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Sound attenuation in stable glasses

Lijin Wang,ab Ludovic Berthier,c Elijah Flenner,∗b Pengfei Guan∗a and Grzegorz Szamelb

Understanding the difference between universal low-temperature properties of amorphous and
crystalline solids requires an explanation of the stronger damping of long-wavelength phonons in
amorphous solids. A longstanding sound attenuation scenario, resulting from a combination of
experiments, theories, and simulations, leads to a quartic scaling of sound attenuation with the
wavevector, which is commonly attributed to Rayleigh scattering of the sound. Modern computer
simulations offer conflicting conclusions regarding the validity of this picture. We simulate glasses
with an unprecedentedly broad range of stabilities to perform the first microscopic analysis of
sound damping in model glass formers across a range of experimentally relevant preparation pro-
tocols. We present a convincing evidence that quartic scaling is recovered for small wavevectors
irrespective of the glass’s stability. With increasing stability, the wavevector where the quartic scal-
ing begins increases by approximately a factor of three and the sound attenuation decreases by
over an order of magnitude. Our results uncover an intimate connection between glass stability
and sound damping.

1 Introduction
Many theoretical descriptions of sound attenuation in low tem-
perature (athermal) amorphous solids predict a quartic scal-
ing of the sound attenuation with the wavevector. Early argu-
ments, used to explain the plateau in the temperature depen-
dence of the thermal conductivity1,2, invoked the picture of scat-
tering of sound waves by uncorrelated inhomogeneities that are
much smaller than the wavelength, which is the physical scenario
known as the Rayleigh scattering. In several theories, these in-
homogeneities have been modeled as local fluctuations of elastic
constants3–8. These theories predict that the sound attenuation
scales with the fourth power of the wavevector, Γλ (k)∼ k4 (λ = L
denotes longitudinal waves and λ = T denotes transverse waves)
for small wavevector k. Mean-field theories9–12 arrive at the same
prediction, albeit in a different way. Yet another theoretical treat-
ment, the soft-potential model, predicts that a quartic scaling
regime exists due to phonons interacting with soft modes13.

Longitudinal sound attenuation can be directly obtained from
X-ray and light scattering experiments. A compilation of many
experimental results14–28 shows that the wavevector dependence
of the longitudinal sound attenuation parameter, ΓL(k), can be di-
vided into three regimes: (1) ΓL(k)∼ k2 for low k; (2) ΓL(k)∼ k4
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for an intermediate k regime; and (3) ΓL(k)∼ k2 for large k. While
the intermediate wavevector quartic and the large wavevector
quadratic scalings of the sound attenuation parameter are well-
documented, the small wavevector quadratic dependence was
only seen in a few experiments17–20. Because the experiments
are performed at finite temperature and the small wavevector
quadratic scaling increases with temperature, the small wavevec-
tor quadratic scaling can be ascribed to thermal and anharmonic
effects5.

Computer simulations offer a conflicting view of these results.
Most computer studies investigate sound attenuation in the limit
of zero temperature in order to remove anharmonic effects. To
our knowledge, no simulation reproduced the ΓL(k) ∼ k2 scaling
observed at small wavevectors in experiments17–20, including a
recent finite temperature study of Mizuno and Mossa29 that in-
cluded anharmonic effects. Regarding the quartic Rayleigh scat-
tering regime, no firm conclusion can be drawn either. By sim-
ulating large glasses created by quenching configurations from a
mildly supercooled liquid, Gelin et al.30 found a logarithmic cor-
rection to the quartic scaling, Γλ (k) ∼ k4 ln(k). They invoked the
existence of correlated inhomogeneities of the elastic constants31

to rationalize this observation. However, a more recent, larger-
scale study32 of harmonic spheres close to their unjamming tran-
sition confirmed the Rayleigh scattering scenario in 2D glasses
and conjectured its validity in 3D glasses. Finally, a very recent
preprint33 (which appeared when the present paper was being fi-
nalized for submission) presented the first convincing evidence of
the small wavevector quartic scaling of the transverse sound at-
tenuation in a 3D glass created by quenching from a mildly super-
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Fig. 1 The inherent structure energy versus the parent temperature. The
onset of slow dynamics To and the estimated glass transition temperature
Tg

36 are shown. The glass becomes more stable with decreasing inher-
ent structure energy.

cooled liquid. However, the status of the longitudinal sound at-
tenuation, even for simple glass-formers in the zero-temperature
harmonic limit, remains unsettled.

