| or |FVCF| in log-log scale.

arms with 10 monomers per arm). Its microscopic and CG repre-
sentations are illustrated in Figure 12. In the CG modeling, each
star polymer was coarse-grained as a single CG particle, and the
solvent DOFs were eliminated. Thus, the CG model consists of a
collection of three kinds of CG particles.

(a) (b)

Fig. 12 (a) Microscopic and (b) CG representations of a mixture of three
kinds of star polymers (N5, N21, and N101) in solution.

3.3.1 Microscopic model

In the microscopic model, the three kinds of star polymers are
composed of 5, 21, and 101 identical monomers, respectively.
The solution consists of 1000 N5, 1000 N21, and 216 N101 star
polymers. The monomers are represented as LJ beads connected
by FENE bonds; the solvent contains 5000 LJ beads. The star
polymers and solvent were filled into a periodic cubic box of
length 41.8206σ with the number density of 0.7. The force fields
and other settings of the MD simulations were the same as in

Section 3.1.1.
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Fig. 13 Inhomogeneous star polymers in solution: Memory kernel K(t)
computed from MD simulations and its approximations via Eq. (11) with
different numbers (N ) of fitting terms for the three kinds of star polymers:
(a) N5, (b) N21, and (c) N101. The inset shows the global view of |K(t)|
in log-log scale.

3.3.2 CG model

The CG system consists of three kinds of CG particles, in total,
1000+1000+216 CG particles in the periodic cubic box of length
41.8206σ . For each kind of CG particles, we determined its
extended dynamics following the same procedure as in Section
3.1.1. First, the memory kernel K(t) was determined for each
kind of star polymers from the MD simulations. Next, K(t) was
approximated by a linear combination of exponentially damped
oscillators, where K(t) was computed and fitted up to t = 20 when
|K(t)|/K(0) < 10−3. Figure 13 summarizes the “exact" K(t) com-
puted from the MD simulations and its approximations using dif-
ferent numbers of fitting terms for each kind of star polymers.
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We note that the fitting using 4, 10, and 7 terms for N5, N21,
and N101 star polymers, respectively, could achieve satisfactorily
accurate approximation of K(t).
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Fig. 14 Inhomogeneous star polymers in solution: (a) VACF predicted
by both CG and MD simulations for N5 star polymers, where the inset
shows the diffusion coefficient D(t); (b) zoom-in view of short-time VACF;
(c) long-time |VACF| in log-log scale.
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Fig. 15 Inhomogeneous star polymers in solution: (a) VACF predicted
by both CG and MD simulations for N21 star polymers, where the inset
shows the diffusion coefficient D(t); (b) zoom-in view of short-time VACF;
(c) long-time |VACF| in log-log scale.

Given the fitting parameters in Eq. (11), the matrices A and
B could be obtained and in turn Eq. (6) was determined for
each kind of CG particles corresponding to N5, N21, and N101
star polymers, respectively. Thus, the CG simulations solved Eq.
(6) using the G-JF temporal integrator with ∆t = 0.01 and com-
puted the VACF, D(t), and MSD for each kind of CG particles, as
presented in Figures 14–17. By comparison with the MD simu-
lation results, we demonstrate that the proposed implicit-solvent
CG modeling is able to conserve both the short-time and long-time
dynamic properties of star polymers even in an inhomogeneous
solution system. We also note that more accurate approxima-
tion of the memory kernel using more fitting terms led to more
accurate prediction of VACF and thereby its time integral D(t),
especially for long-time predictions, e.g., t > 5. If the short-time
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Fig. 16 Inhomogeneous star polymers in solution: (a) VACF predicted
by both CG and MD simulations for N101 star polymers, where the inset
shows the diffusion coefficient D(t); (b) zoom-in view of short-time VACF;
(c) long-time |VACF| in log-log scale.

Fig. 17 Inhomogeneous star polymers in solution: MSD predicted by
both CG and MD simulations for all three kinds of star polymers.

(t ≤ 5) dynamics was of interest, the approximations using less
fitting terms already enabled reasonably accurate predictions on
the VACF, e.g., using only 2 terms for the N5 and 4 terms for both
N21 and N101 star polymers, as shown in Figures 14–16. Using
less fitting terms resulted in lower dimensional extended dynam-
ics, and in turn, more efficient CG simulations.

