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Surface tension governed by di↵erential adhesion can drive fluid particle mixtures to sort
into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological
tissues? We begin to answer this question for epithelial monolayers with a combination of
theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are
distinct from particle models in that the interactions between the cells are shape-based, as
opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone
is su�cient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we ob-
serve that both types of bidisperse systems robustly mix on large lengthscales. On the other
hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we
term micro-demixing. This result can be understood by examining the di↵erential energy
barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type
and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phe-
nomenon of micro-demixing, which biology may exploit to create subtle patterning. The
robustness of mixing at large scales, however, suggests that despite some di↵erences in cell
shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring
means of recognizing cells of di↵erent types.

L iquid-liquid phase separation, i.e., demixing, drives patterning. In materials science, demix-
ing between two liquids is typically driven by the energetics of interfacial tension overcoming

entropy-driven mixing [1]. By cooling a material, one can tune between a mixed state at high
temperature and a demixed state at low temperature. Depending on the material and quench
rate, this transition can occur continuously via spinodal decomposition or discontinuously via
nucleation [2, 3]. In order to distinguish between mechanisms it is often useful to analyze the
lengthscales of emergent patterns: nucleation and spinodal decomposition give rise to characteris-
tic lengthscales that then coarsen, while in the absence of interfacial tension fluids will mix down
to the scale of single molecules. These and related demixing phenomena have been studied nu-
merically using multicomponent Lennard-Jones mixtures in which particles have a fixed shape and
an interaction potential that depends on the distance between. The potential also energetically
distinguishes between particles of di↵erent types to model interfacial tension [4].
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In biology, demixing at the subcellular scale can lead to compartmentalization within cells [5],
while in a developing organism, demixing can lead to compartmentalization among cells of di↵erent
type, otherwise known as cell sorting. In fact, interfacial tension-driven demixing has long been
invoked to explain cellular patterning. The first among such ideas is the Di↵erential Adhesion
Hypothesis (DAH), proposed by Steinberg in 1963 [6], to explain patterns in the spatial sorting
of progenitor cells, such as ectoderm and mesoderm, during embryonic development. The DAH
postulates that tissues behave like immiscible liquids composed of motile cells that rearrange in
order to minimize their interfacial tension caused by di↵erences in cell-cell adhesion. Building on
the DAH, Harris [7], and later Brodland [8], have highlighted the importance of other contribu-
tors to interfacial tension, including regulation of the acto-myosin cortex. There is an emerging
consensus [9–13] that adhesive molecules help to regulate cortical acto-myosin, which can strongly
impact cell sorting. However, it remains controversial whether di↵erential adhesion or di↵erential
cortical tension alone is su�cient to generate the level of cell sorting and compartmentalization
observed in embryos and cell culture systems [14–20]. Several experiments have suggested that
additional processes such as specialized cell-cell signaling [16] or cellular jamming [17] enhance or
disrupt sorting in living tissues.

One major di↵erence between immiscible liquids composed of cells and immiscible liquids com-
posed of soft spheres is that in the latter case, the particles have a distance-dependent interaction,
while in epithelial layers and even some 3D tissues, the cells are confluent – they can change their
shape to completely fill space—and so their interaction is shape-based. To reflect this property,
confluent tissues have been studied theoretically and computationally using vertex or Voronoi mod-
els [21–24], where cells are constructed from tessellations of space with no gaps between cells. As
active fluctuations drive cellular rearrangements, cells must deform so that no gaps open up be-
tween them. This suggests cells are subject to strong geometrical and topological constraints. For
example, in flat 2D tilings with three-fold coordinated vertices, the average number of neighbors
must be precisely six. This constraint leads one to predict that a rigidity transition should occur
when neighbor exchange between six-sided cells cost zero energy, i.e. when cells can form regular
pentagons at zero cost [25, 26]. This prediction has since been realized in experiments [27] and is
distinct from rigidity transitions in particulate systems [28, 29].

Does such an interaction potential with non-trivial geometrical and topological constraints a↵ect
the fundamental definition of surface tension? Work on bidisperse foams modeled as ordered vertex
models demonstrate that, in equilibrium, demixed cells of two di↵erent areas have a lower energy
than a mixed system and so demixed states are energetically preferred [30]. However, disperse-in-
area foams under large shear strain will mix [31]. If we think of the shear strain as a temperature-like
variable, then these findings are similar to particulate systems.

On the other hand, recent work by some of us demonstrates that so-called heterotypic contacts
in vertex models can drastically a↵ect the notion of interfacial tension [32]. Heterotypic contacts,
where cells recognize neighbors of a di↵erent cell type, can be modeled in two-dimensional vertex
models with a higher or lower line tension along interfaces between cells of di↵erent types, or
heterotypic line tension. Such a rule results in very sharp, yet deformable, interfaces [32] where
surface tension measured by macroscopic deformation of an overall droplet shape gives a value
in line with equilibrium expectations, yet, surface tension measured from interfacial fluctuations
is at least an order of magnitude larger. This discrepancy is due to discontinuous pinning forces
generated during topological rearrangements between cells of di↵erent types. That is, it is a
consequence of the shape-based nature of the interactions.

Here, we explore the possibility of interfacial-tension-driven demixing in the absence of explicit
heterotypic tension in both modeling and in experiments. From the modeling side, we consider a
two-dimensional vertex model with two di↵erent cell types. Particulate mixtures can demix when
a miscibility parameter, the ratio of the strength of the distance-dependent interaction between
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dissimilar particles as compared to similar particles, becomes less than one. Since in vertex models
the interaction is shape-based, it is natural to ask if binary vertex model fluids consisting of mixtures
of cells with di↵erent preferred cell shapes and/or sizes, accounting for di↵erential adhesion, cortical
tension or volume, demix even in the absence of specialized heterotypic interactions. In other words,
is there an emergent e↵ective interfacial tension between two cell types that is su�cient enough
to sort cells? Should the answer be yes, then one can imagine that the sorting of progenitor cells
occurs very early on in the development process before robust heterotypic interfacial tensions are
established. Should the answer be no, then cells must establish heterotypic interactions before
sorting can occur, suggesting a more important mechanical role for cell recognition receptors than
previously thought. The topological nature of the discontinuous pinning forces stabilizing interfaces
in vertex model fluid mixtures tells us that once such recognition is in place, a finite active force
is required to overcome the discontinuity [32]. Interestingly, a recent study with both in vitro
experiments and cellular Potts model simulations suggests that a large heterotypic line tension is
required for cell sorting [33], although the mechanism was left unresolved.