To our knowledge, all prior simulations investigated sound at-
tenuation in glasses with stabilities dramatically different from
the ones of typical laboratory glasses, preventing direct compar-
ison between results obtained for simulated and real materials.
This constraint is imposed by the large preparation times required
to equilibrate systems close to the experimental glass transition,
which, therefore, cannot be simulated using conventional tech-
niques. In this work, we use an efficient swap Monte-Carlo algo-
rithm34 that was recently developed35,36 to prepare glasses with
stabilities comparable to, or even exceeding, the stability of ex-
perimental glasses. If we quantify the glass stability in terms of
a cooling rate, the improvement due to the swap algorithm is
equivalent to decreasing the cooling rate by more than 10 or-
ders of magnitude, thus closing the gap between previous com-
puter investigations and realistic materials. In previous studies, it
was demonstrated that both the low-frequency vibrational prop-
erties37 and the mechanical properties38 of computer generated
glasses dramatically evolve with increasing the glass stability over
such a broad range.

We find that changing the glass stability over a broad range
fully clarifies the elusive picture of sound attenuation. Generally,
sound attenuation decreases with increasing stability, implying
that more stable glasses are also less dissipative solids (classical
zero temperature crystalline solids are non-dissipative). More im-
portantly, we find the wavevector dependence of sound attenua-
tion at low wavevectors exhibits a quartic scaling, for both trans-
verse and longitudinal modes and in glasses with very different
stabilities. Thus, we unambiguously demonstrate the universal-
ity of the Rayleigh scattering scaling in 3D glasses. The quar-
tic scaling of the sound attenuation with the wavevector is more
prominent in more stable glasses, which adds to the conjectured
connection between glass stability and sound damping.
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Fig. 2 Decay of CT (t) for a transverse excitation with a wavevector
k = (0,4π/L,0) for our most stable glass, Tp = 0.062 (blue circles). The
red curve is a fit to CT (t) = exp(−Γλ t/2)cos(Ωλ t). The velocity field for
the whole system is shown in the upper left corner and for a section at
representative times corresponding to the peaks in CT (t) indicated by the
arrows. The longer and brighter red arrows indicate larger velocities.

2 Methods
2.1 Simulation details
We perform computer simulations using a three-dimensional cu-
bic system composed of polydisperse particles with equal mass
m = 1. The distribution of particle diameters σ follows P(σ) = A

σ 3 ,
where σ ∈ [0.73,1.63] and A is a normalization factor. The cross-
diameter σi j is determined according to a non-additive mixing
rule, σi j =

σi+σ j
2 (1− ε|σi−σ j|) with ε = 0.2. The interaction be-

tween two particles i and j is given by the inverse power law

potential, V (ri j) =
(

σi j
ri j

)12
+Vcut(ri j), when the separation ri j is

smaller than the potential cutoff rc
i j = 1.25σi j, and zero otherwise.