3.4 Branched-chain polymers in solution
In this section, we simulated branched-chain polymers in solu-
tion. Each polymer chain is built-up from five bonded N31 star
polymers. In the CG modeling, each star polymer was coarse-
grained as a single CG particle; the solvent and bond connections
between N31 star polymers were eliminated, and their effects on
the polymers’ kinetics were incorporated in the non-Markovian
memory in GLE. The microscopic and CG representations of this
system are illustrated in Figure 18.

3.4.1 Microscopic model

The microscopic model of this system contains 200 polymer
chains and 5,000 solvent beads. The N31 star polymers are the
same as described in Section 3.1.1. Bonds were applied between
two monomers of each two adjacent N31 star polymers in a chain.
All bonds assumed the same FENE potential. The MD force fields
are as described in Appendix A. The MD simulations were per-
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formed in a periodic cubic box of length 37.188σ with the num-
ber density of 0.7. Other settings of the MD simulations were the
same as in Section 3.1.1.

(a) (b)

Fig. 18 (a) Microscopic model of the branched-chain polymers in solu-
tion, where each polymer chain consists of five bonded N31 star poly-
mers; (b) CG model with each N31 star polymer coarse-grained as a sin-
gle CG particle, where both solvent and bond connections are removed.

3.4.2 CG model

Without solvent and bond connections, the CG system consists of
200× 5 independent CG particles in the same periodic cubic box
of length 37.188σ . The CG system was governed by the extended
dynamics, which was determined following the same procedure
as described in Section 3.1.2. Figure 19 depicts the memory ker-
nel K(t) obtained from the MD simulations, which was fitted by a
linear combination of 4, 5, or 6 exponentially damped oscillators.
This system exhibits long and oscillating memory. Fitting it with
more terms led to more accurate approximation of K(t).
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Fig. 19 Branched-chain polymers in solution: Memory kernel K(t) com-
puted from MD simulations and its approximations via Eq. (11) with
N = 4, 5, or 6 fitting terms. The inset shows the global view of |K(t)|
in log-log scale.

Given the fitting parameters in Eq. (11), the extended dynam-
ics (Eq. (6)) was formulated accordingly and then solved using
the G-JF temporal integrator with ∆t = 0.01. Figure 20 presents
the VACF and D(t) computed from both CG and MD simulations.
And Figure 21 depicts the computed MSD. It can be seen that
the CG model with the memory kernel approximated by 6 terms
can accurately reproduce the dynamic properties of the branched-
chain polymers in solution, at both short and long time scales. Re-
call that both solvent and bond connections were removed in the
CG model. Thus, we demonstrate that the non-Markovian mem-

ory in GLE can incorporate the kinetic effects of bond connections
in chain polymers as well as the solvent.
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Fig. 20 Branched-chain polymers in solution: (a) VACF predicted by both
CG and MD simulations, where the inset shows the diffusion coefficient
D(t); (b) zoom-in view of short-time VACF; (c) long-time |VACF| in log-log
scale.

Fig. 21 Branched-chain polymers in solution: MSD predicted by both CG
and MD simulations.

3.5 Tri-n-butyl phosphate in chloroform

After studying three model polymer solution systems, we further
examined the proposed CG modeling for a real polymer solution
system. In this system, tri-n-butyl phosphate (TBP) molecules are
immersed in chloroform (CHCl3). The chemical composition of a
TBP molecule is sketched in Figure 22. Each TBP molecule was

Fig. 22 Chemical composition of a TBP molecule.

coarse-grained as a single CG particle in the CG modeling. The
all-atom and CG representations of this system are illustrated in
Figure 23. Unlike in the previous sections, all simulations here
employed real units.

3.5.1 All-atom model

The all-atom model consists of 27 TBP and 1000 CHCl3 molecules
filled into a periodic cubic box. The Optimized Potentials for
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(a) (b) (c)

Fig. 23 (a) All-atom model of TBP molecules immersed in CHCl3 solvent;
(b) coarse-graining each TBP molecule as a single CG particle; (c) CG
model as a collection of CG particles, each representing a TBP molecule.