In searching for whether or not large-scale interfacial tensions and, therefore, cell demixing
are emergent/collective properties of such binary vertex model fluid mixtures, we do not observe
large-scale demixing. However, we do observe small-scale demixing in mixtures with di↵erential
adhesion, which is not thermodynamic in origin and which we term micro-demixing. We find
that this behavior arises from dynamical trapping due to energy barriers to neighbor exchanges
(T1 transitions) that depend on configuration of the type of cell. We then ask if the predicted
phenomenon of micro-demixing can be realized in cellular systems.

To begin to answer this question, we experimentally study monolayers of mixtures of wild-type
primary keratinocytes, denoted as Ctr cells, and primary keratinocytes in which the E-cadherin
has been knocked down, denoted as E-cad�/� cells. Cadherins, such as E-cadherin and P-cadherin,
are crucial components of adherens junctions (AJs) that couple intercellular adhesion to the cy-
toskeletin via ↵- and �-catenin [34], the former of which can interact directly with actin and other
actin binding proteins. It been even more recently established that E-cadherin plays a central
role in the mechanical circuitry coordinating adhesion, contractile forces and biochemical signaling
to drive polarized organization of tension observed in stratified epidermal layers [35]. Given the
central role of E-cadherin, E-cad�/� keratinocytes a↵ect the mechanical circuitry via, for exam-
ple, decreased adhesion site lengths [35]. Since the wild-type keratinocytes contain both P- and
E-cadherin, two-dimensional mixtures of the wild-type keratinocytes with E-cad�/� keratinocytes
are ideal for testing whether or not di↵erential adhesion leads to large-scale demixing or not, even
in the absence of heterotypic tensions. In addition to the lack of large-scale demixing in the exper-
iments, we also find evidence for small-scale demixing as predicted in our two-dimensional vertex
model, further bolstering the use of this class of models as a predictor of tissue rheology.

Computational Model

Cells are biomechanical (and biochemical) constructs that are not in equilibrium, i.e. they are
driven by active forces. Given our question of mixing, we study a confluent monolayer of cells of
di↵erent types. The biomechanics of the jth cell of type � is given by the energy functional:

Ej,� = Ka(Aj,� �A0,�)
2 +Kp(Pj,� � P0,�)

2
, (1)

where Aj,� denotes the jth cell area of type � and the jth cell perimeter of type � is denoted by Pj,� .
Given the quadratic penalty from deviating for a cell’s preferred area and perimeter, Ka and Kp are
area and perimeter sti↵nesses, respectively, and both are independent of cell type. Physically, the
area term represents the bulk elasticity of the cell, while the perimeter represents the contractility
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of the acto-myosin cortex with P0,� denoting a competition between cortical tension and cell-
cell adhesion. The total energy of the tissue is then defined as E =

P
j,� Ej,� . An important

parameter in these models is the dimensionless shape index s0,� = P0,�/
p

A0,� . A regular hexagon
has a dimensionless shape index of s0 ⇡ 3.72, for example.

To study binary mixtures, we fix � = 1, 2 and allow the cell types to have di↵erent parameters,
A0,� and s0,� (see Fig. 1a). What is the biological implication of two di↵erent shape indices,
for example? Consider two cell-types with the exact same area. The cell type that prefers to a
have higher shape index, can do so by increasing the density of adhesion molecules, for example.
Therefore, mixing these two di↵erently adhering cell-types corresponds to studying mixing in cell-
types with two di↵erent shapes. In reality, these adhesion receptors also a↵ect the cell shape by
signaling to either up-regulate or down-regulate contractility. In the vertex model energy functional
that we use, we have packaged both adhesion and contractility into the preferred shape index.
Though more detailed models are possible, we find that our minimal model does indeed tell us
something about how cells behave as indicated by the experiments presented below. We will focus
on cases of 50:50 mixtures where there is an equal number of each cell type, with either preferred
shape disparity or preferred area disparity. Unless otherwise specified, the two components are
uniformly distributed in the initial state. We set Kp to unity for all systems.

We study the above energy functional from an energy minimization perspective as well as from
a dynamical perspective in which the cells migrate within the monolayer. As for the latter, there is
still much debate about how to model the motility of cells. We have chosen to model the motility
of a cell by imposing a random active force on each vertex, i.e. each vertex undergoes over-damped
Brownian motion at a fixed e↵ective temperature T with a conservative force contribution from
the above energy functional and a second force contribution from a Brownian force. While there
are other possible dynamical rules, we have found that, for example, the properties of an interface
between two cells types with heterotypic line tension betwen them is rather robust to the specifics
of the dynamical rule [32]. The equation of motion for each vertex is then iterated until the cells
can adequately explore the entire system such that the system approaches a steady state, at least
for most parameters we study. As the cells move, they may rearrange and come into contact
with new cells. Such rearrangements are known as T1 transitions. To implement a T1 transition,
an edge shared between two cells undergoes a ⇡/2 rotation once the length of this edge is below
some threshold length. The rotated edge then lengthens and allows for two di↵erent cells to now
share an edge. As for the energy minimization approach, in addition to comparing the minimum
energy configurations of both demixed and mixed states, we will also compute the energy barriers
associated with T1 transitions by constraining the length of a particular edge in the system such
that a T1 transition occurs while allowing the remaining degrees of freedom in the system to relax.
See the Methods section for more details.

We are also interested in comparing the behavior of these bidisperse systems to ones with an
explicit heterotypic line tension (HLT), where cell types 1 and 2 recognize their joint interface as
a heterotypic interface and, therefore, alter the line tension at that interface. Such interactions
are common in cellular Potts models [33, 36] and have also been studied in vertex and Voronoi
models [24, 32]. In this case, we add an extra term to the cell energy to arrive at:

EHLT =
X

j,�

Ka(Aj,� �A0,�)
2 +Kp(Pj,� � P0,�)

2 + �

X

hi,ji

(1� �↵�)lij . (2)

The latter sum is over all edges, lij , between cells i and j with �↵� representing a Kronecker delta
such that there is additional line tension only between cells of two di↵erent types ↵ and �. For
simplicity, we assume that the additional tension, �, is the same for all heterotypic edges.

Computational Results
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Stability and fluidity of shape bidisperse mixtures. To single out the e↵ect of shape disper-
sity, we first vary the preferred shapes under the constraint that the preferred/target area is the
same across cell types, A0,1 = A0,2 = 1.