Here, Vcut(ri j) = c0 + c2

(
ri j
σi j

)2
+ c4

(
ri j
σi j

)4
, and the coefficients c0,

c2 and c4 are set to guarantee the continuity of V (ri j) at rc
i j up to

the second derivative.
We produce zero-temperature glasses by instantaneously

quenching supercooled liquids equilibrated through the swap
Monte Carlo algorithm at different parent temperatures Tp,
which controls the glass’s stability37,38, to their local po-
tential minima using the fast inertial relaxation engine
minimization39. We calculate the normal modes by di-
agonalizing the dynamic matrix using Intel Math Kernel
Library (https://software.intel.com/en-us/mkl/) and ARPACK
(http://www.caam.rice.edu/software/ARPACK/). We study
glasses with Tp ranging from well above the onset of supercooling,
denoted as Tp = ∞, down to Tp = 0.062, which is about 60% of the
mode-coupling temperature Tc ≈ 0.108 36. The onset of slow dy-
namics in an equilibrated fluid occurs around To = 0.2. The parent
temperature Tp = 0.062 is lower than the estimated experimental
glass temperature Tg ≈ 0.072 for this model36, and thus the glass
with Tp < 0.072 qualifies as ultrastable. One robust measure of
stability is the energy at the potential energy minimum40–43, the
inherent structure energy EIS. Shown in Fig. 1 is the inherent
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Fig. 3 Wavevector k dependence of sound attenuation (a) ΓT (k) and (b) ΓL(k) in from poorly annealed glasses (Tp = ∞) to stable glasses (Tp = 0.062).
The different symbols denote different system sizes: star=1000K, plus=600K, x=450K, triangle=192K, square=96K, circle=48K. The k2 dependence is
evident at large wavevectors and the crossover to k4 scaling can be seen for Tp = ∞ and Tp = 0.062. The reduced sound attenuation (c) ΓT /k4 and (d)
ΓL/k4. A straight line with negative slope would indicate a logarithmic correction, which is valid only for a small range of wavevectors.

structure energy for our glasses as a function of parent tempera-
ture Tp, and we find that the inherent structure energy dramati-
cally drops below the onset temperature To. The particle number
N varies between 48000 and 1000000 for glasses at Tp = ∞, and
between 48000 and 192000 for glasses with 0.062 ≤ Tp ≤ 0.120.
For all glasses studied the number density ρ = 1.0.

2.2 Sound attenuation

We use two different methods to obtain sound attenuation:1) we
calculate the T = 0 dynamic structure factor utilizing the eigen-
values and eigenvectors of the dynamic matrix44; 2) we study
the decay of an excited sound wave in the harmonic approxima-
tion30.

We calculate the T = 0 dynamic structure factors using the
eigenvalues and eigenvectors of the dynamic matrix44,

Sλ (k,ω) =

(
k2

Nω2

)3N−3

∑
n=1

Fn,λ (k)δ (ω−ωn), (1)

where λ is T for transverse or L for longitudinal structure factor,
ωn is the frequency (square root of the eigenvalue) associated
with the n-th eigenvector. The sum is taken over all but the three
modes corresponding to a universal translation. In Eqn. 1

Fn,T (k) =

∣∣∣∣∣ N

∑
j=1

(en, j× k̂)eik·r0
j

∣∣∣∣∣
2

, (2)

and

Fn,L(k) =

∣∣∣∣∣ N

∑
j=1

(en, j · k̂)eik·r0
j

∣∣∣∣∣
2

, (3)

where en, j is the polarization vector of particle j in the n-th eigen-
vector, r0

j is the position of particle j in the inherent structure, k
is the wavevector satisfying periodic boundary conditions, k ≡ |k|
and k̂ = k/|k|. We extract the damping coefficients Γλ and the
characteristic frequencies Ωλ by fitting Sλ (k,ω) to a damped har-
monic oscillator model45,

Sλ (k,ω) ∝
Ω2

λ
(k)Γλ (k)

[ω2−Ω2
λ
(k)]2 +ω2Γ2

λ
(k)

. (4)

Another method to determine Γλ and Ωλ is to study the decay
of excited sound waves in the harmonic approximation, and most
of our results shown in this work are from this method (unless
specified). Specifically, following Ref.30, we excite a sound wave
at t = 0 by giving each particle a velocity u̇0

i = aλ sin(k ·r0
i ), where

aL ∝ k̂ and aT ·k = 0. We then numerically solve the equations of
motion,

üi(t) =−
N

∑
j=1

Di j ·u j(t)+ u̇0
i δ (t). (5)

Here, Di j is dynamic matrix and ui(t) denotes the displacement
of particle i at t from its inherent structure position. We calculate
the velocity correlation function,

Cλ (t) =
∑

N
i=1 u̇i(0) · u̇i(t)

∑
N
i=1 u̇i(0) · u̇i(0)

, (6)
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Fig. 4 Frequency ω = vλ k dependence of sound attenuation for our
least stable glass Tp = ∞ (filled symbols) and our most stable glass
Tp = 0.062 (open symbols). The different symbols denote different system
sizes: star=1000K, plus=600K, x=450K, triangle=192K, square=96K, cir-
cle=48K. The red symbols are the results for the longitudinal attenuation
and the blue symbols are results for the transverse attenuation. The
transverse attenuation is scaled by a Tp dependent factor n, where n = 5
for Tp = ∞ and n = 3 for Tp = 0.062.

and fit it to

Cλ (t) = exp(−Γλ (k)t/2)cos(Ωλ (k)t), (7)

to determine the frequency Ωλ and the sound attenuation Γλ .
Since the calculation obtains Ωλ through a fit for a fixed k, the
wavevector is precisely known but there is uncertainty in Ωλ .