Liquid Simulations-All Atom (OPLS-AA) force fields58 were em-
ployed to simulate the TBP molecules, while the all atom model
without polarization59 was used for the CHCl3 molecules. (De-
tails about the OPLS-AA force fields are provided in Appendix B.)
To proceed, the volume of the system in equilibrium must be de-
termined first, which gives the appropriate size of the periodic box
to be used for modeling the system. Thus, a MD simulation was
first performed in the isothermal-isobaric ensemble (NPT) using
the Nośe-Hoover thermostat for 1 ns under the standard pressure
1 atm and room temperature 300 K. As a result, the length of the
cubic periodic box to be used was determined as 52.8 Å. With
that, the MD simulations in the canonical ensemble (NVT) were
next performed under the temperature 300 K with the timestep
∆t = 1 fs. Data were collected and the ensemble-averaged quanti-
ties of interest were computed after the thermal equilibrium state
was reached; i.e., after 1 ns.

3.5.2 CG model

The CG model consists of 27 CG particles in a periodic cubic box
of length 52.8 Å. Following the same CG procedure as described
in Section 3.1.2, we formulated Eq. (6) to govern the dynam-
ics of each CG particle. First, the memory kernel K(t) computed
from the MD simulations was approximated as in Eq. (11). Here,
we used 3, 4, or 5 terms of exponentially damped oscillators to
fit K(t), as shown in Figure 24. Next, Eq. (6) was solved using
the G-JF temporal integrator with ∆t = 10 fs. Figure 25 depicts
the computed VACF and D(t) of TBP molecules, and Figure 26
shows the computed MSD as a function of time. By comparison
with the results of MD simulations, we demonstrate in a real poly-
mer system that the proposed CG modeling is able to accurately
capture the dynamics of polymers in solution, at both short and
long time scales. Without explicit solvent in the CG model, the
non-Markovian memory in GLE properly incorporated the effect
of CHCl3 solvent on the dynamics of TBP molecules.

4 Conclusion
We have presented a bottom-up implicit-solvent coarse-graining
strategy for polymer solutions, which has been validated on ho-
mogeneous coarse-graining of monosized polymers and subunits
of chain polymers, and also heterogeneous coarse-graining for a
mixture of non-monosized polymers. The CG model was con-
structed by grouping a cluster of bonded atoms into a single CG
particle and removing the solvent DOFs. Elimination of DOFs,
especially the solvent DOFs, introduced non-negligible memory
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Fig. 24 TBP in CHCl3: Memory kernel K(t) computed from MD simu-
lations and its approximation as in Eq. (11) with N = 3, 4, or 5 fitting
terms. The inset shows the global view of |K(t)| in log-log scale.

Fig. 25 TBP in CHCl3: (a) VACF predicted by both CG and MD simu-
lations, where the inset shows the diffusion coefficient D(t); (b) zoom-in
view of short-time VACF; (c) long-time |VACF| in log-log scale.

Fig. 26 TBP in CHCl3: MSD predicted by both CG and MD simulations.

effects. By employing the Mori-Zwanzig projection to the mi-
croscopic dynamics, the GLE with a non-Markovian memory was
derived to govern the CG dynamics. The microscopic dynamics
was generated by MD simulations, thus, the memory kernel in
the GLE was computed from the MD trajectories. Directly solving
the GLE with a non-Markovian memory and colored noise can be
computationally expensive. Thus, we introduced auxiliary vari-
ables coupled to the momenta of CG particles to replace the GLE
with an extended dynamics, which could circumvent computing
the convolution and sampling colored noise and be solved more
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efficiently. To this end, the memory kernel was approximated by
a linear combination of exponentially damped oscillators.

Previous efforts in solving the extended dynamics mainly used
the velocity-Verlet temporal integrator. However, we found that
the velocity-Verlet scheme limited the efficiency of CG simulations
by requiring very small timestep sizes due to stability and accu-
racy. Therefore, in this work, we introduced the higher-order G-
JF temporal integrator for solving the extended dynamics. Com-
pared with the velocity-Verlet scheme, the G-JF integrator was
found more stable and accurate given the same timestep size. For
achieving the same accuracy, the G-JF integrator allowed to use
much larger timesteps but did not introduce significantly more
computational burden, and hence greatly improved the efficiency
of the CG simulations.