Previous work on the vertex model has identified a regime in parameter space dominated by
a coarsening instability [22, 23], where some cells shrink in size and others grow. We expect
that heterogeneous s0 values might amplify this instability, as heterogeneity amplifies di↵erences
between the cells. To prevent area dispersity from a↵ecting the results in these mixtures, we
choose Ka = 100, which is su�cient to reduce fluctuations in area A from target area A0 to a
standard deviation of less than 1 %, preventing the onset of the coarsening instability. Moreover,
Fig. S1 shows that increased area sti↵ness does not significantly impact the fluidity of homogeneous
tissues, as measured by the e↵ective di↵usivity (Eqs. 6-8), denoted as Deff , which is the ratio of
the di↵usion constant in the presence of interactions to that in the absence of interactions. The
onset of a finite e↵ective di↵usivity as a function of the shape index remains near s0 ⇡ 3.81 with
increasing Ka.

Next, we investigate how shape disparity a↵ects the fluidity of the tissue. We find that the most
e↵ective way to represent the phase space of the two-component system with two shape indices
s0,1, s0,2 is by the average value of the shape index, sav = (s0,1 + s0,2)/2, and the shape disparity,
which is the di↵erence between the two values, � = s0,2 � s0,1 with s0,2 > s0,1. Figure 1b is a heat
map of the e↵ective di↵usivity of binary mixtures as a function of sav and �. We see that there is a
boundary between fluid-like and solid-like, demarcated by the thick solid line, as determined by the
Deff threshold. Interestingly, for � = 0.3, this boundary does not match up with the fluid-solid
boundary for the monodisperse case for the Brownian limit of a self-propelled Voronoi model at
a similar temperature, which is near s0 = 3.81 [26]. Moreover, the solid-fluid mixtures depicted
by squares, have a fluid-like di↵usivity above the boundary line. This indicates that the fluid-like
species in the mixture are su�cient to fluidize the entire tissue, which is additionally confirmed by
analyzing the di↵usivities of each component (Fig. S2a).

Binary mixtures with two target shapes. After understanding how � a↵ects di↵usivity in
a mixture, let us now understand its role in bulk demixing for a fixed sav = 3.85. A snapshot of
a typical long-time configuration for such a mixture is shown in Fig. 2a. By eye, it appears that
demixing does occur at very small scales, due to some clustering of the cells with larger s0. The
system maintains this small-scale structure at long times. No large-scale demixing is observed.
Hence, we shall refer to this process as micro-demixing. To quantify micro-demixing and highlight
its long-time steady state, we study three observables.

The first is the demixing parameter DP , which measures the average environment of each
species, quantifying whether it is more likely to be surrounded by similar (homotypic) or dissimilar
(heterotypic) cells. Defining Ns as the number of similar neighboring cells and Nt as the total
number of neighboring cells,

DP =
⌦
DPj

↵
=

⌧
2

✓
Ns

Nt
� 1

2

◆�
, (3)

where the brackets denote averaging over all cells in the tessellation. In a completely mixed state,
DP = 0, whereas in a completely sorted mixture, DP = 1, in the limit of infinite system size.

The demixing parameter as a function of time is shown in Fig. 2b. The value of DP is initially
zero since the two cell types are initially seeded at random, and saturates to a small non-zero value
at long times. The final steady state value, DPf , increases with increasing shape disparity �, as
shown in the inset to Fig. 2b, and the length of time required to reach the steady state also increases
with increasing � (Fig. S2(b)). For comparison, the dashed black line in Fig. 2b illustrates the
demixing parameter as a function of time for a model with heterotypic line tension. In the HLT
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FIG. 1. Vertex model binary mixtures. (a) Schematic of vertex-based modeling of a tissue: A typical
tessellation with two di↵erent types of cells highlighted. The energy depends only on a cell’s perimeter (Pj)
and area (Aj). (b) A heat map of log10 Deff as a function of � on the x-axis and sav on the y-axis. The
phase points with: fluid-fluid (s0,1, s0,2 > 3.81), solid-fluid (s0,1 < 3.81) and solid-solid (s0,1, s0,2 < 3.81)
components are denoted by circular, square and star-shaped markers, respectively. Black-filled markers,
demarcated by a solid black line, denote mixtures with a Deff less than that of the chosen cuto↵ of 0.01.
Region above this line denotes fluid-like behaviour on average.

case, DP rises very quickly to a value close to unity as one species rapidly forms a circular droplet,
in a manner similar to that expected for conventional liquid-liquid binary mixtures.

We then measure the average cluster radius R by quantifying the average radius of gyration
of the dispersed component. In the case of shape bidisperse mixtures, the more fluid-like (larger
s0) component tends to be dispersed. The average cluster radius (Fig. 2c) shows a small growth
in time, which appears to saturate at long times, although the data is noisier given the cluster
statistics sampling rate. The steady state radius tends to increase with increasing �. In all cases
studied, clusters have an average radius of less than 2.5 ± 0.2. For comparison, the dashed line
shows a system with HLT, which we expect to saturate as a nearly circular droplet of one species
embedded inside the other species. For the system size we study, this would correspond to a cluster
of radius 8, which is close to the observed steady state value of 7.2± 0.2.

To further quantify the structure of this micro-demixed state, we study the pair correlation
function, g(r), which describes the normalized probability of finding a cell center a given distance
from another cell center. In homogeneous fluids and amorphous solids, this function exhibits short
range order with peaks occurring at distances that are integer multiples of the typical spacing be-
tween two cells. The envelope of these peaks falls o↵ with distance and eventually approaches unity,
highlighting that these materials are disordered over larger lengthscales. In bidisperse mixtures, we
compute the correlation between each species � separately, defined by the relative position vectors
(r(�)) between two cells of type �:

g��(r) =
1

2⇡rN�⇢0

N�X

i

N�X

j

�(r � r

(�)
ij ). (4)

For a completely sorted mixture, g��(r) should exhibit an envelope that falls o↵ exponentially,
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FIG. 2. Shape bidisperse fluid mixtures. (a) Snapshot of a Pav = 3.85, � = 0.4, N = 1600 mixture. Scale
bar denotes 10 length units. Yellow is used for solid-like cells (s0 = 3.65) and blue for liquid-like ones
(s0 = 4.05). (b)-(d) Various quantifications of demixing in shape bidisperse mixtures (curves colored from
green to red in increasing order of shape disparity i.e � = 0.01, 0.1, 0.2, 0.3, 0.4) are compared to a mixture
with an extra heterotypic line tension of value 0.1, s0 = 3.97 (black dashed curve). (b) Demixing Parameter
versus log(time). The final value (DPf ) as a function of � is shown in the inset. (c) Average cluster radius
(R) versus time. (d) Pair correlation function of high-s0 cells (g22) versus radial distance for t = 200 ⌧0s .
The dashed grey line shows an exponential decay. The inset shows the decay lengthscale (⇠) in terms of the
maximum possible lengthscale (⇠HLT ) with increasing disparity �. Simulation details provided in Table S1.