Shown in Fig. 2 is an example of the excited sound wave
method30. The snapshots in Fig. 2 show the velocity field for
k = (0,4π/L,0) in a 48000 particle system for times at the peak
values of CT (t) indicated in the figure. As expected, the sound
wave is scattered and the initial velocity profile decays.

The two methods introduced above encode the same dynamical
information, but there exists a finite size effect that is impossible
to correct for using the normal mode analysis. See Appendix
section for details on how we account for this finite size effect
and for details on how we obtain Γλ .

3 Sound attenuation in stable glasses
Shown in Fig. 3 are Γλ (k) for a range of stabilities for (a) trans-
verse sound waves and (b) longitudinal sound waves. For large
wavevectors we observe quadratic scaling, which is consistent
with previous results. There is no difference in the attenuation
for Tp = 0.2 and Tp = ∞ suggesting that zero-temperature glasses
quenched from parent temperatures above the onset temperature
To = 0.2 have identical attenuation. There is a crossover to quartic
scaling, Rayleigh scaling, for our least stable glasses Tp = ∞ and
our most stable glasses Tp = 0.062. Therefore, Γλ (k) = Bλ k4 for
small wavevectors irrespective of the glass’s stability.

To examine the stability dependence of Bλ and the possibility
of a logarithmic correction, in Fig. 3 we plot Γλ (k)/k4 for Tp = ∞,
0.1, 0.085, 0.075, and 0.062 for transverse sound (c) and the
longitudinal sound (d). There is a factor of 15 decrease in Bλ

from our least stable glass to the most stable glass. We note that
in the representation of Fig. 3 a straight line with a negative
slope would indicate the −k4 ln(k) scaling suggested by Gelin et

al. 30. We can identify a range of wavevectors that is described by
ΓT (k) ∼ −k4 ln(k) for our least stable glasses, but this fit appears
to be just a crossover from quadratic scaling at large wavevectors
to quartic scaling at small wavevectors. Indeed, we observe a
distinct plateau at low wavevectors, indicating a purely quartic
scaling without a logarithmic correction. The small wavevector
quartic scaling is clearly observed for the least stable glass Tp = ∞

and the most stable glass Tp = 0.062, and thus it would be expect
to exist for intermediate stability.

As noted by Monaco and Mossa45 when studying glasses cre-
ated by quenching from mildly supercooled liquids, the trans-
verse and longitudinal sound attenuation differ by a constant fac-
tor when examined as a function of frequency ω = vλ k, where
vT =

√
G/ρ, vL =

√
(K +4G/3)/ρ, G is the shear modulus, and K

is the bulk modulus, Fig. 4. We find ΓL(ω) = ΓT (ω)/n irrespective
of the glass’s stability, but the scaling factor n is stability depen-
dent with n ≈ 5 for our poorly annealed glass, Tp = ∞, and n ≈ 3
for our most stable glass, Tp = 0.062, indicating a decreasing dif-
ference between ΓT (ω) and ΓL(ω) with increasing stability. This
scaling suggests that the sound attenuation is governed by a sta-
bility dependent frequency (time) scale and possibly not a char-
acteristic length scale. However, a changing length scale cannot
be ruled out.

With increasing stability, the glass becomes less dissipative and
quartic scalings of ΓT and ΓL start at larger wavevectors. The
wavevector at which the quartic scaling begins depends on the
polarization, transverse or longitudinal, of the sound wave. In
contrast, if we plot the sound attenunation as a function of fre-
quency, the frequency where the quartic scaling begins does not
depend on the transverse or longitudinal sound wave. Again, this
crossover frequency increases with increasing stability. The glass
is becoming more uniform, resulting in a decrease in the dissipa-
tion 30,31 with an increase in the stability.

For small and intermediate wavevectors the wavevector-
dependent speed of sound vT (k) = ΩT /k is a well defined quan-
tity. In particular, for every parent temperature the k→ 0 limit
is given by

√
G/ρ, which is shown as horizontal lines in Fig. 5.