We have assessed and validated the proposed CG modeling
in four different polymer solution systems, including a homoge-
neous solution of monosized star polymers, inhomogeneous mix-
ture of non-monosized star polymers, branched-chain polymers
in solution, and also TBP polymers in chloroform. For all these
types of polymer solutions, we have demonstrated that the pro-
posed CG modeling can accurately reproduce the dynamic proper-
ties of the reference microscopic (or all-atom) systems. Although
the solvent DOFs were eliminated in the CG modeling, the non-
Markovian memory properly incorporated the solvent-mediated
effect on the dynamics of polymers. In the system of branched-
chain polymers, although the bond connections between CG clus-
ters were also eliminated in the CG modeling, the GLE with the
non-Markovian memory was still able to correctly capture the
polymers’ dynamics. The dynamic properties of polymers were
characterized by the VACF, diffusion coefficient D, and MSD as
functions of time. The predictions by the CG simulations agree
well with the MD simulation results for each of these quantities
over the entire curve across five orders in time. To construct the
CG model, the memory kernel was computed from a MD simula-
tion and approximated up to t ∼ O(10) until |K(t)|/K(0) < 10−3.
The diffusion process was predicted by the constructed CG model
until t = 103.

Approximating the memory kernel with more terms of expo-
nentially damped oscillators ensured more accurate CG modeling
for reproducing especially long-time dynamic properties. Thus,
the extended dynamics with auxiliary variables enables to con-
struct arbitrarily high-order CG models to characterize long-time
behaviors and complex transition dynamics of polymers in solu-
tion. In practical applications, the number of terms used in the
CG modeling can be decided according to the time scales and ac-
curacy required in conserving the dynamic properties of the ref-
erence microscopic systems.

In summary, we highlight two contributions of this work. First,
the GLE with a non-Markovian memory was previously employed
for coarse-graining polymers in melts (without solvent) when the
time scales are not well separated for the momentum and ran-
dom force of a CG cluster50,60. And, only homogeneous coarse-
graining of monosized star polymers was addressed. Here, we go
beyond and have demonstrated that for polymers in solution, in
addition to coarse-graining polymer molecules, the solvent DOFs
may be removed in the CG modeling, and their kinetic effect on

the polymers can be captured by the non-Markovian memory in
the GLE derived via the Mori-Zwanzig formalism. We addressed
various polymer systems: homogeneous or inhomogeneous solu-
tion of polymers and star or chain polymers. Second, we intro-
duced the higher-order G-JF temporal integrator in the CG mod-
eling for solving the extended dynamics, which shows improved
stability and accuracy and can significantly accelerate the CG sim-
ulations, compared with the commonly used velocity-Verlet inte-
grator.

We note that for dilute solutions, e.g., the solution of homoge-
neous star polymers studied in Section 3.2, the polymers’ VACF
and FVCF do not vary significantly at different concentrations.
Thus, the memory kernel and CG model constructed can be trans-
ferable for different concentrations in the dilute regime. However,
in general, the CG model constructed cannot be transferred from
one system to another and between different thermodynamic con-
ditions since the VACF and FVCF can be significantly different.
For polymers in solution, an analytical formulation is still absent
to scale the VACF and FVCF, and thereby the memory kernel for
different polymer systems and/or different thermodynamic con-
ditions.

To capture the structural properties of polymers in solution, the
present CG modeling needs to be extended to include bonded and
non-bonded conservative interactions between CG sites, which is
our next step. Even though it only focuses on the dynamic prop-
erties, the proposed CG modeling via the GLE with correct mem-
ory functions can play an important role in applications involving
anomalous diffusion. One example is to understand and predict
the experimental observations of anomalous diffusion using sin-
gle particle tracking techniques61–65, where the time evolution
of a single tracing particle can be tracked and recorded at high
spatiotemporal resolutions. A GLE model with effective memory
function can be constructed from the experimental data to cor-
rectly predict the anomalous diffusion. Note that the acceleration
(i.e., the total force) can be obtained from instantaneous veloci-
ties measured at high temporal resolutions, from which the FVCF
and VACF can be evaluated and used to determine the memory
kernel from Eq. (4).
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Appendix

A MD Force Fields of Lennard-Jones Parti-
cles

In Section 3.1–3.4, the microscopic representations of polymers
and solvent consist of LJ particles. In the MD simulations, the
dynamics of these LJ systems is governed by the Hamiltonian:

H =
n

∑
i=1

p2
i

2mi
+∑

i6= j
E(ri j) , (A.1)

where H defines the phase space trajectories of the system; ri j =

‖ri j‖= ‖ri− r j‖ is the distance between two LJ beads; E denotes
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the total potential energy contributed by the inter-atomic and
bonded potentials. The inter-atomic potential adopts the pure
repulsive Weeks-Chandler-Andersen (WCA) potential and given
by:

EWCA(r) =

{
4ε[(σ

r )
12− (σ

r )
6 + 1

4 ] r ≤ 21/6

∞ r > 21/6
, (A.2)

where rc = 21/6 is the cutoff distance. The bonded interaction
between connected LJ beads in polymers is modeled as a spring
with a finitely extensible nonlinear elastic (FENE) potential; i.e.,

EFENE(r) =

{
− 1

2 kr2
0ln[1− ( r

r0
)2] r < r0

∞ r ≥ r0
, (A.3)

where k = 30ε/σ2 is the spring constant, and r0 = 1.5σ is the
maximum length of the FENE spring. In sum, we have:

E(ri j) = EWCA(ri j)+EFENE(ri j) . (A.4)

B MD Force Fields for Tri-n-butyl Phosphate
and Chloroform

The dynamics of atoms in TBP and CHCl3 molecules also follows
the Hamiltonian in Eq. (A.1). The total potential energy E is
given by:

E = ∑
bonds

Kr(r− req)
2 + ∑

angles
Kθ (θ −θeq)

2

+ ∑
dihedrals

[1
2

V1(1+ cosφ)+
1
2

V2(1− cos2φ)+
1
2

V3(1+ cos3φ)
]

+∑
i

∑
j

[
4εi j
{
(

σi j

ri j
)12− (

σi j

ri j
)6}+ Cqiq j

ri j

]
. (B.1)

The terms in Eq. B.1, in order of appearance, correspond to
the bond-length, bond-angle, dihedral-angle, LJ, and electrostatic
potentials, respectively. The OPLS-AA force fields58,66,67 with
charges from Modified Neglect of Differential Overlap (MNDO)68

were used to specify the parameters for the interaction potential
of all atoms of a TBP molecule, as in Table B.1–B.4. The CHCl3
was represented with the rigid five-site all-atom model without
polarization59. The total potential energy for CHCl3 is the sum
of LJ and electrostatic potentials since it was represented by a
rigid model. The parameters for CHCl3 are given in Table B.5
and B.6. From Table B.4 and B.6, the parameters σi j and εi j in
the LJ potential can be determined via the geometric mixing rule
σi j = (σiiσ j j)

1/2 and εi j = (εiiε j j)
1/2.

Table B.1 Bond-length potential parameters for TBP.

bond type Kr (kcal mol−1Å−2) req (Å)
OS-P 230 1.610
OS-C 320 1.410
P-O2 525 1.480
C-H 340 1.090
C-C 268 1.529

Table B.2 Bond-angle potential parameters for TBP.

angle type Kθ (kcal mol−1rad−2) θeq (deg)
C-OS-P 100 120.5
OS-P-O2 100 108.23
OS-P-OS 45 102.6
OS-C-H 35 109.5
OS-C-C 50 109.5
H-C-H 33 107.8
C-C-H 37.5 110.7
C-C-C 58.35 112.7

Table B.3 Dihedral angle potential parameters for TBP.

dihedral type V1(kcal/mol) V2 (kcal/mol) V3 (kcal/mol)
C-OS-P-O2 0 0 0
C-OS-P-OS 0 0 0
H-C-OS-P 0 0 0.3
C-C-OS-P -1.42 -0.62 0.1
OS-C-C-H 0 0 0.468
C-C-C-OS 1.3 -0.05 0.2
H-C-C-H 0 0 0.3
C-C-C-H 0 0 0.3
C-C-C-C 1.3 -0.05 0.2

Table B.4 LJ and electrostatic potential parameters for TBP.

atom type εii(kcal/mol) σii(Å) qi(e)
O2 0.2 3.15 -0.87
P 0.2 3.74 1.77
OS 0.14 2.9 -0.56
Ca 0.066 3.5 0.20
Cb 0.066 3.5 0.06
Cc 0.066 3.5 0.02
Cd 0.066 3.5 0.02
Ha 0.03 2.5 -0.02
Hb 0.03 2.5 0
Hc 0.03 2.5 0
Hd 0.03 2.5 0

Table B.5 Bond/angle parameters for CHCl3.

bond/angle type req (Å) θeq (deg)
C-C 1.76 -
C-H 1.07 -
Cl-C-Cl - 111.2
Cl-C-H - 107.6

Table B.6 LJ and electrostatic potential parameters for CHCl3.

atom type εii(kcal/mol) σii(Å) qi(e)
C 0.137 3.41 0.5609
Cl 0.275 3.45 -0.1686
H 0.020 2.81 -0.0551
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