with a length scale ⇠ that corresponds to the average cluster radius. In the HLT mixtures, where
a single droplet forms, we see such a structure, as shown by the dashed black line in Fig. 2d.
We extract a length scale of ⇠HLT = 4.5 ± 1.2, which is very similar to the steady state average
cluster radius shown in Fig. 2c. For comparison, we measure ⇠ for all shape bidisperse mixtures
and compare it to ⇠HLT by computing ⇠/⇠HLT (see inset to Fig. 2d). We find this ratio to be quite
small, consistent with previous results.
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Binary mixtures with two target areas. After studying the impact of shape disparity in cell
sorting, we next study the e↵ect of dispersity in area. The mixture is now comprised of equal
numbers of cells with A0,1 < A0,2, where we take

p
A0,1 as the unit of length. Both types have

the same s0, or s0,1 = s0,2. We have taken care to ensure that our area bidisperse mixture are also
in a fluid region of the phase diagram (Fig. S1b) by checking that Deff > 0.01. For the results
shown here, the shape index is fixed at s0 = 3.85 to mimic fluid-like cells. We define the ratio of
the preferred areas as ↵ = A0,2/A0,1.

Visual inspection of a snapshot from a simulation of an area bidisperse mixture with high ↵ = 2.5
at long times demonstrates that observing cluster formation by eye is di�cult, particularly given
the disparity in area fraction between the two cell types (see Fig. 3). The DP has been measured
and is smaller than those found in shape bidisperse mixtures (Fig. 2b). Since the large-A0 cells
occupy more than half of the total area, we perform our cluster analysis on cells with A0,1. As
shown in Fig. 3c, the final clusters have an average cluster radius that is typically less than two
cell diameters and becomes smaller as ↵ increases. Similarly, Fig. 3d illustrates that gss(r) also
shows no sign of bulk demixing, with a structural length scale that is always less than 0.2 ⇤ ⇠HLT ,
and decreases with decreasing ↵, as seen in the inset to Fig. 3d.
Zero-temperature energy configurations. Our finite-temperature simulations suggest that
large-scale sorting is not preferred in these mixtures. To understand this, we study an ensemble of
energy minimized states. If the mixed state has a lower energy at zero temperature, then we expect
that energetics cannot drive demixing at finite temperature. Therefore, we compare the energy of
two initial states of N = 400 cells: a sorted system where all of the cells with cell centers in the
left half of the box are labeled type 1, and the remainder are labeled type 2, and a mixed system
where cell types are randomly assigned. We use FIRE minimization [37] to identify the nearest
local energy minimum for 250 realizations in each of the two scenarios.

Figure 4a shows the ratio between the energy of states with sorted initial conditions (Es) and
mixed initial conditions (Em) in the case where type 1 and 2 cells have di↵erent shape parameters.
At larger system sizes, there is a clear trend that the sorted states typically possess higher energies
than the mixed states, so that the ratio rises above unity as the shape disparity � increases.
This indicates that there are no energetic forces driving the demixing in larger systems. We have
also quantified the e↵ective interfacial line tension (Fig. S4, Fig. S5) using a method developed
previously by some of us [38]. We find that there is no emergent line tension in any of these
mixtures, which is consistent with our energy calculations. In Fig. 4b, which shows the ratio of
energies between sorted and mixed states for cells with area dispersity, the trend is even clearer.
Again, sorted states have significantly higher energy compared to mixed states as the area dispersity
↵ increases.
Zero-temperature T1 energy barriers. Although the zero temperature energy calculations
above help us understand the lack of macroscopic demixing in mixtures with no heterotypic inter-
facial tension, they do not explain the small-scale demixing seen, for example, in Fig. 2b. Since
both cell types are subject to the same geometrical and topological constraints and rearrange via
T1 transitions, we now turn to an energetic analysis of T1 transitions for the bidisperse system.

Specifically, we study the statistics of energy barriers in bidisperse systems, where there are
nine types of T1 transitions possible. While we present data in the supplemental information for
symmetric cases where two of the cells are of type 1 and two of are type 2, we focus here on
asymmetric systems where 3 of the cells are of one type and one is of another type. As illustrated
by the 4-cell cluster diagrams in Fig. 5, such 3:1 arrangements naturally represent the cost of one
cell type invading an interface composed of cells of a distinct type, which determines the dynamic
stability of such an interface.

Similarly to previous work [25, 26], we compute the T1 energy barrier height by measuring
the global tissue energy as we force a single edge in our bidisperse simulation to shrink to zero
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FIG. 3. Area bidisperse fluid mixtures. (a) Snapshot of a s0 = 3.85, ↵ = 2.5, N = 1600 mixture. Scale
bar denotes 10 units. Yellow is used for larger cells (A0 = 1.43) and blue for smaller ones (A0 = 0.57).
(b)-(d) Various quantifications of demixing in area bidisperse mixtures (curves colored from green to red
in increasing order of size disparity i.e ↵ = 1.0, 1.5, 2.0, 2.5) are compared to a mixture with an extra
heterotypic line tension of value 0.1, s0 = 3.97 and A0 = 1.0 (black dashed curve). (b) Demixing Parameter
versus log(time). The final value (DPf ) as a function of ↵ is shown in the inset. (c) Average cluster radius
(R) versus time. (d) Pair correlation function of small-A0 cells (gss) versus radial distance in units of the
smallest lengthscale for t = 200 ⌧0s . The dashed grey line shows an exponential decay. The inset shows the
decay lengthscale (⇠) in terms of the maximum possible lengthscale (⇠HLT ) with increasing disparity �.
Simulation details provided in Table S2.

length while minimizing the energy and allowing the other degrees of freedom to relax, as shown
in Fig. 5a. The energy barrier Eb we report in Fig. 5b is the di↵erence between the final energy
E(l = 0) at the 4-fold vertex and the initial energy E0, or Eb = E(l = 0)� E0, averaged over 250
edges with the same topology in small simulated tissues with N = 80 cells.

Figure 5a illustrates a particular type of (3:1) T1 energy profile where a single cell with shape
parameter s10 invades a 3-cell cluster formed by cells with s

cluster
0 . We define a signed shape disparity
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FIG. 4. Minimal energy configurations. Systems with N = 100, 400, 900 cells (green to black) are energy
minimized using the FIRE algorithm to get the total energy of the configurations- mixed(Em) and sorted(Es),
for a < sav >= 3.85, Ka = 100 with increasing disparity. The ratio Es/Em versus �. (b) The ratio Es/Em

is plotted versus ↵ for s0 = 3.85 and Ka = 1. Simulation details provided in Table S3.