However, with increasing wavevector different methods lead to
slightly but systematically different results for the wavevector-
dependent speed of sound. If we determine the speed of sound
from the fit to the frequency-dependent dynamic structure factor
(filled circles), the resulting quantity exhibits a minimum, which
has been reported in previous simulations8,30,32,45 and experi-
ments23,24,47. This minimum is replaced by a plateau for our sta-
ble glasses. However, if we rely upon the fit to the time-dependent
function Cλ (t) (open symbols), the wavevector-dependent speed
of sound exhibits a more pronounced minimum, which is also
present for the stable glasses. The difference between the two
methods is small (less than 7% for wavevectors shown in Fig. 5)
but systematic.

It would be expected that the two methods could disagree
when the excitation is no longer well described as a propagat-
ing sound wave, which is generally associated to when the mean
free path is equal to half the wavelength, i.e. the Ioffe-Regel limit.
Shown in the inset to Fig. 5 is the Ioffe-Regel limit obtained from
when ΩT (kIR) = πΓT (kIR) as a function of the parent temperature.
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Fig. 5 The wavevector dependence of sound speed for different parent
temperatures Tp. The horizontal lines indicate the corresponding macro-
scopic values in the long-wavelength limit. The open symbols are ob-
tained through fits of CT (t) and the closed symbols are obtained through
fits to ST (k;ω). (Inset) Ioffe-Regel wavevector kIR as a function of Tp.

For this calculation we used ΩT determined from the fits to the dy-
namic structure factor. The result is not sensitive to which method
is used to determine ΩT . For Tp = 0.2, kIR ≈ 0.5 and for Tp = 0.062,
kIR ≈ 0.87. Both of these quantities lie slightly above where the
two methods to obtain the wavevector-dependent speed of sound
begin to diverge. Thus, the classification of these excitations
as propagating sound waves is breaking down for wavevectors
slightly smaller than kIR.

Nevertheless, we find that increasing the stability of the glass
allows for propagating sound waves at smaller wavelengths, and
this can be quantified by the change in kIR. For decreasing
Tp, kIR increases by a factor of 1.8 over our range of stability.
For wavevectors above kIR it is expected that the vibrations are
more localized and there is a change in the energy transport
from a propagating regime below kIR to a diffusive regime above
kIR

48–50. Therefore, the decreased dissipation and increase in kIR

should have significant effects on the thermal conductivity and
the stability dependence of thermal energy transport.

4 Connection between sound attenuation,
vibrational modes, and the boson peak

A recurring idea is that sound attenuation and the excess in vi-
brational modes over the Debye theory are intimately connected.
Recall that in the Debye theory the density of states increases with
a decrease in the speed of sound. Using this idea, the minimum in
vT (ω) has been associated with an increase of the density of states
D(ω) and the boson peak using a generalized plane wave ap-
proach45. However, we find that the description of the vibrational
modes as well defined sound waves breaks down for wavevectors
below the boson peak whose position is close to kIR

51.
In previous studies37,52 it was found that the low-frequency

modes could be divided into extended and quasi-localized modes.
The density of the low-frequency extended modes obeys Debye
theory and the density of the localized modes Dloc =A4ω4. There-
fore, these localized modes are the modes in excess of the De-
bye theory. The density of the low-frequency quasi-localized
modes was found to decrease significantly with the glass stabil-
ity37. Here we find that the sound attenuation and the Rayleigh
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Fig. 6 The coefficient A4 describing the the density of low-frequency
quasi-localized modes, Dloc = A4ω4 correlates very well with the plateau
height of ΓT /k4 for small wavevectors. They are both strongly suppressed
when glass stability increases.

scattering plateau Γλ /k4 also decrease rapidly glass stability. In
Fig. 6 we show that coefficient A4 quantifying the density of the
low-frequency quasi-localized modes and the Rayleigh scattering
plateau BT = ΓT /k4 are proportional to each other, BT ∝ A4.

Our findings for the transverse sound attenuation in moder-
ate and low stability glasses are in general agreement with the
very recent results of Moriel et al.33. Specifically, both our study
and that of Moriel et al. find quartic small wavevector scaling of
the transverse sound attenuation in 3D glasses. Moriel et al. also
investigated the dependence of the sound attenuation of glasses
with different densities of low-frequency quasi-localized modes.
They found that the decreasing density of these modes correlates
with the decreasing extent of the intermediate regime between
the small wavevector quartic scaling and the large wavevector
quadratic scaling, which can be fitted to the −k4 lnk form pro-
posed by Gelin et al.30. Our finding BT ∝ A4 significantly extends
the qualitative correlation found by Moriel et al.33.

A generalized Debye model of Mizuno and Ikeda32 and the
theoretical treatment of Schirmacher et al.4, referred to as
heterogenous elasticity theory, both relate the excess number
of low-frequency modes above the Debye model, Dex(ω), to
sound attenuation. Both of these treatments predict that Dex ≈
4BT /(πk2

Dv6
T )ω

4, where kD = (6πρ)1/3, for small wavevectors.
Physically, these are the same modes as identified in Refs.37,52

and thus Dex(ω)/ω4 = 4BT /(πk2
Dv6

T ) can be identified with A4.
We find that A4 is 20% larger than 4BT /(πk2

Dv6
T ) for our poorly

annealed glass and 150% larger for our most stable glass. Mizuno
and Mossa29 compare the heterogeneous elasticity theory to zero
temperature and finite temperature simulations and find that the
theory captures the main features of the frequency dependence
of the transverse sound attenuation and velocity, but there were
quantitative differences. Therefore, the models4,32 are currently
not quantitatively predictive and get worse with increasing stabil-
ity.

A recent experiment by Pogna et al.46 reported on a connec-
tion between sound attenuation and the boson peak. They find a
decrease in the boson peak height and sound attenuation for hy-
peraged amber (conjectured to be much more stable) compared
to annealed amber (with ordinary stability), which mirrors our
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results37. Pogna et al. used the fluctuating elasticity theory of
Schirmacher et al.5 (which predicts the quartic scaling of sound
attenuation with the wavevector) to fit the vibrational density of
states. There are two main parameters in the theory, one quan-
tifies the strength of the disorder and is related to the width of
the local elastic constant distribution, and another quantifying
the spatial range of correlations of elasticity. They concluded that
upon lowering the fictive temperature by 9% that there was a six
percent decrease of the strength of the fluctuations and a 22%
increase of the elastic correlation length. Therefore, they conjec-
tured that the change of the low-frequency vibrational properties
is mainly driven by an increased elastic correlation length. Future
work should examine the change of the disorder strength and the
elastic correlation length with stability more directly to verify this
conclusion.

A competing theoretical explanation for the relationship be-
tween sound attenuation and the boson peak is that the sound
modes interact with additional soft modes13, the soft potential
model. Examination and evaluation of the soft potential model
requires the determination of several parameters, and this exer-
cise is left for future work.

5 Discussion
The idea that a Rayleigh scattering mechanism may be responsi-
ble for the small wavevector scaling of sound attenuation spans
for over 60 years32,53. Mizuno and Ikeda considered scatter-
ing of an elastic wave. Their analysis determined that Γλ =

δγ2
λ

D3
λ

Ω4
λ
/(4πv3

λ
), where δγ is the strength of the elastic inho-

mogeneities and D is their characteristic size32. Since it has been
suggested that kBP = ωBP/vT is related to the inverse of the length
scale of elastic inhomogeneities3,47, and thus D, we checked to
see if this was consistent with the quartic scaling regimes for ΓT .
We used the approach studied by Mizuno, Mossa, and Barrat54 to
obtain the strength δγT = δG/G, where δG is the fluctuations of
the shear modulus, of the elastic inhomogeneities. We find that
this naive approach does not correctly predict the change in the
sound attenuation for each parent temperature. One unchecked
assumption is that kBP is related to the length scale of elastic in-
homogeneities, and future work needs to examine the spatial cor-
relations of the elastic modulus and the relationship to kBP and
sound attenuation.