�sign = s

1
0 � s

cluster
0 to distinguish it from a T1 with cell types swapped. Negative �sign indicates

that a more sti↵ cell is invading a cluster of floppy cells. We have checked that energy barriers are
statistically identical for cells entering or exiting a cluster. Because cells are as likely to leave a
cluster as to enter it, this suggests that clusters of a given cell type will not grow or shrink over
long-time or length-scales.

Figure 5b highlights that the energy barriers associated with these (3:1) transitions systemati-
cally increase as the magnitude of the shape dispersity �sign increases. In other words, it becomes
energetically more di�cult for a single cell to invade or leave a cluster of a di↵erent cell type as
the shape dispersity between the two types increases. Perhaps more importantly, it also shows
that these energy barriers are not symmetric around zero; there is a systematic di↵erence between
a sti↵er cell invading a floppier cluster and vice-versa, especially for lower values of sav as the
system approaches the jamming transition. Sti↵er clusters tend to be more di�cult to break up
than floppier clusters. To characterize this e↵ect, we define the energy barrier disparity between
invading sti↵er and floppier clusters as �Eb(�) = Eb(�)� Eb(��).

To test whether this mechanism might be relevant for the micro-demixing we observed in our
finite-temperature simulations, we directly compare the demixing parameter associated with the
final, steady state in each simulation, DPf to the energy barrier disparity �Eb as a function of
shape dispersity �, as shown in Fig. 5c. This plot shows a quite strong correlation between the
two quantities, suggesting that this mechanism is a very likely driver of micro-demixing. To further
test this idea, we have increased the temperature for the � = 0.2 mixtures and found DP to vanish
at temperatures higher than the di↵erential energy barrier, as shown in Fig. S3.

A similar analysis can be performed for area bidisperse mixtures as shown in Fig. S6. An
important di↵erence from the shape bidisperse case is that while there is a clear connection be-
tween cell shape and tissue rheology (sti↵er cells have a smaller s0), there is no such connection
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FIG. 5. Di↵erential energy barriers in shape bidisperse fluid mixtures. (a) Energy E(l) relative to E0 is
plotted against T1 edgelength l for a typical shape bi-disperse T1 pair (� = 0.4, sav = 3.85). (b) Energy
Barrier Eb is plotted against signed disparity in shape �s. Positive and negative �s values imply sti↵er
cluster in yellow and floppier cluster in blue respectively, in the 4-cell diagrams show above. Each solid curve
represents the barrier for a heterotypic cell to get out of the cluster for sav = 3.79, 3.85, 3.88) (from solid-like
(orange) to liquid-like (green) (c) Correlation plot for sav = 3.85 between Di↵erential Energy Barriers on
the right y-axis �(Eb) (in maroon triangles) and demixing relative to mixed scenario DPf on the left y-axis
(in black discs). Shape di↵erence � is plotted on x-axis. Simulation details provided in Table S4.

between area and rheology. Moreover, there is very little evidence for micro-demixing, and so we
expect the signal to be much weaker. Nevertheless, we can define a quantity ↵s = A

cluster
0 /A

1
0

that is less than unity if a larger cell is invading a cluster of smaller cells and greater than unity
otherwise. Fig. S6b suggests that large-cell clusters are more di�cult to invade than small-cell
clusters, although the di↵erential energy barrier is quite a bit smaller than for the case of shape
bidispersity. In particular, the case where s0 = 3.85 is highlighted in Fig. S6c showing a correlation
between demixing and �Eb, although the amplitude of both e↵ects is quite small.

Experimental Results

To test our modeling against experiments, we first study monolayers of primary keratinocytes (Ctr)
in the presence of high calcium, whose presence initiates intercellular junction formation (see Fig.
6a). Under such conditions, the monolayer is confluent in the sense that there are essentially no
gaps between cells. We also test whether the confluent monolayer is fluid-like by measuring the
displacement of cells over the course of 24 hours. While some number of neighbor exchanges indeed
take place, and while the integrated displacement of the cells is several times a typical cell length,
we find that the mean square displacement of these cells is typically of the order of a single cell

Page 11 of 20 Soft Matter



12

FIG. 6. Micro-demixing observed in keratinocyte co-cultures. (a) Wild-type (Ctr) and E-cadherin knockout
(E-cad�/�) celll monolayer mixtures with nuclei labelled using immunofluoroscence. (b) Histograms of cell
shapes for Ctr and E-cad�/� cells are compared across seven and six di↵erent isolates respectively, i.e. seven
di↵erent mice. There is a clear di↵erence in the shape index (� = 0.31) of both cell-types, with shape indices
of 4.08±0.06 for Ctr cells and 4.38±0.14 for Ecad�/� cells. (c) Both cell-types, Ctr in yellow and E-cad�/�

in blue, start o↵ initially mixed as shown the 0h (zero hours) snapshot. The co-culture evolves into a micro-
segregated mixture, as shown in a 24h snapshot. (d) Voronoi tessellations (VT) of the same snapshots. (e)
Solid maroon curve represents the time evolution of demixing parameter for the E-cad�/� cell-type in the
mixture as a function of time and averaged over five di↵erent isolates. This result is compared against a
control of demixing curves for some initially well-mixed regions of monolayers of either all Ctr cells or all
E-cad�/� cells but with half the cells stained di↵erently than the other half. Well-mixed regions of the
control cells are shown in yellow, while the well-mixed regions of the E-cad�/� cell-type is shown in blue.

size (Fig. S10a). This places some limitations on the scale of demixing that is expected, but we
nevertheless see a level of micro-demixing that is comparable to what we observe in our simulations
(Fig. S6e).

Since the shape index is an important parameter in our theory, we measure this quantity for Ctr
cells in the monolayer and obtain an average shape index of 4.08±0.06. The full histogram is plotted
in Fig. 6b. Confluent monolayers of primary keratinocytes but with E-cadherin knocked-out, or
E-cad�/� cells, again in the presence of high calcium, are then studied to check for confluency
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(Fig. 6a) and fluidity (Fig. S10a). We then measure an average shape index of 4.38± 0.14 for the
E-cad�/� cells (Fig. 6b). A T-test reveals that the di↵erence in the two shape index histograms
is statistically significant with a P-value of 0.0008. The di↵erence in the shape index corresponds
to � = 0.31. Since we explore both di↵erential adhesion and di↵erential size, we also measure the
areas of each cell type in the monolayer and found no statistically significant area di↵erence. See
Fig. S10(b). In other words, the monolayer mixture tests di↵erential adhesion, as opposed to both
di↵erential adhesion and bidisperse areas.

Next, we study the monolayer of approximately a 50:50 Ctr/E-cad�/� mixture in the presence
of high calcium over the course of 24 hours. Again, a major complication in our comparison is
that while both types of cells in the mixture exert active forces on their environment the typical
displacements over this time frame are small. Nevertheless, after constructing a Voronoi tessellation
for snapshots of the monolayer taken every hour, we measure the demixing parameter (DP) for each
cell type, accounting for the fact that the mixture is not precisely a 50:50 mixture (see Fig. S10c).
In doing so, we measure number of neighbors for each cell type and subtract o↵ the corresponding
number fraction. Figure 6e shows the DP parameter as a function of time for the E-cad�/� cells in
the mixture. This parameter increases from zero (within one standard deviation) and appears to
saturate after approximately 19 hours to around 0.15, albeit with some fluctuations. Such values
of the DP parameter are consistent with our computational observations of micro-demixing in the
di↵erential adhesion case.

We argue that these results suggest the small-scale demixing is a consequence of large di↵erences
in di↵erential adhesion. To rule out this being a consequence of the natural variability in adhesion
even within one cell type, we also measure the demixing parameter in monolayers of just Ctr cells
and of just E-cad�/� cells by staining half of the cells with one type of stain and the remaining
half with a second type of stain (checking for an artificial “demixing” due to variability in these
two monotypic monolayers). We find that the demixing parameter does not increase over time on
average for either the Crt cells or the E-cad�/� cells when looking at initially well-mixed regions
(Fig. 6e) or the entire monolayer (Fig. S11a). In addition to the DP, we also compute the pair-
correlation function for the experimental system and find that while it contains less structure than
the simulations, it also exhibits a correlation length over several cell diameters (see Figs. S11b and
c).

While the qualitative and semi-quantitative comparison between the degrees of micro-demixing
observed in experiments and vertex model simulations is promising, we must also acknowledge that
there are several di↵erences between the two settings. Taking into account such di↵erences and
determining how the micro-demixing is potentially a↵ected is a future avenue for investigation.
For instance, our computations so far focus on 50:50 mixtures and do not take into account the
potentially persistent motion of cells. Another di↵erence is the apparent timescale over which the
micro-demixing occurs from various initial conditions: in the experiments the demixing seems to
occur during a time in which the cells move not much more than a typical cell size; in contrast
our simulations require many ⌧↵ to reach comparable levels of demixing from a random initial
configuration. Additionally, while we expect the di↵erential energy barriers to remain at least for
some range of persistence, the value of the DP parameter will depend on that just as the steady
state value of the DP parameter depends on temperature in our over-damped Brownian simulations.
Further di↵erences may include the e↵ect of di↵erential motility, di↵erential mechanical sti↵nesses
of the cells, and di↵erential cell division and death (which can itself a↵ect the di↵usivity of cells [39]).
Therefore, to more rigorously test the computations against the experiments, future experimental
work with detailed cell tracking within the monolayer and the prevention of cell birth with the
introduction of mitomycin, as well as additional computational work, needs be implemented.

Discussion
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Using Brownian vertex model simulations, we show that two-dimensional mixtures, bidisperse
in preferred shape and in preferred area, have robust fluid-phase mixing at large scales in the
absence of an explicit heterotypic line tension distinguishing between the two cell types. Energy
minimization at zero temperature further supports this finding: mixed systems have lower energy
than sorted ones, so that bidispersity is not su�cient to energetically stabilize an interface between
the two fluids. For shape bidisperse mixtures, we find that, in spite of having solid-like cells
making up half the mixture, the mixtures are still able to fluidize in some parameter regimes of the
vertex model. Furthermore, although this large scale mixing occurs, we find persistent and equally
robust micro-demixing in shape bidisperse mixtures, where clustering of the same cell type over
sub-system-spanning lengthscales is observed.

To understand micro-demixing in shape bidisperse mixtures, we establish a correlation between
micro-demixing and zero-temperature di↵erential energy barriers for neighbor exchanges (T1 tran-
sitions) between four cells at the heterotypic boundaries. Specifically, we find that the energy
barriers for a fluid cell type to “invade” a cluster of sti↵ cells is typically higher than for a sti↵ cell
to “invade” a cluster of fluid cells. This di↵erence in energy barriers creates a bias towards the
small-scale clustering of sti↵er cells. For area bidisperse systems, the di↵erential energy barriers for
neighbor exchanges are smaller than for the shape bidisperse case, and we find a negligible amount
of micro-demixing. Our di↵erential energy barrier calculations at zero temperature also yields a
prediction for the temperature above which the micro-demixing does not occur—a prediction that
has indeed been verified in our simulations.

The computational observation of robust mixing on large scales for both types of mixtures may
be surprising, given that the shape-based interaction distinguishes between the two cell types just as
changing the strength of the distance-dependent interaction between two particles of di↵erent types
in thermal Lennard-Jones mixtures. In the particulate case, there is either large-scale demixing
or no demixing (depending on the miscibility), while in the cellular case, there can be micro-
demixing. This suggests that vertex models may be more relevant for characterizing cell sorting in
dense cellular mixtures than other coarse-grained modeling approaches.

What about comparisons with athermal particle systems? Athermal two-dimensional bidisperse
particulate mixtures of di↵erent size discs with purely repulsive forces, such as models for granular
particles with no (or little) friction, are not expected to sort at small size disparities [40]. Only
as the size dispersity increases does sorting occur due to entropic depletion forces [41]. Entropic
depletion forces do not apply to a confluent tessellation in which the packing fraction is fixed at
unity, though may to some extent apply to Voronoi models. Depletion forces also drive demixing in
vertical vibrated shape bidisperse mixtures of rods and spheres [42]. Interestingly, size bidisperse
mixtures of active particles can sort in the absence of any attractive forces [43]. The sorting here is
due to an asymmetry in the energy barrier between one smaller particle passing through two larger
particles as compared to one larger particle passing through two smaller ones. Given the above
analogy, a vertex model fluid mixture perhaps has more in common with an active, disordered
binary packing than with a thermal fluid mixture with di↵erential adhesion.

How di↵erent is the vertex model examined here applied to cells in comparison to the vertex
models applied to foams? The robust mixing observed in area bidisperse systems at zero temper-
ature is indeed counter-intuitive when compared with area bidisperse foams in ordered hexagonal
states [30]. In this case, the system demixes at zero temperature given an additional perturbative
energetic cost to an interface between cells of slightly di↵erent areas. Only for large applied shear
strains do area bidisperse foams mix [31]. Understanding di↵erences between foam and vertex
models is therefore an interesting area for future study. Foam models lack the P

2 contribution to
the energy functional (Eq.1) and this restricts the fluid-like phase space accessible to such models,
perhaps contributing to di↵erences between them.