Recent experiments on amber aged for 110 million years sug-
gest that the vibrational properties of amorphous materials are
controlled by the distribution of elastic constants and their spa-
tial correlation46. Future numerical studies should examine this
relationship for simulated ordinary and stable glasses. The sta-
bility dependence of sound attenuation using ultrastable glasses,
experimentally available via the method of physical vapor deposi-
tion55, has shown that sound damping decreases with increasing
stability56. It would be interesting to examine the wavevector
dependence of sound damping at low temperatures, where an-
harmonicities may come into play, for these ultrastable glasses.
Mizuno and Mossa29 found that anharmonicities changes the
small frequency sound attenuation from Γ∼ω4∼ k4 to Γ∼ω3/2∼
k3/2, and the nature of this effect may be illuminated by its stabil-
ity dependence.
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Fig. 7 Velocity correlation function C(t) for wavevectors of similar mag-
nitude, k ≈ 0.24, for two different system sizes. The decay rate is clearly
different and does not appear exponential.

192K, k=0.308
96K, k=0.307
9238, k=0.299

En
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pe

0.1
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1
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Fig. 8 The envelope of of C(t) for three system sizes for three wavevec-
tors of nearly equal magnitude. The solid line represents a fit of the
envelope to exp(−Γλ t/2).

Appendix
Molecular dynamics simulations can be subject to effects due to
small size of the simulation cell compared to experimental sys-
tems and the use of periodic boundary conditions. Bouchbinder
and Lerner recently commented on finite size effects in the calcu-
lation of the frequency width of phonon bands58, which indicates
that finite size effects exist for the calculation of sound attenua-
tion in amorphous solids. We find that there are strong finite size
effects for the lowest wavevector sound waves in our simulations,
especially for our most stable glasses. Here we describe a method
to calculate sound attenuation that is independent of system size.

One route to calculate the attenuation of sound waves is to
study the decay of an excitation in the harmonic approximation
as described in the Methods section. After exciting a sound
wave, we study the decay of the velocity correlation function
C(t), Eqn. (6). For small wavevectors we expect that C(t) =
exp(−Γλ t/2)cos(Ωλ t).

To demonstrate that a finite size effect exists we can examine
C(t) for similar wavevectors in two systems of different sizes. The
magnitude of the third smallest allowed wavevector for the 96K
system k96K

3 = 0.238 and the magnitude of the second smallest al-
lowed wavevector is k48K

2 = 0.245. The attenuation of these sound
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ST(k,ω) Fits
Envelope Fits
9238
48K
96K
192K

Γ T
(k

)

10−3

10−2

10−1

k
0.05 0.1 0.2 0.5

Fig. 9 Sound attenuation ΓT (k) calculated using fits to ST (k,ω) (red) and
the envelope fits (blue). The different symbols correspond to different
system sizes. The inset shows an expanded view of the results for one
wavevector. There is a clear finite size effect when ΓT (k) is obtained by
fitting ST (k,ω), which can be removed by using the restricted envelope
fits.

waves should be similar, but we find that they are very different,
Fig. 7. Specifically, at long times the peak heights of the 96K
system are much larger than for the 48K system. However, C(t)
nearly overlaps at short times for both system sizes. To study
the decay of C(t) we calculate the envelope of C(t), which is the
absolute value of the maximum and minimum of the oscillations.

Shown in Fig. 8 on a linear-log scale is the envelope for three
different sizes for a wavevector of similar magnitude. We note
that the initial decay of all three envelopes is exponential, but
there are deviations from the exponential decay at a system
size dependent time. To determine Γλ we fit the envelope to
exp(−Γλ t/2) up to a time when the decay is no longer exponen-
tial. Our uncertainty in Γλ reflects the uncertainty in this fitting
range.

Another method to obtain sound attenuation is through the dy-
namic structure factor Sλ (k,ω) using the eigenvalues and eigen-
vectors of the dynamic matrix, as described in the Methods sec-
tion, or Fourier transforming C(t). Sound attenuation Γλ is then
obtained by fitting with the damped harmonic oscillator model,
Eqn. (4).

Shown in Fig. 9 as red symbols are the results of fitting ST (k,ω)

and as blue symbols are the results of the restricted envelope fits.
The different symbols indicate different system sizes. The inset
shows an expanded view of a region of very similar wavevectors
for four different system sizes. There is a clear finite size effect
when ΓT is found through fits of ST (k,ω), which is removed by
using the envelope fits.
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We examine the wavevector dependence of sound attenuation in simulated
glasses with a wide range of stability.
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