To determine whether or not our micro-demixing prediction is directly relevant for biology,
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we conduct experiments with cellular monolayers consisting of both wild-type keratinocytes and
E-cadherin-knock-out keratinocytes. Such mixtures allow us to study di↵erential adhesion and its
e↵ect on cell sorting in the absence of heterotypic tensions. We find evidence for micro-demixing
with a saturated demixing parameter that agrees with our prediction to within one standard
deviation of the experimental value. Moreover, we do not observe large-scale demixing over the
time scale of the experiment. Over longer time scales, the monolayers gradually become multi-
layered, an e↵ect we have yet to incorporate into our computational modeling of confluent cellular
mixtures. In addition to cell persistence, di↵erential motility, and cell birth/death, we also have yet
to explore the e↵ects of small lapses in confluency, which could arise given the lack of E-cadherin in
the modified cell type. Such exploration will allow for even more rigorous quantitative comparison
between the modeling and the experiments.

Our computational and experimental results bring an understanding to earlier work demon-
strating that sorting at embryonic boundaries requires high heterotypic interfacial tension [33].
Given our T1 energy barrier analysis encoding both the topological and geometrical constraints of
confluent packings, we now understand why these mixtures robustly mix. This robustness suggests
that despite some di↵erence in shape and size, progenitor cells can readily mix throughout the
embyro. To demix (or sort), progenitor cells have developed biochemical means of recognizing
whether neighboring cells are of the same type or a di↵erent types. And while a small amount of
heterotypic line tension can generate stable interfaces [32] in the absence of fluctuations, correlated
fluctuations may be able to overcome such barriers. Our analysis gives a new way to understand
bulk behavior based on cellular rearrangements in such confluent mixtures. In other words, based
on the analysis of T1 energy barriers between di↵erent cell types, experimentalists can predict
whether or not di↵erent cell types will mix or not mix in the bulk.

Finally, the micro-demixing e↵ect observed both in our computations and in our experiments
could be utilized in biology to create more subtle patterning. For instance, when randomly tagging
a tessellation half with one cell type (and half with another cell type), one of the cell types percolates
through the system [44]. However, if there is now some spatial correlation in the tagging introduced
even at the small scale, such that the tagging of one cell type is positively correlated with tagging a
neighboring cell of the same type, then the percolation transition point can be altered, transitioning
from a tenuous spanning structure to one that is more robust and more able to respond to changes
in the environment.
Methods and Materials

Simulation details: We simulate a vertex model where the degrees of freedom evolve according to
over-damped Brownian dynamics [45]. Specifically, each vertex i located at coordinate r experiences
a Brownian force FB with FB

i =⇠i, where ⇠i is white noise with zero mean and h⇠�i(t)⇠�k(t0)i =
2T ����ik�(t� t

0) with � and � denoting spatial components and in units of kB equal to unity. In
epithelial layers, we expect that fluctuations are driven by active cytoskeletal components, and
hence the T is an e↵ective temperature that represents the magnitude of this activity (Ref. [46]).
The equation of motion for a single vertex, therefore, takes the form

ṙi = µFi + µFB
i , (5)

with Fi = �riE, where E is the total energy as defined in the Model section. The force Fi is a non-
local e↵ective mechanical force experienced by the ith vertex of the j

th cell and hence represents
the cell-cell interactions. In the absence of mechanical interactions, an isolated cell performs a
random walk with a long time e↵ective di↵usion rate of T/µ. Unless otherwise specified, µ = 1.
Finally, the Euler-Murayama integration method is used to update a discretized version of the
equations (one for each vertex). One simulation unit time is referred to as ⌧ . For a system with
no dispersity, a cell with a shape parameter s0 of 3.85, typically requires 1000⌧ to move its own
length, i.e. ⌧

0
s = 1000⌧ . We typically simulate up to times several hundred times greater than
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⌧

0
s . We also note that other models with directed cell motility are possible, including an Active
Vertex Model [47] and the SPV model where cells are self-propelled due to an active force with
persistence [24, 26].

In vertex models, one needs to take care of cellular rearrangements explicitly [22, 26]. In
the absence of cell division or death, such rearrangements correspond to T1 transitions in which
one edge shrinks to zero length and two new cells are connected via a new growing edge. In
simulations, if an edge length falls below some threshold length lc, then we rotate the edge by ⇡/2
and reconnect the topology of the surrounding cells to generate a local neighbor-exchange. Unless
otherwise specified, lc is set to 0.04. The noise is controlled by temperature (T) which is set to
0.01.

Past work has demonstrated that the mechanical properties of vertex models depend sensitively
on the shape parameter s0 and temperature T . Specifically, these models exhibit rigidity [25] or
glass [48] transitions where the system transitions from more solid-like to more fluid-like. At T = 0,
the 2D vertex model exhibits a rigidity transition as a function of cell shape parameterized by s0.
Above a critical value of target shape index s

⇤
0 ⇠ 3.81, cells are able to move past each other with

very small energy cost and below which they cannot. To understand this transition, one analyzes
the energetics of how cells move past each other via T1 transitions. A minimal four cell calculation
with fixed unit area hexagonal cells revealed that if the two cells that would no longer share an
edge after the edge swap formed regular pentagons, then the energy barrier for the formation of
a four-vertex vanishes, suggesting that pentagon shape formation is a geometrically compatible
transition pathway for three-fold coordinated lattices. Interestingly, the shape parameter for a
regular pentagon is s0 = 2

p
5(5�2

p
5)1/4 ⇡ 3.812 ⇡ s

⇤
0. In the presence of activity or temperature,

vestiges of this zero-temperature rigidity transition have been found in a glassy transition between
fluid-like and more solid-like behavior in an active Self-Propelled Voronoi (SPV) model [26] and a
Brownian Voronoi model [48].

Given the complex phase behavior of such vertex models, we want to ensure that the mixtures
are fluid-like. To do so, we first measure the Mean-Squared Displacement (MSD). To account for
global tissue motion possible in these types of models [49], we define the displacement of each cell
in a time window t, x(t), as the distance the cell traveled in time t minus the total displacement
of the entire system of cells over that same time interval. Then the MSD is defined as

MSD(�t) ⌘ h(x(t+�t)� x(t))2i, (6)

where h·i denotes an average over all cells in the tissue and all times t. The self-di↵usivity Ds, is
defined by assuming the long-time behavior of the system is di↵usive,

Ds = lim
t!1

MSD(t)

4t
. (7)

To understand whether cells are being constrained by their neighbors, we compare Ds to the bare,
or non-interacting, di↵usion constant D0. For a non-interacting Brownian particle at temperature
T with mobility µ, the Fluctuation-Dissipation theorem states that D0 = µkBT , where kB is
Boltzmann constant. We set µkB to unity. The e↵ective di↵usivity is given by

Deff =
Ds

D0
. (8)

Systems with small Deff are more solid-like, while systems with large Deff are more fluid-like. In
practice, we use a threshold of 0.01 to distinguish between these di↵erent behaviors, in line with
previous work [26].
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Self-di↵usivity time ⌧s is defined as the time taken by a cell to move its own length. For a 2D
system, one can use Eq:7 to compute ⌧s = 1/4Ds. Dispersity in the system can a↵ect this average
motion. Hence we convey time in units of ⌧0s which we define as the self-di↵usivity of cell, with s0

of 3.85, in absence of any dispersity. To study micro-demixing, we run simulations that are 200 ⌧0s
long i.e. long enough for cells to explore the entire system multiple times.
Experimental details
Isolation and culture of primary keratinocytes
Primary keratinocytes isolated from newborn mice were cultured in DMEM/HAMs F12 (FAD)
medium with low Ca2+ (50 M) (Biochrom) supplemented with 10 % FCS (chelated), penicillin (100
U ml�1), streptomycin (100 µg ml�1, Biochrom A2212), adenine (1.8 ⇥ 104 M, SIGMA A3159),
L-glutamine (2mM, Biochrom K0282), hydrocortisone (0.5 µg ml�1, Sigma H4001), EGF (10 ng
ml�1, Sigma E9644), cholera enterotoxin (1010 M, Sigma C-8052), insulin (5 µg ml�1, Sigma
I1882), and ascorbic acid (0.05 mg ml�1, Sigma A4034). For keratinocyte isolation newborn mice
were sacrificed by decapitation and incubated in 50% Betaisodona/PBS for 30 minutes at 4oC, 1
minute PBS, 1 minute 70% EtOH, 1 minute PBS and 1 minute antibiotic/antimycotic solution.
Tail and legs were removed and complete skin incubated in 2 ml Dispase (5mg ml�1)/FAD so-
lution. After incubation over night at 4C, skin was transferred onto 500 µl FAD medium on a
6 cm dish and epidermis was separated from the dermis as a sheet. Epidermis was transferred
dermal side down onto 500 mul of TrypLE (ThermoFisher Scientific) and incubated for 20 min-
utes at RT. Keratinocytes were washed out of the epidermal sheet using 3 ml of 10%FCS/PBS.
After centrifugation keratinocytes were resuspended in FAD medium and seeded onto Collagen
type-1 (0.04mg ml�1) (Biochrom, L7213) coated cell culture plates. Primary murine keratinocytes
were kept at 32C and 5% CO2. To induce classical cadherin dependent junction formation, cells
were switched to high Ca2+ medium (1,5-1,8 mM). Cultured cells were regularly monitored for
mycoplasma contamination and discarded in case of positive results. E-cadherin-/- keratinocytes
were isolated from E-cadherin epidermal knockout mice as described previously [35].

Keratinocyte labeling and demixing assay
Keratinocytes were resuspended according to 500000 cells/ml in 1 ml dyeing solution (medium
with 10 µM CellTracker Green or CellTrackerTM Orange (ThermoFisher #C7025 or #C34551
respectively, stock 10 mM in DMSO)). Cells were incubated for 20 minutes at 32oC and pelleted
at 850 rpm for 5 minutes. Cells were resuspended in 1ml medium and incubated for another 30
minutes at 32oC. Eventually, cells were pelleted again and resuspended in 1 ml and green and
orange cells of equal numbers were mixed and plated in low Ca2+ FAD medium. Cell numbers
were chosen to achieve confluency immediately after attachement and spreading. Twenty-four
hours after plating medium was changed either low or high Ca2+ FAD medium to induced cell-cell
junction formation and demixing. Prior to live cell imaging, cells were incubated in FAD medium
containing Hoechst dye to label nuclei for 1 hour. During live cell imaging cells were kept under
controlled temperature (37oC) and CO2 (5%) and imaged every hour.

Immunofluorescence of keratinocytes in vitro (cell shape)
For immunofluorescence staining of keratinocytes, cells were seeded on collagen coated glass cover
slips in a 24 well plate and switched to high Ca2+ medium at confluency for 2 hours. Cells were
fixed using 4 %PFA for 10 minutes at RT, washed three times for 5 minutes using PBS, permeabi-
lized using 0. 5%TritonX100/PBS and blocked using 5% NGS/1%BSA/PBS for 1 hour at room
temperature. Primary antibodies were diluted as indicated in the antibody section in Background
Reducing Antibody Diluent Solution (DAKO). Cover slips were placed growth surface down onto a
50µl drop of staining solution on parafilm in a humidified chamber and incubated over night at 4oC.
Cover slips were transferred back into the 24 well plate and washed with PBS three times for 10
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minutes. Secondary antibodies and DAPI (4,6-Diamidin-2-phenylindol, Sigma) were diluted 1:500
in PBS and cover slips were incubated for 1 hour at RT. Secondary antibodies were washed o↵ via
three wash steps using PBS for 10 minutes. Cover slips were mounted using Gelvatol (Calbiochem).

Antibodies and inhibitors
Primary antibodies used in this study: rat monoclonal against ZO-1 (hybridoma supernatant [50],
clone R26.4C); rat monoclonal against JAM-A (1:300, clone H2O2-106-7-4, kind gift from Sandra
Iden). Secondary antibodies were species-specific antibodies conjugated with either AlexaFluor
488, 594 or 647, used at a dilution of 1:500 for immunofluorescence (Molecular Probes, Life Tech-
nologies).

Microscopy
Confocal images were obtained with a Leica TCS SP8, equipped with a white light laser and
gateable hybrid detectors (HyDs). Objectives used with this microscope: PlanApo 63x, 1.4 NA.
Epifluorescence images were obtained with a Leica DMI6000. Objectives used with this micro-
scope: PlanApo 63x, 1.4 NA; PlanApo 20x, 0.75 NA.

Image processing and analysis
Quantification of cell shapes: Keratinocyte cell shapes were analyzed 2 hours after Ca2+ switch
and induction of cell-cell junction formation. Cell-cell boundaries were labeled by staining for
one of two early cell-cell junction markers ZO-1 or JAM-A. Images were analyzed using Fiji [51].
Cell-cell boundaries were delineated manually using the polygon tool and perimeter and area were
measured to calculate the shape index as described above.

Keratinocyte demixing: Leica Imaging Files (LIF) were analyzed using cell profiler 3.1.9 [52].
Nuclei of cells were identified and nuclei areas were used to measure green fluorescence to discrim-
inate between green and red cells.

Code availability: The codes are programmed using open source cellGPU code available at
https://github.com/sussmanLab/cellGPU.
Data availability: The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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